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Abstract

In this paper we present a new approach for the
realization of a BDD package. This approach does
not depend on recursive synthesis operations, i.e. the
ternary If-Then-Else-operator (ITE), to perform ma-
nipulations of Boolean functions; instead our basic op-
eration MORE is based on exchanges of neighbouring
variables and existential quantification. It is capable of
combining an arbitrary number of Boolean functions in
parallel. We discuss the difference between MORE and
ITE and give experimental results to show the advan-
tages of our implementation approach with respect to
size and runtime.

1. Introduction

Ordered Binary Decision Diagrams (OBDDs) as in-
troduced by Bryant in 1986 [4] are the state-of-the-art
data structure in CAD. They have been successfully
used in many applications, like verification and logic
synthesis [12, 7, 5]. In the meantime they are also inte-
grated in commercial tools for verification and FPGA
design [1, 11].

One of the main advantages of OBDDs is that they
can efficiently be implemented (see e.g. [2, 13]). All
these packages are based on recursive synthesis algo-
rithms similar to the apply-operation proposed in [4].
In [2] the If-Then-Else-operator (ITE) has been used,
since all binary synthesis operations can easily be de-
scribed by the use of ITE. Since ITE works well in
many applications no alternative concepts have been
proposed.

In this paper we present a completely new approach
for the implementation of an OBDD package. Our
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method does not use recursive synthesis algorithms like
ITE. It even does not use a Computed Table (CT). In-
stead our approach is based on an algorithm that uses
exchange of neighbouring variables as the basic oper-
ation (which is also the basic operation for dynamic
variable ordering). On the functional level the method
is based on existential quantification, i.e. the approach
uses Multi-operand synthesis OR-operations based on
Ezistential quantification (MORE).

We first present the new method and then discuss
the resulting advantages in comparison to ITE based
OBDD packages. Our experimental results show the
advantages of MORE: Using MORE it is possible to
build OBDD representations for circuits for which ITE
fails within reasonable upper bounds. Additionally, al-
gorithms for dynamic minimization (see e.g. [8, 15, 14])
can easily be included, since MORE supports fast ex-
change of neighbouring variables as the basic operation.
Experiments show that MORE is not only capable of
handling symbolic simulation with a smaller number of
nodes, even the runtimes are improved.

2. Ordered Binary Decision Diagrams

In the following we briefly review the essential def-
initions and properties of BDDs. For more details see
[4, 5].

As well-known each Boolean function f : B® — B
can be represented by a Binary Decision Diagram
(BDD) [4], i.e. a directed acyclic graph where a Shan-
non decomposition is carried out in each node.

A BDD is called ordered if each variable is encoun-
tered at most once on each path from the root to a
terminal and if the variables are encountered in the
same order on all such paths. A BDD is called reduced
if it does not contain vertices either with isomorphic
sub-graphs or with both edges pointing to the same
node.



For functions represented by reduced, ordered BDDs
efficient manipulations are possible [4]. Furthermore,
the size! of a reduced OBDD can be reduced if Com-
plement Edges (CEs) are used [2]. Then a node is used
to represent a function and its complement at the same
time. (The use of CEs implies that the computation of
the complement can be performed in constant time.)
In the following only reduced OBDDs are considered
and for briefness these graphs are called BDDs.

2.1. Thelf-Then-Else-Operator

The ternary If-Then-FElse-operator (ITE) [2] forms
the core of recursion based synthesis operations for
BDDs. ITE is a Boolean function defined for three
operands as follows:

ite(F,G,H)=F-G+F-H

Since ITE can be used to implement all two-variable
Boolean operations every recursive binary synthesis op-
eration is a spezialized descendant of the ternary oper-
ation, e.g. F + G = ite(F,1,G). The recursive formu-
lation

ite(F,G,H) = (v,ite(Fy,, Gy, Hy), ite(Fg, G7, Hy))

where F, and F§ denote F' evaluated at v =1 and v =
0, respectively, (the same holds for G and H) provides
an algorithm for the computation of the operation. For
more details see [2].

2.2. The Computed Table

The Computed Table (CT), mostly a hash-based
cache [2], maps the three operands F, G and H of
an ITE-function call to the resulting node ite(F,G, H)
once this result has been computed. In [2, 13] it has
been shown that it is possible to implement a DD-
package that realizes lookup and insert processes in the
CT and Unique Table (UT)? in constant time. Thus,
the time complexity for the ITE-function can be given
as follows:

Observing that ITE can be called at most once
for each combination of nodes in F, G and H
due to the storage of calculated operations in an
ideal® CT the overall time complexity of ITE is

!The size of a BDD F denoted by |F| equals the number of
its non-terminal nodes.

2The UT is essential for the storage and access of BDD nodes.
To allow efficient level exchange operations (see also Subsection
2.3) the table gets divided in segments for each variable, suggest-
ing the expression ‘UTs’.

3An ideal Computed Table can store every operation result
and thus every operation needs to be calculated only once. How-
ever, since for a CT only a limited number of calculated opera-
tions can be stored due to memory limitations, older entries must
be deleted to free resources for newer ones. Thus, it may occur
that operations have to be recalculated since the appropriate
entry is no longer present.

Circuit Time of ITE [s]
With CT | Without CT
c0017 0.0 0.0
c0432 18.3 172.1
c0880 1.0 149.2
c1908 35.5 2940.5
c3540 218.2 628.2
Other c... benchmarks ... | > 1 CPU hour

Table 1. Construction time for BDDs using ITE
with and without a CT

O(|F|- |G| - |H|). For binary operations only two
operands are non-terminals. Thus, a binary op-
eration has the time complexity O(|F| - |G]).

The influence of the CT is shown in Table 1. One
can observe that only a minority of the ISCAS’85 [3]
benchmarks can be constructed as BDDs in appropri-
ate time without a CT.

2.3. Dynamic Variable Reordering

In this section we briefly review the basics of a dy-
namic reordering method called Level Fzchange (LE)
which was introduced in [8], since this is the basic oper-
ation for our new synthesis method in the next section.

In order to modify the variable ordering of BDDs
we can exchange variables in adjacent levels. Since an
exchange of neighbouring variables is a local operation
[8, 15] consisting only of the relinking of nodes in these
two levels, this can be done very efficiently. In [15] it
was shown that it is even possible to perform LEs as
local operations when using BDDs with CEs.

3. MORE

We introduce the Multi-Operand synthesis OR-
operation based on Existential quantification (MORE).
First the principle idea will be explained by the syn-
thesis of two BDDs. Then it is shown that the opera-
tion can easily be expanded to an arbitrary number of
operands.

3.1. TheBasic |dea

Assume that two BDDs F and G of size |F| and |G|
defined over a set of variables X,, := {z1,---,x,} for
the Boolean functions f and g are given. They are to
be combined to result in the BDD R for the Boolean
function r = f 4+ g. We therefore introduce a new
variable ¢ that is called coding variable and construct
the BDD R’ as shown for two examplary functions f



Figure 1. Introduction of coding variable ¢ to
represent the Boolean functionr’ =¢-f+c-g

and g in Figure 1% representing the function ' = ¢- f +
¢ - g. The construction of R’ can be done in constant
time if the BDDs F' and G are given. The existential
quantification

Je:r' = (@€ fHe gle=o+ (@ fHec g)e=t
f+y
-

obviously leads to the desired function r although
at this point we would have achieved no improvement
since the calculation still requires the recursive OR-
synthesis. However performing an existential quantifi-
cation can be very simple if we behold the following
facts:

e We can always change the variable ordering of a BDD
without changing the Boolean function it represents.
Thus, it is possible by means of LEs that are local
operations (see Section 2.3) to shift the coding variable
c into the bottom level of BDD R’ and still represent
function r' (see Figure 2).

e Each path p from the root of the BDD R” to a termi-
nal vertex represents a Boolean function cube, = mp -z
where my € {xp, "t - ... - xp, PR |xp; € Xp,ap; €
{0,1},1<j<k,1<k<n}and z € {c¢,7c1}.

e The Boolean function represented by BDD R’ equals
the Boolean sum of all these cubes.

e The existential quantification Jc : cube, = Je: (Myp- 2)
equals m,, for all paths p.

e The Boolean sum of Jc : cube, for all paths p equals
the Boolean function f + g.

Due to the shift of the coding variable ¢ to the bot-
tom level it is always present last (if at all) in a path

4Note: Since the reduction rules identify isomorphic sub-
graphs, the depicted BDDs actually share some of the repre-
sented nodes. However, for a clear separation of the two operands
f and g they are presented without sharing. Note also that bold
edges denote the high edges.

Figure 2. Coding variable shifted into the bot-
tom level

Figure 3. Existential quantification 3¢ : r' =
f + g =rdonein bottom level

and thus the existential quantification for each cube,
can be performed by simply linking all edges that point
to a node with variable ¢ to the terminal one-node re-
sulting in the representation of cube m,,. Therefore the
following holds:

The binary OR-synthesis of f and g can be per-
formed by inserting the coding variable ¢ at the
top. Then c is shifted to the bottom level and a
relinking of all edges that point to a node with
variable ¢ to the terminal one-node is performed
which can be done by a traversal of the BDD. The
resulting BDD R represents f + g as is shown in
Figure 3.

Since we want to maintain canonicity of the data
structure, a reduction of the resulting BDD may be
needed which can be performed in O(|R|) [16]. The
resulting BDD is shown in Figure 4.

MORE is capable of handling any binary synthesis
operation: As is well-known, the negation of a Boolean
function represented by a BDD G can be performed
in O(|G|). When using CEs it can even be done in
constant time [2]. Since the NOT- and OR-operation
are sufficient to perform any binary synthesis operation
and CEs are applied in our BDD package, MORE is
capable of replacing all recursive synthesis operations.



Figure 4. Reduction rules applied to regain a
canonical representation of r
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Figure 5. Coding Tree with [log»(op)] coding
variables {c,...,c,} to combine op Boolean
functions

3.2. Expanding MORE

We can easily expand the number of operands for
MORE by introducing [loga(op)] coding variables for
the combination of op BDDs of arbitrary size using a
Coding Tree as shown in Figure 5. The algorithm keeps
as simple as for a single coding variable since we can
shift each of them towards the bottom level until they
are in the variable ordering below each variable of X,.
A sketch of the algorithm is given in Figure 6.

The power of MORE gets more obvious for an in-
creasing number of operands since the runtime amor-
tizes when handling more complex operations while re-
cursive synthesis operations grow steadily, i.e. MORE
needs [loga(op)] shift operations while ITE has to per-
form (op — 1) synthesis operations.

3.3. MORE than ITE?

In this subsection we discuss the characteristics of
MORE and compare our method to the recursive ap-
proach.

Since ITE works very efficiently in combination with
a well-organized CT there seems to be no need for an

MORE(operand_list consisting of op BDDs)
Build Coding Tree by use of [log2(op)] coding variables;
for each coding variable do

Shift coding variable into bottom level
by means of Level Ezchanges;

// Traverse BDD and eliminate coding variable
Perform existential quantification; Reduce result tree;

}

return result tree;

}
Figure 6. MORE algorithm

alternative approach. However, a very important draw-
back gets obvious if we behold the following facts:

e Since physical resources for any program are limited,
there exists an upper size limit for any BDD pack-
age (e.g. the number of existing nodes is limited to
1,000,000).

e Since the crossing of this physical boundary is forbid-
den, the current ITE-operation has to be negated if
the crossing of this boundary is impending.

e It is not possible to interrupt an ITE-operation in or-
der to change the variable ordering without the loss
of subgraphs that were calculated during its recursive
process to gain the final result.

e The number of existing nodes during an ITE-operation
is higher (especially for large circuits) than the number
of nodes needed to represent the resulting function.
(For some of the ISCAS’85 [3] benchmarks we mea-
sured the maximal number of additional nodes needed
(at the same time) during ITE-operations while con-
structing the BDDs. Experimental results are shown
in Section 4.)

e The runtime of ITE in comparison to MORE is often
much larger (see Section 4).

To handle an impending boundary crossing, ITE
must protocol every step taken to perform a synthe-
sis operation in order to make a reversion of them
possible. After this reversion a minimization of the
BDDs (e.g. by means of dynamic variable reordering
algorithms) can be done and the ITE-operation can be
retried in hope that it will succeed this time.

Since MORE is based on LEs, an impending bound-
ary crossing can be handled simply by interrupting the
shift process of a coding variable and rearranging the
variables, e.g. minimizing the BDDs by optimizing the
variable ordering for the blocks of variables above and
below the level where the shifted coding variable is cur-
rently positioned (see Figure 7). Then MORE will con-
tinue right at the point where it was suspended. Thus,
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Figure 7. Interruption of MORE and optimiza-
tion of the variable ordering

MORE works with higher granularity allowing to con-
struct BDDs with a better controllability of resources.

We have presented experimental results (see Section
2.2) to show that a Computed Tuble is essential to gain
a good performance of ITE.

The performance of MORE does not depend on
any assistent data structure except the Unique Table,
thus spares the resources (usually some megabytes are
needed to maintain an efficient CT for large BDDs) and
gets an upper size limit bonus of approximately 30,000
nodes® for free.

4. Experimental Results

In this section we present a set of experimental re-
sults. All experiments were carried out on a SUN
SPARCstation 20 workstation with a time limit of 1
CPU hour in the package environment of [10]. The
variable ordering was determined by a method similar
to Interleaving [6]. In the case of ITE a CT with 10,000
anchors and a maximal chain-length of 3 was applied
(i.e. 30,000 entries at a time can be stored). In Table
2 the runtime for ITE and MORE (denoted by Time
and given in CPU seconds) for the ISCAS’85 [3] bench-
marks are shown. Additionally the size of the result-
ing graphs are given in column SizeS. In the columns
Add.Nodes the number of additional nodes needed dur-
ing a synthesis operation is stated for ITE and MORE,
respectively (see also Figure 8).

Due to the number of nodes needed for intermediate
results, i.e. BDDs that have to be kept in storage until
a recursion is solved in ITE, the amount of additional
nodes turned out to be generally higher for ITE than

5This value largely depends on the basic data structure of the
package implementation.

60bviously the size of the resulting graph is equal for ITE
and MORE.

2]

ze

Add.Nodes

I I
Begin  Synthesis Operation  End

Figure 8. Size modification during synthesis
operations

for MORE, where multi-operand synthesis operations
are applied. The crossing of an upper size limit is there-
fore more likely. The consequences in this case were
already stated in Section 3.3. Note that the presented
results in the columns Add.Nodes are highly sensitive
to strategies used during symbolic simulations.

Also with respect to runtime MORE has several ad-
vantages in comparison to ITE:

e Even with a non-optimized approach of MORE (i.e. a
terminal case handling (see below) is currently not
fully implemented) the synthesis can be performed
within the same runtime in comparison to ITE. In the
best cases MORE even performed with a time factor
bonus of more than 20 (e.g. ’c5315’) and could even
solve the cases were ITE failed (i.e. needs more than
1 CPU hour) in less than one CPU minute.

e There exist several cases were the CT failed to assist
ITE or (more often) the BDDs that have to be com-
bined are simply too large and their logical structure is
unsuitable and therefore the calculations of ITE con-
sume very much time”.

5. Conclusions and Future Work

In this paper we presented a new approach for the
realization of BDD packages that do not depend on
recursive synthesis operations; instead our basic op-
eration MORE is based on exchanges of neighbouring
variables and existential quantification. It is capable of
combining an arbitrary number of Boolean functions in
parallel.

All facts taken into account we conclude that MORE
offers an easy to implement and easy to handle ap-
proach based on level exchange, i.e. a basic routine that

"In the case of the benchmarks /c499’ and ’c1355' we also
tested the construction without Interleaving. Altough the con-
struction of the benchmark is much quicker in this case (less than
a minute), MORE yields even smaller runtimes.



Circuit Size ITE MORE
Time [s] [ Add.Nodes | Time [s] | Add.Nodes
c0432 31177 18.3 21949 21.5 6869
c0499 40657 > 1 hour no result 12.6 4946
c0880 8654 1.0 3536 1.4 3540
c1355 57945 > 1 hour no result 27.1 6419
c1908 14073 35.5 5316 12.9 3261
c2670 9771 1.6 4052 5.1 4052
¢3540 [ 150672 218.2 56841 114.1 56837
c5315 84267 800.4 14873 31.5 14873
c7552 8481 5.1 2544 8.5 2006
s1196 4132 0.4 1017 0.8 698
51423 14873 3.1 1411 2.8 1082
dalu 2392 1.1 513 2.4 330
rot 10497 2.7 13913 3.8 2844
frg2 1979 0.4 183 2.0 81

Table 2. Measurements for MORE and ITE

is available in all BDD packages. It is a resource spar-
ing and interruptable alternative to manipulate BDDs.
Our experimental results show that MORE does not
only need a smaller amount of nodes for synthesis op-
erations, even the runtimes are improved.

MORE offers a large variety of expansions for fur-
ther improvement, which is part of our future work:
The handling of terminal cases seems to be promis-
ing, i.e. considering terminal cases during the sifting
of the coding variable. Since (in comparison to ITE)
MORE can make profit out of more complex opera-
tions, a structural analysis of the circuit topology and
the fusing of neighbouring gates should be capable of
further reducing the runtime complexity. First promis-
ing results can be found in [9].

Since MORE works with a local core operation,
i.e. the level exchange, the concept of shifting the cod-
ing variables to the bottom level can be easily adapted
to be handled in a pipeline. Thus, a parallel BDD
package that distributes variable level windows to the
network computers should expand the horizon of BDD
computations. Therefore it is the focus of our current
work.
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