
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00  1996 IEEE

Library Based Technology Mapping
Using Multiple Domain Representations1

J. Bullmann� E. Schubert� U. Kebschull+ W. Rosenstiel�

�Universität Tübingen
WSI-TI
Sand 13

72076 Tübingen, Germany

+Forschungszentrum Informatik (FZI)
Department SiM

Haid-und-Neu-Straße 10-14
76131 Karlsuhe, Germany

Abstract

The use of signatures as efficient filters in boolean matching is
a crucial step in technology mapping and/or formal verification.
In this work we combine well known representations of boolean
functions, the binary decision diagrams, with those in the spectral
domain, the functional decision diagrams and the equivalence deci-
sion diagrams. We obtain signatures of Boolean functions and their
variables, which are easy to compute but can reduce the problem of
aliases though.

1 Introduction

The test on equality of two Boolean functions is an important prob-
lem in logic synthesis. It is expensive for a given the variable cor-
respondence of both functions. If the correspondence is not known,
this problem is even harder. Suppose variable names have been
changed by preprocessing optimization stages and final verification
of the optimization results is required. On the other hand, in library
based technology mapping a key task is to match intermediate cir-
cuit functions against the library of existing cell functions. Such a
match-operation involves finding a correspondence of variables and
a polarity value for each variable.

The variable correspondence problem can be solved through com-
plete enumeration of the solution space. Considering a Boolean
function of n inputs, n! variable correspondences and 2n polarities
have to be tested. Obviously, more sophisticated approaches to this
problem are needed. A key to the problem is the use of filters. A
filter is a procedure that efficiently decides, whether two Boolean
functions either surely differ or are equal at certain probability.
Such filters test necessary conditions of equality. A very simple fil-
ter is the check on equality of both functions’ input numbers. More
sophisticated filters are signatures of Boolean functions.

A signature is a reasonably efficient computable characteristic
value of a Boolean function. To compare two functions f and g
the signatures S(f) and S(g) are compared first. If they differ,
the functions are different. If the signatures equal, in some cases
the functions themselves equal and in others they differ. Here, a
non-identity of two functions has not been revealed by the signature.

One of the basic works in the area of technology mapping via
Boolean matching is [8]. Here, Mailhot and De Micheli describe
the task of matching an incompletely specified function f (with a
don’t care set fDC) against a library function g. A variable per-
mutation � and a polarity mapping � are needed, such that one of
f = � � � � g or f = � � � � g holds. The problem of tautol-
ogy test is solved through repeated Shannon decomposition. To

1Part of this work was supported by DFG project RO 1030/3-1 “Konzepte
eines Entwurfssystems für komplexe Programmierbare Gate Arrays”.

shrink the search space, monotony and symmetry of variables are
used. The final test on equivalence is performed via compatibility
graphs. In [10], Schlichtmann et al. describe a technology mapping
on Actel FPGA. Signatures of Boolean functions are applied as fil-
ters to reduce computing time. Here, only variable permutations
are considered. The investigated signatures are the function weight
and others derived from it, like variable cofactor weight. An im-
portant work by Mohnke and Malik is [9]. A BDD based technique
to compute variable permutations is complemented with a polarity
matching method. The above signatures are revisited and so called
breakup signatures are introduced. They are defined as the number
of minterms having a fixed Hamming distance to a preselected origo
minterm. The polarity mapping is done using the cofactor signa-
ture. Tsai and Marek-Sadowska have introduced signatures based
on spectral representations of Boolean functions in [12]. Here, a
function weight is defined on �-terms and also �-term based vari-
able weights are derived from it. These signatures are computed
using FDD [6, 5].

In the above mentioned papers it turned out that the number
of terms in function representations, i. e. the function weight [7]
and refinements, the variable weights are signatures computable
with reasonable time effort. Problematic is the weakness of these
signatures. The number of aliases on average is too high and so
more sophisticated breakup signatures, e. g. the Hamming distance,
have to be applied.

In this paper we approach the signature problem using differ-
ent representations of Boolean functions: these are the sum-of-
products, the Reed-Muller expansion, and the equivalence polyno-
mial. We define the function and variable weights on these different
representations of the Boolean functions. Additionally, we convo-
lute different representations of one function and perform function
and variable weight count in these convolutions. The so gained new
signatures yield higher accuracy resulting in less aliases.

2 Background

Consider the Boolean functions f = (a ^ b) _ c, g = (c ^ a) _ b,
and h = (a� b) _ c. All three of them show a different behaviour
under their input variables a, b, and c. Anyway, the structure of
functions f and g is the same. Boolean matching of two functions
is revealing whether they have different structure or not.

To state this more formally, we use the permutation of the func-
tion’s input variables X = fx0; : : : ; xn�1g. A bijective function
� : X ! X is called a variable permutation. Note, that � is no
Boolean function but a symbol manipulation function.

Having two functions f and g defined on the variable set X , we
say f and g match, if and only if

9� : f(x0; : : : ; xn�1) = g(�(x0); : : : ; �(xn�1)):

The concept of Boolean matching is extendible to the free choice
of polarities. To be more precise, we need the notion of the polarity
mapping. A function � : X ! X 0 = fx; xjx 2 Xg is called a
polarity mapping if and only if 8x 2 X : �(x) 2 fx; xg. Function
� is like � a symbol manipulating function.

Taking into account both variable permutation and polarity
mapping, Boolean matching means finding a pair � � � so that
f = � � � � g. In other words, two Boolean functions f and g
defined on X match if and only if

9�; � : f(x0; : : : ; xn�1) = g(�(�(x0)); : : : ; �(�(xn�1))):

If such a pair � � � exists, f and g are called �-�-identical and
have similar structure. Functions f and g in the example above
are �-�-identical with �(x) = x and �(a) = c, �(b) = a, and
�(c) = b.

Finding out the permutation � and the polarity mapping � is
generally a high effort task. The most straightforward approach to
this problem is trying out all n! permutations each combined with
2n different polarity mappings. Obviously, the time consumption
of this strategy is not affordable even with small n.

Key to the problem is to define a procedure SF , that computes
a characteristic value SF (f) of the function f at reasonable time
effort. This characteristic value needs to be �- and �-independent,
i. e. SF (f) = SF (����f) for arbitrary � and �. Using procedure
SF as a filter, the matching of two Boolean functions f and g speeds
up considerably: if SF (f) 6= SF (g), not a single � � �-pair needs
to be checked. A value SF (f) is called a function signature of f .

One step further is to define characteristic values SV (f; i) for
each variable xi of function f . Using these, all permutations � hav-
ing �(xi) = xj can be omitted in search, if SV (f; i) 6= SV (g; j).
As this characteristic value exists for each variable in a function, it
is called a variable signature.

Note that the signatures only give sufficient information to tell
that two Boolean functions do not have the same structure (or pairs
of variables do not correspond). The case when SF (f) = SF (g)
but f and g are not matchable we call an alias. Similarly, having
SV (f; i) = SV (g; j) for a pair of not corresponding variables
xi, xj is a variable alias. The number of aliases a signature shows
is a quality measure of a signature; the smaller, the better.

2.1 Boolean function representation

The computation and manipulation of binary decision diagrams
(BDD) is described in [1]. A BDD is the binary tree of the coeffi-
cients of the two-level sum-of-products (SOP) of a Boolean function,
reduced through application of two rules:

� combine isomorphic subtrees,

� eliminate nodes with isomorphic children.

As BDDs are codings of the SOP of a function, they represent the
behavioural domain.

An alternative to the SOP is the fixed-polarity Reed-Muller ex-
pansion (RME), also known as an exclusive-or polynomial. Func-
tional decision diagrams (FDD) are introduced in [6], their compu-
tation and manipulation algorithms are given in [5]. FDD are de-
fined as binary-tree based representations of the coefficients of the
fixed-polarity Reed-Muller expansion. Thus they represent Boolean
functions in the functional domain. For their reduction, the same
rules are applied as with BDD.

The equivalence polynomial (EP) is known as the dual form
of the fixed-polarity Reed-Muller expansion [2]. A graph based
representation of the equivalence polynomial is the equivalence
decision diagram (EDD). Here too, the reduction rules introduced

for BDD are applied. In [4, 3] it is shown that the EDD is a third
non isomorphic decision diagram.

Regard the example Boolean function f = �x2x1�x0+x2�x1x0+
x2�x1�x0 + x2x1�x0 in SOP representation. Its RME is f =
x2x1�x2�x1x0�x1, while the equivalent EP is f = (x2+x1) �
(x1 + x0) � x1 � x0 � 0. We now show how to construct a de-
cision diagram for the RME of the given function. First step is to
create a characteristic set that describes the �-terms of the RME:
MRME = ffx2; x1g; fx1; x0g; fx2g; fx1gg. This set can be writ-
ten in another form as a set of bitstrings: f110; 011; 100; 010g. In
these bitstrings a 1 bit in position i means that variable xi occurs
in the relating �-term. The set of bitstrings can be stored as a de-
cision diagram. Since we consider the RME of the function, the
resulting decision diagram is a functional decision diagram, shown
in Figure 1.

.........................d d d

.

d....
.........
.........
...
.........

.........
...
�� QQ

....................
.........................

.........................

.........
.........

...

0

0

1

11

10

0

0
ddA

A
A

@
@
@

.........................
-

-

0

��
0 1

1

011010 110100 01- 1-0

A

B

C C C

straightforward form reduced form

Figure 1: Functional Decision Diagram

In this decision diagram nodes A and B are eliminated as they
have identical 0- and 1-subtrees. It can be observed, that subtree C
is needed only once after the reduction process.

A decision diagram can be constructed from the SOP-represen-
tation in a similar manner. Here the characteristic set is MSOP =
ffx1g; fx2; x0g; fx2g; fx2; x1gg. This set is again transformed to
a set of bitstrings: f010; 101; 100; 110g. Here, a 1 bit at position i
means that variablexi occurs positive in the corresponding minterm,
a 0 means that it occurs negative. The resulting binary decision
diagram is shown in Figure 2.

d

......................... dd dd d

�� QQ

ZZ

.........

.........
.......
.........

.........
...
�� QQ

�� ZZ

.........
.........

.....

XXXXXX
.........................

.........................

0 1

0

11

01

0 1

0 1

1
0

-

010 100 10- 010
110

0

110101

0
E D DD

straightforward form reduced form

Figure 2: Binary Decision Diagram

In this example binary decision diagram, both reduction rules are
used. Subtree D is eliminated once and the remaining one is used
two times instead. As the 0- and 1-subtrees of node E are identical,
E is eliminated like A and B above.

The construction of the equivalence decision diagram is done
analogous to the functional decision diagram. Thus it is left to the
reader.

For Boolean function representation we use all three concepts:
binary decision diagrams plus functional decision diagrams plus
equivalence decision diagrams. They form multiple domain rep-
resentations, since all Boolean functions are represented in be-
havioural and in the spectral domains at the same time.

3 Behavioural and spectral signatures

Our approach of the signature problem is founded on the function
and variable weights as described in related papers. In a first step, we
extend these types of signature to the three representation domains
SOP, RME, and EP. Considering a Boolean function f , defined on
the variable set X = fx0; : : : ; xn�1g we have

f =
_

m2MSOP

(
^
v2m

v ^
^
v=2m

v) (SOP)

=
M

�2MRME

^
v2�

v (RME)

= �
�2MEP

_
v2�

v (EP):

For each domain d 2 fSOP; RME;EPg of function f , there is a
unique characteristic set Md, that describes the function. With this
set in mind, we now are able to define domain specific weights.

The domain specific function weight WF
d (f) of function f in

domain d is the size of f ’s characteristic set Md

WF
d (f) = jMdj:

Similarly, the variable weights are defined: the domain specific
variable weightW V

d (f; i) of function f ’s variable xi in the domain
d is

W V
d (f; i) = jfxjx 2Md ^ xi 2 xgj:

Thus, computing the described weights of a function is counting
the number of terms in its characteristic sets. As the characteristic
sets can grow quite large, we use the efficient decision diagrams
described above for their representation.

3.1 Mixing behavioural and spectral representa-
tions

The generalized formulas for function and variable weights can be
applied not only to the characteristic setsMd of the representations
d 2 fSOP; RME;EPg, but also to combinations of them. We
yield six new characteristic sets through the formulas

MSaR = MSOP \MRME

MSxR = MSOP [MRME nMSaR

MSaE = MSOP \MEP

MSxE = MSOP [MEP nMSaE

MEaR = MEP \MRME

MExR = MEP [MRME nMEaR:

These new sets do not have a straightforward meaning like
MSOP , MRME , and MEP . We call them synthetic sets [11].
They characterize the function f in new ways. Applying the weight
formulas defined above to them, we obtain new characteristic val-
ues, resulting in new signatures. The computation of the synthetic
sets can be easily done using�- and ^-operations between decision
diagrams of different types.

A remaining question is: how much redundancy do these syn-
thetic sets contain? Do we need all six of them, or are fewer of
them containing the major amount of information? We answer this
in section 4.

3.2 Permutation independence

As shown in [10, 5, 12, 3] the weights on the domains SOP, RME,
and EP are �-independent. They do not depend on the variable
ordering of the function. Essential for signatures, this property has
to be proven for the new synthetic weights based on the characteristic
sets MSaR, MSaE , MEaR, MSxR, MSxE , and MExR.

Every permutation � can be written as a sequence �1 � � � � ��m of
simple permutations, each only swapping two variables. Therefore,
it is sufficient to show such a � -independence of the new signatures.
We first prove the � -independence of WF

d when applied to one of
the characteristic sets introduced above, call it Md. To do this, we
show that the size of Md does not differ from the size of set M 0

d

that results from applying � to each variable in each member ofMd.
Suppose � exchanges the variables xi and xj and let us transform
Md memberwise “by hand”. For each x 2Md:

1. xi 2 x, xj 2 x or xi =2 x, xj =2 x. In this case x is not
affected by � and x 2Md) x 2M 0

d.

2. xi 2 x, xj =2 x. Replacing xi by xj , � changes x to x0.

(a) If also x0 2 Md, it will be transformed back to x by � .
So in this case, both x and x0 belong to M 0

d.

(b) If x0 =2Md, it will be in M 0

d replacing x 2Md.

Note that through this construction of M 0

d out of Md the sizes of
both sets are equal.

When looking at the variable weight definition W V
d (f; i) =

jfxjx 2 Md ^ xi 2 xgj, things seem to be more complicated
at first glance. If � exchanges the variables xi and xj , we have to
show, that W V

d (f; i) = W V
d (� � f; j) holds. Here, we are reusing

the above constructive approach, performing the variable weight
count simultaneously on the sets Md and M 0

d. We walk through
them and inspect pairs of corresponding members x 2 Md and
x0 2M 0

d.

1. xi 2 x. From M 0

d’s above construction it follows, that xj 2
x0, if x0 is created from x trough � . Thus, both x and x0

contribute to the variable weight count of the functions f and
� � f respectively.

2. xi =2 x. Then xj =2 x0 and x and x0 do not contribute to the
variable weight count of the functions.

We are now free to use function and variable weights in combina-
tion with all kinds of characteristic sets defined above as signatures.

3.3 Polarity normalization

When variable polarities of a Boolean function are changed, the
numbers of terms in spectral representations change. So, our new
signatures are not �-independent. To compensate this, when match-
ing two Boolean functions f and g, we first transform their polarities
to pseudo-canonical forms. Having found such pseudo-canonical
or normalized polarities for both functions to compare, the second
step will be to establish a variable permutation �. Having found
this, the Boolean matching operation is complete.

We base the step of variable polarity normalization on the SOP
variable and function weights. We define the normalizing polarity
mapping of a Boolean function f this way:

�(xi) =

(
xi if WF

SOP (f) < 2 �W V
SOP (f; i)

xi if WF
SOP (f) > 2 �W V

SOP (f; i)
� otherwise.

This easily computable pseudo-canonical polarity mapping shrinks
the polarity search space considerably in most cases. However,

sometimes there are still undefined polarities left, also called polar-
ity aliases. In a function f , the number of polarity aliasing variables
is AP (f) = jfij�(xi) = �gj.

After normalization, in function f remain AP (f) undetermined
variable polarities. Trying to match functions f and g, the compu-
tation of the variable permutation has to be performed for each of

the 2A
P (f)+AP (g) different polarity mappings.

3.4 Variable order normalization

Having solved the polarity matching problem as the first step in
Boolean matching, we now focus on finding an admissible per-
mutation, having f = � � g. Instead, we determine two order
normalizing permutations, such that �f �f = �g �g holds. We call
� an order normalizing permutation of function f if

i < j)W V
d (� � f; i) < W V

d (� � f; j)

holds for all i 6= j.
We now have the set �f of all f ’s order normalizing permuta-

tions. If function f is symmetric in variables xi and xj (f = �ij �f
holds), we only need to check one permutation of the pair � and
�0 = �ij � � of �f . Thus, one of them may be removed. Using the
symmetric variables of the considered function f , �f is shrinked.

The number of permutations to be tried out when matching f and
g is j�f j � j�gj.

4 Results

We tested our new signatures in two different ways. First, we
computed signatures for each of the 766 functions in the Actel-2
cell library. Here, we were able to obtain no aliases! In other
words, application of synthetic signatures yield maximum accuracy
at moderate computation effort. In Table 1 it is shown, how the
results get more accurate, when synthetic signatures are taken into
account.

Here the quality q of the signature is measured as the quotient

q =
of different signatures in the library
of different functions in the library

as proposed in [10]. In the rightmost column, the storage size
of the computed signatures is given. In the central column, the
considered signature types are listed. It can be observed that the
overall accuracy value q gets better when more signatures are taken
into account. In the lower three lines, the maximum achievable
accuracy of 1 is reached.

Table 2 shows that not all signatures based on synthetic sets are
needed. Maximum accuracy can be achieved when selecting the
subset fMSOP ;MRME ;MSxR;MSaEg. We compare this to the
results given in [10].

q considered signature types size in bit
0.3981 MSOP (n2 + n)

0.5208 above +MRME 2 � (n2 + n)

0.5248 above +MEP 3 � (n2 + n)

0.9686 above +MSxR 4 � (n2 + n)

0.9986 above +MSxE 5 � (n2 + n)

0.9986 above +MExR 6 � (n2 + n)

1 above +MSaR 7 � (n2 + n)

1 above +MSaE 8 � (n2 + n)

1 above +MEaR 9 � (n2 + n)

Table 1: Increasing signature accuracy in technology mapping

q considered signature types size in bit
0.8885 SSFP [10] 2n2

0.9346 SMW ; SSFP [10] 4n2 + n

1 MSOP ;MRME;MSxR;MSaE 4 � (n2 + n)

Table 2: Signature accuracy in technology mapping, compared to
Schlichtmann et al.

Moreover, we applied our signatures to benchmarks of the
MCNC-93 set. Here, signatures are used to find variable corre-
spondences in pairs of Boolean functions prior to formal verifica-
tion. The results are shown in Table 3. Even for large functions
with many inputs few variable order aliases are observed. So, our
signatures perform well in this context too.

The leftmost three columns in the table show the specification
of the benchmark. In column four, the average number of variable
permutations of each output function is given. This average is com-
puted over all primary output functions in each single benchmark.
If this number is greater than 1, aliasing occurred. Otherwise, the
signatures yielded maximum possible accuracy. In the next column,
the previously defined accuracy value q is given. The last column
shows the CPU time in seconds, used to calculate the signature
values.

The latter results underline the importance of work in the area of
Boolean function signatures. Applying signatures, the time effort of
comparing Boolean functions without knowing their variable corre-
spondence can be reduced to a practical measure. Considering even
one of the bad results, like e. g. cordic, the the gain is dramatic: 12
permutations to try, instead of 23! when working without signature
filters.

Benchmark # In # Out avg. # Tries q CPU time
acc 50 69 1.19 0.840 9.96
al2 16 47 1.00 1 0.15
apex1 45 45 1.09 0.917 8.64
apex3 54 50 1.38 0.724 10.48
b3 32 20 1.10 0.909 1.69
b4 33 23 1.00 1 0.35
bca 26 46 1.00 1 109.24
bcc 26 45 1.00 1 84.81
bcd 26 38 1.03 0.971 32.08
chkn 29 7 1.14 0.877 0.78
cordic 23 2 12.00 0.083 22.19
duke2 22 29 1.48 0.676 0.79
e64 65 65 1.00 1 1.99
ex4 128 28 29.93 0.033 0.73
exep 30 63 1.00 1 2.38
ibm 48 17 1.00 1 0.74
in2 19 10 1.10 0.909 0.45
in3 35 29 1.14 0.877 0.83
in4 32 20 1.10 0.909 1.93
in6 33 23 1.00 1 0.35
in7 26 10 1.00 1 0.24
mark1 20 31 1.00 1 0.41
misg 56 23 15.52 0.064 0.13
mish 94 43 1.00 1 0.09
rckl 32 7 1.00 1 0.88
seq 41 35 1.14 0.877 10.20
shift 19 16 125.94 0.008 0.31
signet 39 8 1.00 1 33.41
spla 16 46 1.74 0.575 0.94
x1dn 27 6 1.00 1 28.45
x6dn 39 5 1.20 0.833 1.52
x7dn 66 15 1.20 0.833 2.54
xparc 41 73 1.05 0.952 14.13

Table 3: Accuracy of signatures in formal verification

5 Conclusion

In this paper, we have introduced new kinds of signatures. They are
based on different representations of Boolean functions, the sum-
of-products (SOP), Reed-Muller expansion (RME), and equivalence
polynomial (EP). Yielding a high accuracy, our signatures are ap-
plicable in Boolean matching for both technology mapping, and
verification. Testing our approach against a large set of examples,
we could show its time and space efficiency.

References

[1] R.E. Bryant. Graph-Based Algorithms for Boolean Function
Manipulation . IEEE Trans. on Comp., 35(8), Aug 1986.

[2] D.H. Green. Dual Forms of Reed-Muller expansions. IEE
Proceedings, 141(3), May 1994.

[3] U. Kebschull. Verhaltensbasierte und spektrale Logiksyn-
these mehrstufiger Schaltnetze unter Verwendung von
Binärbäumen, volume Reihe 10 Nr. 335 of Infor-
matik/Kommunikationstechnik. Fortschr.-ber. VDE, 1995.

[4] U. Kebschull, J. Bullmann, E. Schubert, and W. Rosenstiel.
Darstellungsabhängige Minimierung mehrstufiger Schalt-
netze. In Proc. 1. GI/ITG Workshop Anwenderprogrammier-
bare Schaltungen, 1994.

[5] U. Kebschull and W. Rosenstiel. Efficient Graph-Based Com-
putation and Manipulation of Functional Decision Diagrams .
In Proc. EDAC 93, 1993.

[6] U. Kebschull, E. Schubert, and W. Rosenstiel. Multilevel
Logic Synthesis Based on Functional Decision Diagrams . In
Proc. EDAC, 1992.

[7] Y.T. Lai, S. Sastry, and M. Pedram. Boolean Matching using
Binary Decision Diagrams with Application to Logic Synthe-
sis and Verification . In Proc. ICCD, 1992.

[8] F. Mailhot and G. De Micheli. Technology Mapping Using
Boolean Matching and Don’t Care Sets. In Proc. EADC, 1990.

[9] J. Mohnke and S. Malik. Permutation and Phase Independent
Boolean Matching. In Proc. EDAC, EURO ASIC 93, Feb.
1993.

[10] U. Schlichtmann, F. Brglez, and M. Hermann. Characteri-
zation of Boolean Functions for Rapid Matching in EPGA
Technology Mapping. In Proc. 29th DAC, 1992.

[11] E. Schubert and W. Rosenstiel. Combined Spectral Techniques
for Boolean Matching. In Proc. ACM Symposium on FPGA,
Monterey, 1996.

[12] C.-C. Tsai and M. Marek-Sadowska. Boolean Matching Using
Generalized Reed-Muller Forms. In Proc. 31st. DAC, 1994.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

