Controller Optimization for Protocol Intensive Applications*

Andrew Crews, Forrest Brewer
Department of Electrical and Computer Engineering
University of California, Santa Barbara, USA
crews@corona.ece.ucsb.edu, forrest@ece.ucsb.edu

Abstract The focus of this paper is efficient controller construc-
tion which relies on exploration of the NFA model encoded

Applications implementing complex protocols tax the @s a tree-based extended regular expression. _
capabilities of conventional finite state machine synthesis The paper is organized as follows: Section 2.0 reviews
techniques. In this paper, we present sequential optimizathe specification model assumed in this paper. Section 3.0
tion techniques whose complexity scales with the numbeproposes a method of reducing the upper limit on the num-
of state bits rather than the number of states. These techPer of memory elements required for synthesis, by way of
niques create designs which are comparable or superiorgraph reduction. Section 4.0 contains a method for optimi-
to those synthesized by conventional state-based optimiz&ation during synthesis based on observability and identifi-
tion and assignment. Furthermore, they provide viable cation of output-redundant states.
synthesis techniques for designs which are too large for i
synthesis with the conventional method. 1.1. Previous Work

Early work in the field of regular expression compila-
1.0. Introduction tion [1][2] used regular expressions as a specification for a
PLA design. In these systems, the regular expression (RE)
Hardware description languages (HDL's) are widely Was converted to an NFA state diagram, which in turn was

used for specification and synthesis of sequential circuitsdirectly encoded as product terms of a PLA implementa-
They provide opportunities for design reuse, automatedion. Inherently, this technique may lose some of the infor-
synthesis, and technology independent description. How/hation present in the regular expression, such as natural
ever, many specification formats such as BLIF and strucartitions in the machine. ,

tural VHDL require explicit encoding of the states of the A Synchronous ‘reactive language” called Esterel[3]
machine which can hide the hierarchical structure of the@llowed an inherently non-deterministic machine descrip-
finite state machine (FSM). Other hardware specifications{ion. Its commands “reacted” to inputs from the outside
like KISS, require specification of the machine in terms its World, by performing tasks and sending outputs. Each
deterministic state space. This type of specification carf€action to a specified input was allowed to occur indepen-
become explosive and untenable for many machineently of other reactions, creating an NFA model. How-
which have an alternate, concise description as a non€Ver, the Esterel compiler described in [3] created a
deterministic finite automata (NFA). deterministic state graph from this specification, a step

In this work, we present an algorithm for the construc- Which can be explosive, and is avoided in this paper.
tion of complex controllers from an NFA specification. .. _The Production Based Specification[10] provided a
The construction has known bounds on the number of reghierarchical regular expression language augmented with
isters required in the gate-level implementation, and verySOme unique operators. An algorithm for direct construc-
good characteristics in terms of literal count and mappedion of the circuit from a RE-based tree was presented
logic depth, in particular. It is thus applicable to high per- Which did not require conversion of the RE to a NFA state
formance, complex designs such as protocol handlers ofidgram. This direct construction often produced fast cir-
communication encoders. The algorithm can be applied tduits, but with redundant state bit encodings.
machines which are too complex to construct using stan- e
dard deterministic finite automata encoding and minimiza-2.0. The Specification DAG
tion techniques. _ _ _

The NFA specification used herein is derived from clas-_ In this paper, we will assume that the controller is spec-
sical regular expressions. Although any FSM can be speciied as a regular expression in the form of a directed acy-
ified as a classical regular expression, such specification islic graph (DAG). Refer to Table 1 for the meaning of
not guaranteed to be as concise as other types. The NP#arious symbols used in the specification DAG. There are
specification language contains a rich operator settwo main reasons for this type of specification: _
enhancing the ability to specify designs that lack a concise 1. Using this type of input, it is possible to specify
classical regular expression descriptions. automata that are completely deterministic without ever
making use of a traditional deterministic model: neither a

*This work has been supported in part by NSF grant MIP-9320752.

EURO-DAC '96 with EURO-VHDL 96
0-89791-848-7/96 $4.00 11996 |EEE

state transition graph (STG), nor an actual state encodingperator, or no closure operator [4]. Equivalence testing
is needed in the specification. between two RE’s is equally difficult. Thus, the changes to

2. From this specification, there are direct gate levelthe RE graph should be incremental so that we can verify
implementations which scale with the number of state bitsthe equivalence at each step in the transformation--equiva-
in the controller (which can be logarithmically smaller lence must be verified by construction.

than the number of states). Six basic DAG manipulation rules are listed below.
They can be divided into two categories of rules, and in
TABLE 1. Regular Expression DAG Symbols every rule, the “||” operator, can be replaced by any Bool-
ean connective operator which does not include the NOR
symbol meanin function &gx; minterm). (In general, the restriction is
y y g complex, but intuitively this restriction of the NOR func-
sequential non-leaf nodes tion results from the fact that we are looking for neither
concatenation of events (left then right sub-graph to be recognized. A machine which recognizes
. - when another machine is “not recognizing” can have quite
Il OR (either event below) different behavior, and thus may not have the same behav-
&& AND (events occur simultaneously) ior after distributing the function across a concatenation
* Kleene closure (0 or more) operator.)
+ 1 or more (AB)]| (A < C)>A),B|C) (Rule 1)
action | designates an output activation (AC)II (A I’I) > (A ” B), (C) (R(’Ellélea)z)
combinational (terminal) nodes A, (A)* -> (A)+ (Rule 4)
function | boolean function (of inputs only) (A%)* ->(A)* _ (Rule 5)
A, (A {action}) -> (A, A) {action} (Rule 6)

Definition: Acceptance: A sub-machine (specified by a
RE-DAG) will acceptiff the sequence of inputs matches
the entire sequence specified in the DAG.

Definition: Action: In the DAG, each uniquaction
corresponds to a unique output of the controller. The out-
put is set high only if the sub-DAG below the action
accepts.

All sequential behavior exists in the non-leaf nodes of
the tree. Each terminal contains an optional Boolean functhere is no way to determine whicTRUE* state the

tion. Note that there is implicit context passed between
achine is in until the machine moves to the next state. We
nodes in the graph, so acceptance at one location CaWan make use of rule 1 by setting A to be “TRUE*", B to

depend on other parts of the graph.
For example, consider the specification in Figure 1,P€ all of p2 after A, and C to be all of p3 after A. This

Since it is at the top of the DAG, action “a0” is activated
(set high) only when the entire machine accepts (when
either of sub-DAGs p2 and p3 accept). The concatenation
operators denote the left sub-DAG and right sub-DAG
accepting in sequence, while each sub-DAG may require 0
or more clock cycles, itself, to accept. The DAG at p4 rec-
ognizes any state. So, action “al” is activated when z0 and
z1 are both high for one clock cycle following any state.
Without p4, the action “al” would activate only if it
occurred in the very first clock cycle (the start state).

FIGURE 2. Rewrite rules used to manipulate
the Regular Expression DAG. Parentheses
denote a sub-DAG

The first set of rules (1-3) directly reduce the number of
terminals in the DAG. Consider Figure 1 once again. The
sub-DAG ‘TRUE* occurs at the beginning of both sub-

DAGs p2 andp3, and represents the same state, since

Let T be the number of paths to terminals in the DAG.
It is always possible to synthesize a circuit with T+1 mem-
ory elements. Note that the DAG in Figure 1 has 9 paths to
terminals, thus at most 10 flip-flops in the final machine
and up to 210 deterministic states. We would like to alter
the DAG to decrease the number of terminal paths (and
hence memory elements) without altering behavior (this
can only be done if the controller actually has less than
2710 states).

3.0. Regular Expression Minimization FIGURE 1. Example specification DAG.

“a0”, “al”, and “a2” represent the three
actions. BDD’s are shown as ovals with the
function written inside.

Optimal regular expression reduction is known to be
NP-Complete, even for RE’s which contain either no OR

removes a path from the tree. The final reduced DAG is
shown in Figure 2.

Rules 1 and 2 effectively move the concatenation oper-
ators up, closer to the root of the DAG, and the Boolean
operators down, closer to the terminals. When a node in
the DAG becomes an arbitrary combinational logic func-
tion of two terminals, it can always be reduced to a single
terminal BDD node. For example, in Rule 1, if DAGs B
and C represent combinational functions of the inputs, the
sub-DAG (A, B) || (A, C) can be reduced from four paths
to terminals to two paths, by creating a BDD node D = (B
+ C).

The second set of rules (4-6) are members of a general
class of rules which alter the DAG in ways which improve
its canonicality. By making sure that only one type of each
equivalent structure shown in rules 4 through 6 exist in the
DAG, it is easier to identify larger equivalent sub-DAGs
in the DAG as a whole. An example is shown in Figure 3
where rules 5 and 6 together allow rule 3 to remove termi- 2]
nals paths from the graph. FIGURE 4. Reduced DAG for the example in

Using rule 6 it is possible for actions to be manipulated ~ Figure 1. Each t j denotes combinational logic
similarly to operators. The allocation of a separate node in With the function inside the oval.
the DAG specification for each action excitation is unique . .]
to this paper. Placing these nodes in the graph allowdor actions in this case
actions to be manipulated for a more canonical graph, and(A{ actior0} ,B)|| (A{actionl},C) =
joined with similar actions for optimization. A{ actiorDaction1}, (B|| C)

The importance of considering actions during tree .)
manipulations is made clear by the following. Each sub-3.1. Algorithm Overview
DAG provides context to the following sub-DAG, so) o . o
equivalent sub-graphs with non-equivalent actions cannot During the minimization, a “unique table” similar to
be combined into a single sub-graph via rule 2 unless theone found in BDD packages[9], is maintained for each

input context is also equivalent. For example, node, so that identical nodes are reused, instead of being
(A O|| (B,C) = (A]|B),C duplicated. When the algebraic manipulation rules and the

but unique table are used to reconstruct the DAG from the bot-

(A, (C{actior0}))|| (B, (C{ actiorl})) # tom up, uniqueness of a node is assured by comparing its
(Al| B), C{ actiorDactionl} operator type and left and right pointers. The fact that two

except under two special conditions: 1. A and B areidentical nodes will never be constructed is ensured, but it
always recognized together, or are otherwise equivalentjs nonetheless possible for two functionally equivalent
or 2. “action0” and “action1” are equivalent. The left side Sub-DAGs to exist. The above rewrite rules and unique
fires “action0” after recognizing the sequence “A,C”, table are heuristics which improve the clarity and simplic-
while the right side fires “action0” after recognizing either ity of the specification, but do not provide a canonical
the sequence “A,C" or “B,C". form. _ _
On the other hand, for reductions which use rule 1, the The regular expression reduction occurs as follows: A
action nodes can be ignored since the context is identicaflepth first traversal of the DAG is done, reducing equiva-
lent structures using a set of rules that include rules 4-6,.
Where applicable, graph-matching is done, to attempt
) reductions shown in rules 1, 2. The final DAG is con-
action0 action0 structed on the way back up. Each final node is placed in
. the unique table to avoid duplication whenever possible.
The reduced DAG for the example in Figure 1 is shown

in Figure 4. Note that implementation of the rewrite rules
have reduced the number of terminal paths from nine to
six. This implies that construction is guaranteed to be done
with seven flip-flops or less.

4.0. Efficient Gate Construction

@ After reducing the number of terminals in the tree, the a
circuit is synthesized by traversing the resultant DAG.
Details of the circuit generation, using construction tem-
FIGURE 3. Example: Improving the plates for the various types of operators are given in [11].
canonicality of the graph can lead to _ Essentially, the construction requires one control point
reduction of paths to terminals. (i.e. one register) for each path to a terminal node. The cir-

cuit is generated recursively, by allocating registers at the A

terminals and constructing logic functions of the register A. RE sub-DAG B: Circuit created .
outputs (present state bits) according to the type of without reg. reduction
sequential operator at each node. Logic functions are
stored as BDD’s during construction. An example of the
synthesis algorithm is shown in Figure 5.

Call the set of input variables {Z}, and the set of
present state variables {X}. The context for a machine is
initially set to the start state. In the figure, f(X,Z) repre-
sents the context sent to the DAG. This context is passed
to the two children of node Py Fand R;. At node P, a
memory element is allocated, along with optional combi-
national logic of the input variables. Similarly, memory
elements are added for the two terminals of the concatena-
tion operator at B, t; and b. Finally, since P is a OR
operator, the acceptance functions from the two children,
P_ and By are logically ORed together, and the result
acceptance function for the graph, h(X,Z) is returned (and
may be passed as context to future machines.

The actions of the machine are also created during the .) . ,
machine traversal. Initially, all action functions are set to a built with three flip-flops, which could describe eight pos-
Boolean “FALSE” indicating that they will never occur. Sible states. Assuming that the incoming context, f(X,Z), is
Whenever an action is encountered in the constructioncompletely unknown, there are indeed eight states that can
process, its corresponding output function is logically €XIst: any number from zero through three of the terminals
ORed with the current context. can be simultaneously accepting. Above nBdeowever,

This algorithm makes heavy use of memory elements.there are only four distinguishable states: State 1: no ter-
Typically during construction it is possible to modify Minals inP accepting, State 2: eithey or t, accepting,
existing control points, rather than adding a new one andState 3: only;taccepting, and State 4:and eithergor t,
still represent the state correctly. This reduction cannot beaccepting. The state whegehtut not $, and $ but not §
done by the previous algorithm for DAG reduction in accepting are indistinguishable, or output-redundant to any

FIGURE 5. A. A sub-DAG, with context f(X,2)
passed to it from the previous sub-DAG.
B. The corresponding circuit.

Section 3.0. node above node
In this example, we can combine control points frgm t
4.1. Register Removal During Construction and b into a single bit,4 The resultant design has four

states encoded by two control points, the minimum possi-

Directly allocating control points for each terminal in rrip(l)? nglltggutth :);aeTgr}l?gaéuz blegfi(t:;tg; t?ﬁel?t?rlljétigﬁn\}v%gh
the graph rarely makes state encodings with the minimu dicates accentance of the sub.DAG (labeled h(X.Z) in
Purﬁb.er of reg|?]ters \(]zEleopp(()jseNdo\t/%)stﬁn.dard entﬁOdtmg—'}gure 5) is uged as context for following sub-DAGs
echniques, such as an . It is possible to . . X . -
identifg two reasons for this: P h(X,2), is used to define conditions for actions to occur
1. Controllers are constructed so that a state exists fofnd control points to change state. A simpler acceptance
every place an action could occur. This construction isfunction not only reduces the current machine size, but
obviously sufficient for any specification, but is hardly &lSO (?reatesd sn’r;ﬁletr.act|oglftgnlct|?r;ls an_(tj t_II:%nSIt_IOH .‘;U.”C'
necessary for most. Since actions are not attached to eve(%ns_ or nodes that immediately follow It. The circuit 1
node in the graph, this construction process leads to sets fn5|dedr/ably ?}H‘plef if co?structlongall%wsr] rt%mova' b
states which are output-redundant, or indistinguishable togotr?eagre%risiéusseegli)cglg]vi ances under which this can be
the outside world. ' - .

2. Without some form of state space exploration during the L€t A represent the set of fransition functions,
construction process, there is no knowledge of how many{% 8 -+ 5?} ._The set of primary inputsZ, is
unique states exist, o the number of control points cannoff 2. 21, 'k')';’xzkw'hiE?]eispz;?:ffz;}yséa;%toq];ftggorlgg%h\l/g?iallilreespre_
be reduced based on this information. ' ’ '

In order to reduce the number of control points required {Xo Xy, -+ %;} » and the next state is represented by
to build a given machine (with no loss in terms of machine Y = { ¥ Y3, . Yo} - The mapping from present state to
quality or speed of the construction algorithm), it is neces-N€Xt state is written:
sary to gain information about the states of the machine AXXZ Y
without implementing a DFA model. This can be done by Let A= () A)\' be th t of action functi
inferring information about the set of reachable states and deA- = {Ag Ay A} be etstﬁ o "’t‘.c |onthunc 'OPS*
output-redundant states from the specification graph.j;"h”en =iv{ear(1)'xa1' o %m%{orf}prestﬁg mg a(i:nlonfsromemrseesgﬁf,
Because the information gathered is based on the NFAZ® 'Eq t pYp & B ppIng P
model of the machine, we preserve the independence oftate 10 actions is:
the construction from the potentially explosive STG.

Consider the circuit shown in Figure 5 built by allocat-
ing one control point for each terminal in the graph. Let us
assumedq, t, and $ are unrelated functions. The circuit is

AX S A Moore machine

A:XxZ o A Mealy machine

Simplification of the acceptance function of a sub-
DAG can be performed by creating a new control prjnt
as follows. Given a function(X') ,wheOX , we cre-
ate a new transition functi and corresponding control
pointx,, such thad, = h' (X, 2) , wherg' s the function
h with everyx 0O X" replaced witl, (X, 2) . That is, each
present state variable is replaced by its next state function.
X, is passed up from the nodes below, as the acceptance
function,h(X).

h (X, X 41 -0 % 4j) O X, Where o
5. =h(3,d 5) (EQ 1) FIGURE 6. The reduced circuit for the
a P AL T example in Figure 1. A comparison of this

The creation of additional control points serves two controller and one synthesized without DAG
purposes: 1. It reduces the complexity of the context func- reduction, or register removal is shown at the
tion h(X,Z) used in subsequent construction. 2. By adding [P Of Table 2. The number of literals is cut
a control point, one or more other control points may Neé&ly in half, and the number of registers
become redundant, and can be removed. drops from 8 to 3.

The determination of the necessary conditions under
which it is possible to remove a transition function can be acceptance function passed to following sub-DAGs as
difficult, depending on the scope of modifications to out- context.
puts and other transition functions. For example, in the
least restrictive case, where arbitrary changes to the conb.Q, Experimental Data
troller are allowed, determining whether a control point

can be removed is at least as hard as determining whether Results for these algorithms are compared against pre-
the FSM currently uses the minimal number of control yvious results for PBS (using Clairvoyant)[10] and against
points to encode state, and therefore requires at least afesults based on the extracted, state-minimized STG
implicit traversal of the deterministic state space. encoded with NOVA, JEDI, and a simple one-hot scheme.
At this point in the construction, any kind of state The |ast three encodings done from a minimized STG are
assignment or re-encoding technique could be used t@neant to simulate the standard DFA-based synthesis algo-
reduce the number of control points, but arbitrary re- rithm. All of the examples listed in Table 2 were synthe-
encoding requires at least a partial traversal of thesjzed with the current algorithms and reduced (via SIS’s
machine’s deterministic state space, which may be very‘script.rugged”) in less than 40 seconds of CPU time.
expensive.) o Using standard encoding techniques, for example JEDI[5]
Alternatively, in the most restrictive case, where no or NOVA[6], some examples could not be encoded and
changes to the FSM are allowed, the test for removalieduced in 40 minutes of CPU time.
becomes simpler: Thsupportof a function F, denoted For each encoding, the three columns below show the
sup(F)”, is defined as the set of variables on which F number of literals in factored form (L), the mapped logic
explicitly depends. For each O X' a sufficient condition depth (D) and the number of registers in the design (R). In

for removal of transition functios, is:. all examples, SIS’s “script.rugged” was used to simplify
the logic. The library used for mapping contained only a
x; O sup(8) [sup(A) (EQ2) latch, a two-input nand, a two-input nor, and an inverter.

S oo On the left side of the table are results for implementa-

Because of the method of construction, it is quite likely tion making use of the algorithms presented in this paper.
that the sufficient condition expressed in Equation 2 will The column labeled “states” contains the number of states
occur, particularly in the common case where actions arghat exist in these machines. This was determined by read-

located some distance above the terminals. ing the BLIF output for the controller into SIS [8] and
The reduction and removal process described by Equagyiracting the STG.

tion 1 and Equation 2 is valid for any acceptance function comparison to the PBS compiler results show the com-
returned from a node during the build algorithm. In prac- piled designs are uniformly better in at least one of the

tice, of the standard construction operators already disipree categories. On average, the current techniques used
cussed, AND, OR, and closure offer the best chances 0Ego; fewer registers, 45% fewer literals, and had 8%

control point removal. Implementation with the OR and gmgjier logic depth.

AND operators are fairly straight forward. The closure o the right side of the table, the same statistics are
operator essentially constructs @mof the incoming con- ghown for NOVA, JEDI, and one-hot encoding. The
text from previous sub-DAGs, and the acceptance func-gyiracted STG was minimized using STAMINA[7], and

tion returned by the sub-DAG below it. . the number of states in the resulting STG is shown in the
The circuit constructed using this algorithm for the ~qjumn “min states.” The three encodings were done

specification in Figure 1 is shown in Figure 6. Since the hased on this minimized STG. reduced using “scrip-
final flip-flop has no fanout, it is removed at the end of thet.rugged” and the results are shown in the table.

build algorithm. If this graph represented only a Sub-DAG | "ihe cases where SIS was not able to complete the
of the machine, the far right flip-flop would provide the “script.rugged” in less than 30 minutes CPU time on a

design Current Clairvoyant NOVA JEDI one hot
example m R R L
exl (Fig.1)§ 13 | 5| 3 5 3
mouse 10 | 3| 2 4 18| 5 4 3 10 | 3| 2
xymouse § 20 | 3 | 4 | 10 |[36| 5 8 9 42| 111 4 § 35 | 6 |4 59 | 4
mouse2 24 | 4 | 6 8 36| 5 10 7 36| 14 3 | 28 |12 3 | 41 | 8
xymouse2Q 48 | 4 |12 | 50 || 72| 5| 20 49 | 557 | 67| 6 |592 | 75| 6 | 618 | 18
countO 8 51| 3 5 16| 5 4 4 8|4 211 | 6|2)12 | 6
qr42 46 | 5 (10| 33 || 77| 6| 21 16 64| 17 4 | 82 | 24| 4 121 | 12
i8251ar § 92 (16| 13| 17 || 85| 16| 14 15| 84 204 | 84 | 22| 4] 90 |12
i2c 115| 8 |24 | 70 ||156| 10| 37 51| 323 366 | 273 | 46| 6 | 427 | 18
midi 223 |16 | 106| 107|| 604 22 164 104 447 567 |420 | 72| 7 | 262 |14
matchl 10 | 3| 3 5 12| 4 5 3 7 4| 2 8 3|2 9 5
match?2 21 | 3| 7 15 | 26| 4| 12 11 38| 104 |43 [12/4)61 |[12| 11
match4 § 43 | 4 |16 | 111|| 56| 4| 28 791333 (58| 7 |370| 73| 7 |468 | 18| 79
match8 87 | 4 | 36 |6151|| 116/ 6| 63 unable
match16 J175| 5 | 80|>10"|[236| 6 | 138 unable
match32 |351| 5 | 176/>10"%476| 6 | 297 unable

TABLE 2. Results for various encoding techniques

SPARC 10 with 32 megabytes of memory, the results are’-0. References:

italicized. For each design, the best results are labeled in
bold. Note even though JEDI and NOVA used the mini- [1]
mum number of registers, only in the very small examples
did the encoders offer comparable results in terms of the[z]
number of literals and mapped logic depth.

Designs “match’ are machines that recognize when
the pattern of the first input bits match the most recent 3]
inputs. Results for this machine demonstrate the applica-
bility of this algorithm to controllers which could not be
constructed with standard encoding techniques. The
designs “match8,” “match16,” and “match32” could not [4]
state minimizedr encoded by JEDI, NOVA, or one-hot
because of memory faults that occurred due to the size o{5]
the STG.

6.0. Conclusions and Further Work [6]
We have described an algorithm for compilation of
controllers using extended tree-based regular expressionﬁ
into a gate-level circuit description. The nature of the]

specification language makes it highly applicable to proto-
col intensive machines. Rather than the standard practiceg
of using state space traversal to minimize the machine
encoding, observability based on the structure of the tree
(an NFA model) has been used to remove unobservable
states from the system. Machine construction using these
algorithms has been shown to construct fast sequential®]
machines with low literal count. In fact, its efficiency has
made it practical in some cases where other encodinqlo]
methods fail completely.

(11]

R. W. Floyd, and J. D. Ullman, “The Compilation of Regu-
lar Expressions into Integrated Circuits,” Jo. ACM. 29:3,
1982.

A. R. Karlin, H. W. Trickey, and J. D. Ullman, “Experience
with a Regular Expression Compiler,” ICCD, pp 656-665,
1983.

G. Berry, G. Gonthier, “The ESTEREL synchronous pro-
gramming language: design, semantics, implementation,”
Science of Computer Programming, vol.19, (no.2):87-152,
1992

M. R. Garey, D. S. Johnso@omputers and Intractability

A Guide to the Theory of NP-Completenéssw York:
Freeman, 1979.

B. Lin, Synthesis of VLSI Designs with Symbolic Tech-
nigues Ph. D. Thesis, Univ. of Calif., Berkeley, UCB/ERL
M91/105, Nov. 1991.

T. Villa, A. L. Sangiovanni-Vincentelli, “NOVA: State
Assignment of Finite State Machines for Optimal Two-
Level Logic Implementations,” IEEE Trans. on CAD, pp
905-924, 1990.

G. Hachtel, J. K. Rho, F. Somenzi, and R. Jacoby. “Exact
and Heuristic Algorithms for the Minimization of Incom-
pletely Specified State Machines,”"EDAC, pp184-91, 1991.
E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R.
Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Bray-
ton, and A. Sangiovanii-Vincentelli, “SIS: A System for
Sequential Circuit Synthesis,” Electronics Research Labo-
ratory Memorandum No. UCB/ERL M92/41, May 1992.

K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient
Implementation of a BDD Package,” 27th DAC, pp 40-45,
June 1990.

A. Seawright, F. Brewer, “Clairvoyant: A Synthesis Sys-
tem for Production-Based Specification,” IEEE Trans. on
VLSI, pp 172-185, June 1994.

A. SeawrightGrammar-Based Specifications and Synthe-
sis for Synchronous Digital Hardware Desjdth. D. The-
sis, Univ. of California, Santa Barbara, June 1994,

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

