
Compilation of Optimized OBDD-Algorithms

Stefan H�oreth
Department of Electrical Engineering / Computer Systems

Technical University of Darmstadt

Merckstr. 25, 64283 Darmstadt / Germany
E-mail: sth@rs.E-Technik.TH-Darmstadt.DE

Abstract

According to Bryant there exist basically two OBDD
construction methods, namely Apply- and Compose-
based approaches. In this paper we describe a com-
pilation method that generates an optimized Apply-
based OBDD-algorithm from a given combinational cir-
cuit description. The method is particularly useful in
library-based synthesis- and veri�cation environments.
We also present a concise, machine independent mea-
sure for the e�ciency of OBDD-construction methods.
Experiments with our new method indicate a speedup of
up to a factor 19 in the construction time for OBDDs
while the maximum memory requirements are typi-
cally slightly smaller in comparison to conventional ap-
proaches.

1. Motivation

In recent years there has been excellent research on
symbolic representations for boolean functions. Graph
types like OBDDs[15, 2, 6, 7, 8] and *BMDs[14, 3, 5]
have become state-of-the-art since their size is reason-
able in many cases and there exist e�cient basic ma-
nipulation algorithms. Various extensions have been
proposed to adapt these graph types for special pur-
poses. However, their impact was mostly on graph size
and little has been done to improve complexity mea-
sures for construction- and manipulation-algorithms.
Experiments reveal a hundredfold increased run-time
for OBDD-construction compared to the ideal case
where the �nal graph is known in advance and its
nodes are simply introduced to the unique-table. Obvi-
ously it is impractical to strive for the latter case, how-
ever, it constitutes a lower bound and marks out the
range for possible improvements against current meth-
ods. Typically OBDD-construction is based on the
ite-Operator[4] and OBDDs are generated from net-
lists in a bottom-up manner. This can be seen as the
most generic method, yet it is very ine�cient in terms
of (worst-case) time-complexity. In this paper we pro-
pose a compilation [1] method that generates optimized
Apply-based OBDD-algorithms for the functional units
of a combinational circuit description. While in the
conventional approach (see Fig. 1) the ite-operator is
applied to a at gate-network, we rely on the compiled
OBDD-operators which are much more e�cient with
respect to time complexity. The compiled algorithms

TTL, stdcell,...

Library

Bit-Slicing Apply

TTL, stdcell,...

Library

Apply
Circuit

Description

Circuit
Description

OBDD

OBDD

OBDD-
Compiler

ite-operator

optimized OBDD-operators

Figure 1. OBDD-construction: conventional- vs.
compilation method

also avoid the computation of useless intermediate re-
sults, and are therefore preferable in order to diminish
temporary memory requirements.

Our method is particularly useful in library-based
synthesis- and veri�cation environments. If the cir-
cuit is given as a large attened net-list of basic gates,
our method involves a preprocessing step for partition-
ing. In addition, we suggest a machine independent
measure for the e�ciency of OBDD manipulation algo-
rithms that are based on a unique-table. The measure
is very succinct and considers time- as well as space-
requirements.

The organization of the paper is as follows: In sec-
tion 2, we give a theoretical foundation for the compila-
tion of optimized OBDD algorithms. The compilation
method itself is described in section 3 followed by an
outline of the preprocessing- and the assembling- step
(section 4). Section 5 describes our e�ciency measure
in order to assess the algorithms we obtain. We also
report experimental results in section 6, and conclude
in section 7 with a discussion of future extensions.

2. Theoretical Background

The if -then-else- (ite-) Operator is commonly used
as a basis for OBDD-construction. Another -more
general- method is the Apply algorithm proposed
by Bryant[6, 7]. It can be used for an arbitrary
Boolean operation together with a pair of Boolean

1
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE



functions (represented as OBDDs). The worst-case
time-complexity of both methods is optimal since it is
simply the product of the size of the argument graphs.
However, if the corresponding operators are applied to
combinational circuits, the resulting time-complexity
is typically far from being optimal. This is due to the
limited scope of both approaches: if the circuit has re-
convergent paths, the computation of useless interme-
diate results cannot be avoided. For further illustration
we consider the carry-output cout = (a� b) � c+ a � b of
a full-adder:

With the ite-Operator one might use the nested calls

ite(ite(ite(A; �B;B)| {z }
a�b

; C; 0)

| {z }
(a�b)�c

; 1; ite(A;B; 0)| {z }
a�b

)

in order to obtain the OBDD for output cout. The
corresponding worst-case time-complexity for this par-
ticular procedure is

O(((nA � nB) � nC) � (nA � nB)) = O(n2A � n
2
B � nC):

where nA, nB , nC are the graph size of the OBDDs A,
B and C respectively.

In contrast to that, the theoretically optimal algo-
rithm needs at most O(nA � nB � nC) steps according
to the maximum number of di�erent 3-tuples that can
be generated from the set of nodes of the argument
OBDDs.

In general there is a twofold reason for the compi-
lation of functions with multiple outputs and multiple
inputs. The �rst one has been mentioned above and is
to avoid the computational overhead for an individual
single-output function:

Theorem 1 The optimal worst-case time-complexity
for an (arbitrary) OBDD-operator is equal to the prod-
uct of the graph size of its arguments.

In general, binary OBDD-operators as well as the
ternary ite-operator can not be optimal if applied to
combinational circuits (except if the circuit has tree
structure). Also, optimal worst-case time-complexity
cannot be attained by functional composition. Worst-
case time complexity for functional composition is
quadratic in the size of the Boolean operator; it might
as well involve a large constant overhead that does not
show in the worst-case measure (see [7] for further de-
tails on functional composition).

The second reason is that, if multiple outputs can
be computed simultaneously (i.e. depend on a com-
mon subset of input variables) a constant speedup can
be achieved by avoiding repeated traversals of the ar-
gument graphs.

Theorem 2 The computation of multiple outputs at a
time saves at most a constant factor of the run-time.

This constant can be quite large. Memory access
is much more costly on modern microprocessors than
register usage. It is important to notice that most of
the OBDD-time is due to memory access/management.
Therefore, OBDD-algorithms should make e�cient use
of the architecture of modern microprocessors by avoid-
ing unnecessary load and save instructions and by bet-
ter register utilization.

3. Compilation of OBDD-Algorithms

The Apply-Algorithm for two-input/single-output
OBDD-operators has been described in [7]. It can be
easily extended to work on argument-lists of arbitrary
length. The pseudo-algorithm for such a generalized
OBDD operator is outlined in Fig. 2.

It takes a list of OBDDs representing the argument
functions of the operator 'op', and produces a list of
output OBDDs (thus implementing a boolean func-
tion fop : IB

m
! IBn). The algorithm �rst checks the

termination criteria for the multiple-output OBDD-
algorithm. If this predicate is not satis�ed the argu-
ments of the operator are sorted according to symme-
tries of the boolean function fop. Although sorting of
the argument list is principally not necessary, it facili-
tates an e�cient test of the computed table in the sub-
sequent step and allows for better reuse of previously
computed values (the computed table is typically im-
plemented as a hash-based cache and stores results for
a boolean operator and its set of arguments). Finally -
if the search of the computed table was not successful
- the algorithm requires two recursive function calls in
order to evaluate (the cofactors) of the output OBDDs.

Apply( op, argument_list ) {

if terminateP( op, argument_list )
return corresponding_OBDD_list;

/* sort argument list <=> symmetries( op ) */
sorted_args = sort( op, argument_list );

/* already computed ? */
if computedP( op, sorted_args )

return previously_computed_OBDD_list;

/* recursive part */
i = next_variable( sorted_args );
c0_list = Apply( op, cof0_list(sorted_args, i));
c1_list = Apply( op, cof1_list(sorted_args, i));

/* find_or_add_node for pairs from c0/1_list */
OBDD_list = edges( i, c0_list, c1_list );

/* insert in computed table */
insert_in_CT( op, sorted_args, OBDD_list );

return OBDD_list;
}

Figure 2. Pseudo-Code for Apply-Algorithm

As can be seen from Fig. 2, algorithms for boolean
operators di�er in their termination criteria as well
as in the symmetries of the corresponding boolean
function. Compilation therefore mainly consists of
two procedures, namely the generation of the termina-
tion criteria for the recursive multiple-output OBDD-

2



algorithm and the detection of symmetries [19, 13, 18].
The e�ciency of these procedures depends on the
OBDD graph type under consideration. In the sequel
we will focus on shared OBDDs which allow for equiva-
lence test and negation in constant time. The compiled
algorithms bene�t from these properties since they can
be used as a basis for succinct tests of the termination
criteria.

3.1. Generation of the Termination Criteria

The termination criteria for an OBDD operator is a
su�cient set of test sequences that can be applied to
the arguments of the operator in order to implement
all test cases of the truth table of the corresponding
boolean function. A test sequence in turn is a set of
OBDD-equivalence tests of the form x = y or x = �y
where x is an OBDD from the operators argument
list and y is either another argument or represents the
boolean constant '1'. Note that both tests take con-
stant time if shared OBDDs [11, 16, 17] with comple-
ment edges are used.

The termination criteria can be represented as a bi-
nary test graph where the terminal nodes are labeled
with the return values and each inner node is labeled
with an equivalence test. A special empty-leaf exists to
indicate that no return value could be deduced. A path
in the test graph from the root to a leaf constitutes a
test sequence. The test graph can be reduced in the
same manner as OBDDs if we disallow di�erent nodes
with the same label and the same set of predecessors
and if we remove nodes where both predecessors are
rooted at the same subgraph.

In Fig. 3 two di�erent test graphs for an add-with-
carry- (adc) operator are shown. Both graphs are suf-
�cient to implement the truth-table of the full-adder
function fadc = ((a� b) � c+ a � b; a� b� c). However,
both graphs could be extended with further equiva-
lence tests for the argument c. Although this is not
necessary in order to implement the adder-function it
could lead to an earlier detection of a return value for
the adc-operator during the recursive traversal of its
argument OBDDs. The second test graph has been
derived from an expansion of the OBDD for the adder
function. We therefore conjecture, that functions with
a compact OBDD-representation also have a compact
test graph. However, in the case of the adc-operator,
there is a more succinct representation using pairwise
equivalence tests of the arguments as it is also shown
in Fig. 3 (adc1).

Our method constructs the test graph using a top-
down algorithm. First a total ordering on the equiva-
lence tests is de�ned. This ordering is based on an op-
timized ordering of the variables in the OBDD [12, 20]
for the operators function. Then the algorithm uses
backtracking in order to evaluate the function under
di�erent equivalence assumptions for the arguments.
Recursion stops if either a return value could be de-
duced or if a previously analyzed function is discovered.
This case analysis is itself based on a BDD-package.

In the following we answer the question how many

0

0

10

0

1

1

0 1

1

0 1

0

01

b=0?
a=b?

a=0?

c,c

b=1?

b=0?

b=1?

c,cb,c 0,c

1

a=b?

2

1,c

a=1?

adc (a,b,c)

adc (a,b,c)
1

-- -

-

Figure 3. Different test-graphs for the adc-operator

test sequences exist (at most) for an arbitrary boolean
operator.

Since every possible subset of arguments of a
boolean operator might probably be used to compute a
return value, we have to consider the power-set of the
set of arguments. For each subset we can test each of
its elements against the boolean constants or for pair-
wise equivalence (possibly negated) with a common ar-
gument. Since each of the elements of the argument
subset can also be used as a return value, we have to
check at most n�1 elements resulting in 4n�1 tests for
a subset of size n. Since

�
N

n

�
= N !=((N �n)! �n!) is the

number of di�erent subsets of size n from an argument
list of length N , we have:

Theorem 3 The maximum number of di�erent test
sequences (based on binary equivalence-tests) for an N-
argument OBDD operator is given by:

NX
n=1

�
N

n

�
4n�1

This number can be further reduced if we restrict
the algorithm to pairwise equivalence test of the argu-
ments or if we use the restriction to test the arguments
against boolean constants. In both cases the termina-

tion criteria reduces to a maximum of
PN

n=1

�
N

n

�
2n�1

test sequences. Additionally, if we just consider the
original set of arguments (instead of its power-set) the
worst-case for the size of the minimal su�cient test
set becomes 2N�1. Clearly, the length of the longest
test-sequence grows linear in the latter case, while it is
quadratic in the worst-case.

Note that the actual size of the test graph depends
on the function under consideration. In the sequel we
refer to a test graph that utilizes all possible test se-
quences as optimized for (execution) speed. A test
graph derived by an expansion of the functions OBDD
is denoted as optimized for size.

3.2. Normalization of recursive Function-Calls

It is essential for an e�cient implementation of an
OBDD operator to use a computed-table [4]. The hit-
ratio of the computed table can be improved if we
identify symmetry sets among the set of variables of
the corresponding boolean function. A symmetry set

3



is a set of variables that are pairwise interchangeable
(possibly using negation) without a�ecting the boolean
function. Once a symmetry set has been identi�ed, the
corresponding arguments of the operator can be sorted
according to an (total) ordering de�ned on the OB-
DDs (in the implementation for shared OBDDs we can
simply use the pointer to a memory location).

In our current implementation we use an exhaustive
symmetry detection but restrict the search to functions
depending on a limited number of variables. Note that
the detection of symmetry sets interacts with the gen-
eration of the termination criteria: if some equivalences
of the arguments of the operator exist, the underlying
boolean function is possibly revealing new symmetries.

For example the boolean function f(a; b; c) = a �
�b + �a � c has no symmetries, but if b = c (e.g. during
OBDD traversal for the operator) the function reduces
to f(a; b; b) = a� b which is symmetric in a and b (c).

Therefore the test for termination and sorting of ar-
guments are actually meshed. To make sure that the
compiled algorithms are competitive against binary op-
erators it is su�cient to restrict symmetry detection
to functions depending on a small number of variables.
Empirically we have found that the restriction to k � 4
variables is feasible and does not increase compilation
time signi�cantly. Moreover, if symmetry-detection is
extended to a large number of variables, there is a
trade-o� between the time needed for sorting and the
improvement of the traversal algorithm.

4. Other Compilation Steps

In section 3.1 we have shown how the test graph for
an operator can be generated. If the number of argu-
ments of an operator is too large it becomes impractical
to optimize the test graph for execution speed. In this
case we can either reduce the number of test sequences
or use a preprocessing step to partition the boolean
function.

This partitioning step is equivalent to a syn-
thesis problem for Field-Programmable Gate-Arrays
(FPGAs) which are based on Look-Up tables (LUT).
In our implementation we use a modi�ed bin-packing
procedure that has been presented in [10]. The algo-
rithm was originally developed for FPGA synthesis and
uses dynamic programming to (heuristically) optimize
the partitioning into LUTs of a given size. Empirically
we use LUTs with n � 8 inputs as a preprocessing pa-
rameter. Each LUT is then compiled into an OBDD-
operator.

Besides the preprocessing- and the compilation step
there is a �nal assembling stage where code for the
test graph and the symmetry information is generated.
The code is output in the programming language 'C'
and further code-optimizations are left to a commercial
C-compiler.

5. E�ciency of the compiled Algorithms

E�ciency measures that focus on either time or
space requirements are not adequate to assess a graph-

based veri�cation methodology. We complete the tra-
ditional set of criteria by a concise measure for the ef-
�ciency of OBDD construction algorithms. This mea-
sure is based on the area AG (product of time and ac-
tive nodes n(t)) required during OBDD traversal. The
value AG can be obtained by sampling the number of
active nodes. If related to the minimal area Aopt, this
measure becomes machine independent. Aopt is ob-
tained from the mean access time for the unique-table
TU=NU and the size nG of the OBDD G:

Aopt

AG

=
1
2
n2G

TU
NU

tGR
0

n(t)dt

�

1
2
n2G

TU
NUP

i

ni+ni+1
2

� (ti+1 � ti)
(1)

Figure 4 shows time- and space-requirements during
OBDD construction for a 32-bit Binary-to-BCD-to-7-
segment converter. This circuit is based on the TTL-
library[21] modules SN74185 and SN7449 which were
compiled and OBDD construction for the circuit (Mod-
ules) has been compared to an implementation based
on binary gates (Gates). Figure 4 also indicates the op-
timum algorithm, that would simply hash the nodes of
the �nal OBDD G. The number of active nodes n(t)
includes the graph in the computed table as well as
OBDDs kept temporarily at fanout-nodes of the cir-
cuit description.

0

100000

200000

300000

400000

500000

600000

0 50 100 150 200 250 300 350 400

O
B

D
D

 s
iz

e 
[n

od
es

]

time [sec]

32-bit Binary-to-7-Segment Converter

final OBDD size

Optimum

Modules

Gates

Figure 4. Sampling of time- and
space-requirements

From the samples of Figure 4 we can compute the
e�ciency Aopt=AG . Table 1 shows the results for a 16-
and 32-bit Binary-to-7-Segment converter. The e�-
ciency for the traditional method (Gates) is less than
one percent in either example whereas the compiled al-
gorithms (Modules) make much better use of the hard-
ware resources.

Table 2 shows the results for run-time and graph-
size. Run-times for the methods 'Gates' and 'Mod-
ules' have been obtained on a SPARCstation20/71;

4



E�ciency Aopt=AG

Gates Modules Improvement

bin7seg16 0.2% 9.0% 45
bin7seg32 0.44% 8.2% 18.6

Table 1. Efficiency Measures

'max.Gates' and 'max.Modules' report the maximum
graph size during OBDD construction for the respec-
tive method. The size of the �nal OBDD is given in
column '�nal'.

time Gates Modules Speedup
bin7seg16 1.92s 0.75s 2.5
bin7seg32 6m50s 21s 19.5

size [nodes] max.Gates max.Modules �nal
bin7seg16 27526 7127 3785
bin7seg32 590346 477498 372646

Table 2. Run-time and graph size

Table 3 shows the size of the object code for the
SPARC-microprocessor as well as compilation times.
In column 'speed' the operators have been optimized
for execution speed while in column 'size' the code-size
was the main concern. The run-times and e�ciency
measures that have been achieved for di�erent code-
optimizations of the TTL library-modules are reported
in table 4. Again, columns 'speed', and 'size' refer to
the di�erent code optimizations from table 3.

Compilation speed size
code time code time

ite 18k 1.3s 0.7k 0.3s
and2,ior2,: : : 3.5k 0.5s 0.7k 0.3s

sn74185 29k 57s 1.5k 1.5s
sn7449 10k 11s 1.5k 0.8s

Table 3. Compilation time and size of object code

All compilation results have been obtained with a
prototype implementation written in Common-Lisp.
Compilation time does not include the time needed by
the commercial C-compiler which generated the object
code from our intermediate C-code.

6. Experimental Results

We have applied our compilation technique to mod-
ules from di�erent design libraries. Table 5 presents the
results for TTL- as well as standard-cell designs.

The TTL-modules used in our examples include
code converters, decoders, full adders, multipliers and
Wallace trees. Circuits bin7segx and bcdxbin are
code converters, wallx is a Wallace-tree multiplier for
two's complement numbers. These circuits as well
as the library modules are described in [21]. TTL-
modules that are speci�ed by a truth-table have been

Code speed e�ciency size e�ciency

bin7seg16 0.75s 9.0% 0.9s 6.1%
bin7seg32 21s 8.2% 28.2s 5.4%

Table 4. Different Code-Optimizations

replaced by a circuit description based on an ex-
act minimization obtained with the Espresso logic-
minimization tool.

The standard-cell examples use design primitives
such as multiplexers, demultiplexers, 1-bit adders and
basic gates. Most of the standard-cell designs have
been generated with the Synopsys synthesis tool, ex-
cept for mcalu32b which is a complex industrial ALU.
The remaining circuits are an unsigned array-multiplier
(mulx), divider (divx) and subtracter (subx). A de-
scription of the standard-cell library can be found in
[9].

In all the experiments an OBDD for the primary-
outputs was constructed in two di�erent ways, once us-
ing the compiled OBDD-operators (TTL, stdcell) and
again using the conventional approach based on the
ite-operator (gates). Column '�nal' gives the size of
the �nal OBDD while columns 'time' presents the run-
time for both methods on a SPARCstation20/71. 'Ef-
�ciency' describes the usage of hardware resources for
both construction methods in percent of the (theoret-
ical) optimum algorithm (please refer to section 5 for
a de�nition of 'e�ciency'). Columns 'speedup' and
'improve.' are the relative improvements for the mea-
sures from column 'time' and 'e�ciency' respectively.
Columns 'in', 'out' give the number of primary inputs
and primary outputs of the circuit.

It is interesting to see that in all examples the rela-
tive speedup for a particular circuit improves with the
size of the OBDD for its output functions. At the same
time e�ciency drops if the 'granularity' of the library
modules is small compared to the size of the circuit.
Therefore run-times could be further improved if larger
portions of the circuit were compiled.

7. Conclusions and Future Research

We have presented a compilation method for library-
based veri�cation- and synthesis environments. Our
method obtains large speedups for MSI functions like
TTL modules. Even for standard-cell designs where
the library-cells contain just a few logic gates, the
method signi�cantly improves the OBDD construction
time. Our method does not increase memory require-
ments. Compiled operators generate much less inter-
mediate results, thus the number of entries in the com-
puted table can be reduced. Overall memory require-
ments are typically slightly smaller compared to con-
ventional methods. Compilation of OBDD-operators is
fast and could therefore be used as an on-the-y tech-
nique in incremental designs. This requires a more so-
phisticated preprocessing technique which is a concern
of our current research. We also investigate an im-
proved symmetry detection for boolean functions which

5



circuit in out Library �nal [nodes] time e�ciency speedup improve.

bin7seg16 16 35
TTL
gates

3785 0.75s
1.92s

9.0%
0.2%

2.5 45

bin7seg32 32 70
TTL
gates

372646 21s
6m50s

8.2%
0.44%

19.5 18.6

bcd5bin 20 16
TTL
gates

2016 0.82s
2.1s

4.8%
0.1%

2.5 48

bcd10bin 40 34
TTL
gates

226999 27s
6m58s

2.7%
0.14%

15.5 19.3

wall8 16 16
TTL
gates

22744 3.0s
7.1s

2.4%
0.6%

2.4 3.3

mcalu32b 77 35
stdcell
gates

18709 8.6s
25.8s

2%
0.1%

3 20

mul8 16 16
stdcell
gates

9257 1.8s
3.0s

1.4%
0.6%

1.7 2.3

mul12 32 32
stdcell
gates

605882 127s
287s

1.3%
0.7%

2.26 1.8

div8 16 9
stdcell
gates

3195 2.8s
4.1s

0.08%
0.04%

1.46 2

div12 24 13
stdcell
gates

87241 290s
455s

0.02%
0.01%

1.57 2

sub64 129 65
stdcell
gates

6432 1.3s
2.0s

21%
2.8%

1.54 7.5

Table 5. Experimental Results

can further speed-up the compilation process itself as
well as the generated code.

References

[1] A. Aho and J. Ullman. Principles of Compiler Design.
Addison-Wesley, 1977.

[2] S. B. Akers. Binary decision diagrams. IEEE Trans-
actions on Computers, C(27):509{516, June 1978.

[3] Bahar, Frohm, Gaona, Hachtel, Macii, and Somenzi.
Algebraic decision diagrams and their applications.
International Conference on Computer Aided Design,
pages 188{191, 1993.

[4] K. Brace, R. Rudell, and R. Bryant. E�cient im-
plementation of a BDD-package. Design Automation
Conference, pages 40{45, 1990.

[5] R. Bryant and Y.-A. Chen. Veri�cation of arithmetic
functions with Binary Moment Diagrams. Design Au-
tomation Conf., pages 535{541, 1995.

[6] R. E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Com-
puters, C(35):677{691, Aug. 1986.

[7] R. E. Bryant. On the complexity of VLSI imple-
mentations and graph representations of boolean func-
tions with application to integer multiplication. IEEE
Transactions on Computers, 40(2):205{213, Feb. 1991.

[8] R. E. Bryant. Symbolic boolean manipulation with
Ordered Binary-Decision Diagrams. ACM Comp. Sur-
veys, 24:293{318, 1992.

[9] European Silicon Structures Ltd. ES2 ECPD07 Li-
brary Databook, 1993.

[10] R. Francis, J. Rose, and Z. Vrasenic. Chortle-crf: Fast
technology mapping for Look-Up Table-based FPGAs.
Design Automation Conference, pages 227{233, 1991.

[11] M. Fujita, H. Fujisawa, and N. Kawato. Evalua-
tion and improvements of boolean comparison method
based on Binary Decision Diagrams. International
Conference on Computer Aided Design, Nov. 1988.

[12] M. Fujita, Y. Matsunaga, and T. Kakuda. On variable
ordering of Binary Decision Diagrams for the applica-
tion of multi-level logic synthesis. Proceedings of The
European Design Automation Conference, pages 50{
54, Feb. 1991.

[13] N. Ishiura, H. Sawada, and S. Yajima. Minimization of
binary decision diagrams based on exchanges of vari-
ables. International Conference on Computer-Aided
Design, pages 472{475, 1991.

[14] Y. Lai and S. Sastry. Edge-valued Binary Decision
Diagrams for multi-level hierarchical veri�cation. In-
ternational Conference on Computer-Aided Design,
pages 188{191, 1993.

[15] C. Y. Lee. Representation of switching circuits by
binary-decision programs. Bell Syst. Tech. J., 38:985{
999, July 1959.

[16] J. C. Madre and J. P. Billon. Proving circuit cor-
rectness using formal comparison between expected
and extracted behaviour. Proceedings of the 25th
ACM/IEEE DAC, pages 205{210, June 1988.

[17] S. Minato, N. Ishiura, and S. Yajima. Shared Binary
Decision Diagram with attributed edges for e�cient
Boolean function manipulation. Proceedings of the
27th ACM/IEEE DAC, 1990.

[18] D. M�oller, J. Mohnke, and M. Weber. Detection of
symmetry of boolean functions represented by ROB-
DDs. International Conference on Computer Aided
Design, pages 680{684, 1993.

[19] S. Panda, F. Somenzi, and B. Plessier. Symmetry de-
tection and dynamic variable ordering of decision dia-
grams. International Conference on Computer-Aided
Design, pages 628{631, 1994.

[20] R. Rudell. Dynamic variable ordering for Ordered Bi-
nary Decision Diagrams. International Conference on
Computer Aided Design, pages 42{47, 1993.

[21] Texas Instruments. The TTL Data Book for Design
Engineers.

6


	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


