
Abstract

Applications implementing complex protocols tax the
capabilities of conventional finite state machine synthesis
techniques. In this paper, we present sequential optimiza-
tion techniques whose complexity scales with the number
of state bits rather than the number of states. These tech-
niques create designs which are comparable or superior
to those synthesized by conventional state-based optimiza-
tion and assignment. Furthermore, they provide viable
synthesis techniques for designs which are too large for
synthesis with the conventional method.

1.0. Introduction

Hardware description languages (HDL’s) are widely
used for specification and synthesis of sequential circuits.
They provide opportunities for design reuse, automated
synthesis, and technology independent description. How-
ever, many specification formats such as BLIF and struc-
tural VHDL require explicit encoding of the states of the
machine which can hide the hierarchical structure of the
finite state machine (FSM). Other hardware specifications,
like KISS, require specification of the machine in terms its
deterministic state space. This type of specification can
become explosive and untenable for many machines
which have an alternate, concise description as a non-
deterministic finite automata (NFA).

In this work, we present an algorithm for the construc-
tion of complex controllers from an NFA specification.
The construction has known bounds on the number of reg-
isters required in the gate-level implementation, and very
good characteristics in terms of literal count and mapped
logic depth, in particular. It is thus applicable to high per-
formance, complex designs such as protocol handlers or
communication encoders. The algorithm can be applied to
machines which are too complex to construct using stan-
dard deterministic finite automata encoding and minimiza-
tion techniques.

The NFA specification used herein is derived from clas-
sical regular expressions. Although any FSM can be spec-
ified as a classical regular expression, such specification is
not guaranteed to be as concise as other types. The NFA
specification language contains a rich operator set,
enhancing the ability to specify designs that lack a concise
classical regular expression descriptions.

The focus of this paper is efficient controller construc-
tion which relies on exploration of the NFA model encoded
as a tree-based extended regular expression.

The paper is organized as follows: Section 2.0 reviews
the specification model assumed in this paper. Section 3.0
proposes a method of reducing the upper limit on the num-
ber of memory elements required for synthesis, by way of
graph reduction. Section 4.0 contains a method for optimi-
zation during synthesis based on observability and identifi-
cation of output-redundant states.

1.1. Previous Work

Early work in the field of regular expression compila-
tion [1][2] used regular expressions as a specification for a
PLA design. In these systems, the regular expression (RE)
was converted to an NFA state diagram, which in turn was
directly encoded as product terms of a PLA implementa-
tion. Inherently, this technique may lose some of the infor-
mation present in the regular expression, such as natural
partitions in the machine.

A synchronous “reactive language” called Esterel[3]
allowed an inherently non-deterministic machine descrip-
tion. Its commands “reacted” to inputs from the outside
world, by performing tasks and sending outputs. Each
reaction to a specified input was allowed to occur indepen-
dently of other reactions, creating an NFA model. How-
ever, the Esterel compiler described in [3] created a
deterministic state graph from this specification, a step
which can be explosive, and is avoided in this paper.

The Production Based Specification[10] provided a
hierarchical regular expression language augmented with
some unique operators. An algorithm for direct construc-
tion of the circuit from a RE-based tree was presented
which did not require conversion of the RE to a NFA state
diagram. This direct construction often produced fast cir-
cuits, but with redundant state bit encodings.

2.0. The Specification DAG

In this paper, we will assume that the controller is spec-
ified as a regular expression in the form of a directed acy-
clic graph (DAG). Refer to Table 1 for the meaning of
various symbols used in the specification DAG. There are
two main reasons for this type of specification:

1. Using this type of input, it is possible to specify
automata that are completely deterministic without ever
making use of a traditional deterministic model: neither a

Controller Optimization for Protocol Intensive Applications*

Andrew Crews, Forrest Brewer
Department of Electrical and Computer Engineering

University of California, Santa Barbara, USA
crews@corona.ece.ucsb.edu, forrest@ece.ucsb.edu

*This work has been supported in part by NSF grant MIP-9320752.

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

state transition graph (STG), nor an actual state encoding
is needed in the specification.

2. From this specification, there are direct gate level
implementations which scale with the number of state bits
in the controller (which can be logarithmically smaller
than the number of states).

Definition: Acceptance: A sub-machine (specified by a
RE-DAG) will acceptiff the sequence of inputs matches
the entire sequence specified in the DAG.

Definition: Action: In the DAG, each uniqueaction
corresponds to a unique output of the controller. The out-
put is set high only if the sub-DAG below the action
accepts.

All sequential behavior exists in the non-leaf nodes of
the tree. Each terminal contains an optional Boolean func-
tion. Note that there is implicit context passed between
nodes in the graph, so acceptance at one location can
depend on other parts of the graph.

For example, consider the specification in Figure 1.
Since it is at the top of the DAG, action “a0” is activated
(set high) only when the entire machine accepts (when
either of sub-DAGs p2 and p3 accept). The concatenation
operators denote the left sub-DAG and right sub-DAG
accepting in sequence, while each sub-DAG may require 0
or more clock cycles, itself, to accept. The DAG at p4 rec-
ognizes any state. So, action “a1” is activated when z0 and
z1 are both high for one clock cycle following any state.
Without p4, the action “a1” would activate only if it
occurred in the very first clock cycle (the start state).

Let T be the number of paths to terminals in the DAG.
It is always possible to synthesize a circuit with T+1 mem-
ory elements. Note that the DAG in Figure 1 has 9 paths to
terminals, thus at most 10 flip-flops in the final machine
and up to 2^10 deterministic states. We would like to alter
the DAG to decrease the number of terminal paths (and
hence memory elements) without altering behavior (this
can only be done if the controller actually has less than
2^10 states).

3.0. Regular Expression Minimization

Optimal regular expression reduction is known to be
NP-Complete, even for RE’s which contain either no OR

TABLE 1. Regular Expression DAG Symbols

symbol meaning

sequential non-leaf nodes

, concatenation of events (left then right)

|| OR (either event below)

&& AND (events occur simultaneously)

* Kleene closure (0 or more)

+ 1 or more

action designates an output activation

combinational (terminal) nodes

function boolean function (of inputs only)

operator, or no closure operator [4]. Equivalence testing
between two RE’s is equally difficult. Thus, the changes to
the RE graph should be incremental so that we can verify
the equivalence at each step in the transformation--equiva-
lence must be verified by construction.

Six basic DAG manipulation rules are listed below.
They can be divided into two categories of rules, and in
every rule, the “||” operator, can be replaced by any Bool-
ean connective operator which does not include the NOR
function (x0x1 minterm). (In general, the restriction is
complex, but intuitively this restriction of the NOR func-
tion results from the fact that we are looking for neither
sub-graph to be recognized. A machine which recognizes
when another machine is “not recognizing” can have quite
different behavior, and thus may not have the same behav-
ior after distributing the function across a concatenation
operator.)

(A,B) || (A,C)-> (A) , (B || C) (Rule 1)
(A,C) || (B,C) -> (A || B) , (C) (Rule 2)

A || A -> A (Rule 3)
A, (A)* -> (A)+ (Rule 4)
(A*)* ->(A)* (Rule 5)

A, (A {action}) -> (A, A) {action} (Rule 6)

FIGURE 2. Rewrite rules used to manipulate
the Regular Expression DAG. Parentheses
denote a sub-DAG

The first set of rules (1-3) directly reduce the number of
terminals in the DAG. Consider Figure 1 once again. The
sub-DAG “TRUE*” occurs at the beginning of both sub-
DAGs p2 and p3 , and represents the same state, since
there is no way to determine which “TRUE*” state the
machine is in until the machine moves to the next state. We
can make use of rule 1 by setting A to be “TRUE*”, B to
be all of p2 after A, and C to be all of p3 after A. This

+

*

||

,

,

*

TRUE

,

z0z1 z0z2z0

z0

,

,

,a1

a0

a2

p1

p2 p3

FIGURE 1. Example specification DAG.
“a0”, “a1”, and “a2” represent the three
actions. BDD’s are shown as ovals with the
function written inside.

t0 t1 t2

t3

t4

t5
TRUE

p4

removes a path from the tree. The final reduced DAG is
shown in Figure 2.

Rules 1 and 2 effectively move the concatenation oper-
ators up, closer to the root of the DAG, and the Boolean
operators down, closer to the terminals. When a node in
the DAG becomes an arbitrary combinational logic func-
tion of two terminals, it can always be reduced to a single
terminal BDD node. For example, in Rule 1, if DAGs B
and C represent combinational functions of the inputs, the
sub-DAG (A, B) || (A, C) can be reduced from four paths
to terminals to two paths, by creating a BDD node D = (B
+ C).

The second set of rules (4-6) are members of a general
class of rules which alter the DAG in ways which improve
its canonicality. By making sure that only one type of each
equivalent structure shown in rules 4 through 6 exist in the
DAG, it is easier to identify larger equivalent sub-DAGs
in the DAG as a whole. An example is shown in Figure 3
where rules 5 and 6 together allow rule 3 to remove termi-
nals paths from the graph.

Using rule 6 it is possible for actions to be manipulated
similarly to operators. The allocation of a separate node in
the DAG specification for each action excitation is unique
to this paper. Placing these nodes in the graph allows
actions to be manipulated for a more canonical graph, and
joined with similar actions for optimization.

The importance of considering actions during tree
manipulations is made clear by the following. Each sub-
DAG provides context to the following sub-DAG, so
equivalent sub-graphs with non-equivalent actions cannot
be combined into a single sub-graph via rule 2 unless the
input context is also equivalent. For example,

but
=/

except under two special conditions: 1. A and B are
always recognized together, or are otherwise equivalent,
or 2. “action0” and “action1” are equivalent. The left side
fires “action0” after recognizing the sequence “A,C”,
while the right side fires “action0” after recognizing either
the sequence “A,C” or “B,C”.

On the other hand, for reductions which use rule 1, the
action nodes can be ignored since the context is identical

* *

||

,

,

FIGURE 3. Example: Improving the
canonicality of the graph can lead to
reduction of paths to terminals.

A

B

*

,

A

B

action0

action0

=

action0

A C,() B C,() A B() C,=

A C action0{ }(),() B C action1{ }(),()
A B() C action0action1{ },

for actions in this case
 =

3.1. Algorithm Overview

During the minimization, a “unique table” similar to
one found in BDD packages[9], is maintained for each
node, so that identical nodes are reused, instead of being
duplicated. When the algebraic manipulation rules and the
unique table are used to reconstruct the DAG from the bot-
tom up, uniqueness of a node is assured by comparing its
operator type and left and right pointers. The fact that two
identical nodes will never be constructed is ensured, but it
is nonetheless possible for two functionally equivalent
sub-DAGs to exist. The above rewrite rules and unique
table are heuristics which improve the clarity and simplic-
ity of the specification, but do not provide a canonical
form.

The regular expression reduction occurs as follows: A
depth first traversal of the DAG is done, reducing equiva-
lent structures using a set of rules that include rules 4-6,.
Where applicable, graph-matching is done, to attempt
reductions shown in rules 1, 2. The final DAG is con-
structed on the way back up. Each final node is placed in
the unique table to avoid duplication whenever possible.

The reduced DAG for the example in Figure 1 is shown
in Figure 4. Note that implementation of the rewrite rules
have reduced the number of terminal paths from nine to
six. This implies that construction is guaranteed to be done
with seven flip-flops or less.

4.0. Efficient Gate Construction

After reducing the number of terminals in the tree, the a
circuit is synthesized by traversing the resultant DAG.
Details of the circuit generation, using construction tem-
plates for the various types of operators are given in [11].

Essentially, the construction requires one control point
(i.e. one register) for each path to a terminal node. The cir-

A action0{ } B,() A action1{ } C,()
A action0action1{ } B C(),

* +

,

, ,

z0z1

z0z2

z0

z0

,

a1

a0

a2

FIGURE 4. Reduced DAG for the example in
Figure 1. Each t i denotes combinational logic
with the function inside the oval.

||

t0

t2

t3

t1

t4
TRUE

cuit is generated recursively, by allocating registers at the
terminals and constructing logic functions of the register
outputs (present state bits) according to the type of
sequential operator at each node. Logic functions are
stored as BDD’s during construction. An example of the
synthesis algorithm is shown in Figure 5.

Call the set of input variables {Z}, and the set of
present state variables {X}. The context for a machine is
initially set to the start state. In the figure, f(X,Z) repre-
sents the context sent to the DAG. This context is passed
to the two children of node P: PL and PR. At node PL, a
memory element is allocated, along with optional combi-
national logic of the input variables. Similarly, memory
elements are added for the two terminals of the concatena-
tion operator at PR, t1 and t2. Finally, since P is a OR
operator, the acceptance functions from the two children,
PL and PR are logically ORed together, and the result
acceptance function for the graph, h(X,Z) is returned (and
may be passed as context to future machines.

The actions of the machine are also created during the
machine traversal. Initially, all action functions are set to a
Boolean “FALSE” indicating that they will never occur.
Whenever an action is encountered in the construction
process, its corresponding output function is logically
ORed with the current context.

This algorithm makes heavy use of memory elements.
Typically during construction it is possible to modify
existing control points, rather than adding a new one and
still represent the state correctly. This reduction cannot be
done by the previous algorithm for DAG reduction in
Section 3.0.

4.1. Register Removal During Construction

Directly allocating control points for each terminal in
the graph rarely makes state encodings with the minimum
number of registers (as opposed to standard encoding
techniques, such as JEDI and NOVA). It is possible to
identify two reasons for this:
1. Controllers are constructed so that a state exists for
every place an action could occur. This construction is
obviously sufficient for any specification, but is hardly
necessary for most. Since actions are not attached to every
node in the graph, this construction process leads to sets of
states which are output-redundant, or indistinguishable to
the outside world.
2. Without some form of state space exploration during the
construction process, there is no knowledge of how many
unique states exist, so the number of control points cannot
be reduced based on this information.

In order to reduce the number of control points required
to build a given machine (with no loss in terms of machine
quality or speed of the construction algorithm), it is neces-
sary to gain information about the states of the machine
without implementing a DFA model. This can be done by
inferring information about the set of reachable states and
output-redundant states from the specification graph.
Because the information gathered is based on the NFA
model of the machine, we preserve the independence of
the construction from the potentially explosive STG.

 Consider the circuit shown in Figure 5 built by allocat-
ing one control point for each terminal in the graph. Let us
assume t0, t1, and t2 are unrelated functions. The circuit is

built with three flip-flops, which could describe eight pos-
sible states. Assuming that the incoming context, f(X,Z), is
completely unknown, there are indeed eight states that can
exist: any number from zero through three of the terminals
can be simultaneously accepting. Above nodeP, however,
there are only four distinguishable states: State 1: no ter-
minals in P accepting, State 2: either t0 or t2 accepting,
State 3: only t1 accepting, and State 4: t1 and either t0 or t2
accepting. The state where t0 but not t2, and t2 but not t0
accepting are indistinguishable, or output-redundant to any
node above nodeP.

In this example, we can combine control points from t0
and t2 into a single bit, t3. The resultant design has four
states encoded by two control points, the minimum possi-
ble without examining the effect of the input context,
f(X,Z), on the set of reachable states. The function which
indicates acceptance of the sub-DAG (labeled h(X,Z) in
Figure 5) is used as context for following sub-DAGs.
h(X,Z), is used to define conditions for actions to occur
and control points to change state. A simpler acceptance
function not only reduces the current machine size, but
also creates simpler action functions and transition func-
tions for nodes that immediately follow it. The circuit is
considerably simpler if construction of t3 allows removal
of t0 and/or t2. The circumstances under which this can be
done are discussed below.

Let ∆ represent the set of transition functions,
. The set of primary inputs,Z, is

. The present state of the machine is repre-
sented byX, which is actually a set ofn Boolean variables,

, and the next state is represented by
. The mapping from present state to

next state is written:

Let be the set of action functions,
and represent the actions themselves,
then given , the mapping from present
state to actions is:

Moore machine

Mealy machine

FIGURE 5. A. A sub-DAG, with context f(X,Z)
passed to it from the previous sub-DAG.
B. The corresponding circuit.

t0(z) ,

||

t1(z) t2(z)

t0(Z)

t1(Z) t2(Z)

f(X,Z)
f(X,Z)

A. RE sub-DAG B. Circuit created

h(X)
P

PRPL

h(X,Z)

without reg. reduction

δ0 δ1 … δn, , ,{ }
z0 z1 … zk, , ,{ }

x0 x1 … xn, , ,{ }
Y yo y1 … yn, , ,{ }≡

∆: X Z Y→×
Λ λ0 λ1 … λm, , ,{ }≡

A a0 a1 … am, , ,{ }≡
xi yj ai, , 0 1,{ }∈

Λ:X A→

Λ: X Z× A→

Simplification of the acceptance function of a sub-
DAG can be performed by creating a new control point
as follows. Given a function , where , we cre-
ate a new transition function and corresponding control
point xa, such that , where is the function

 with every replaced with . That is, each
present state variable is replaced by its next state function.

 is passed up from the nodes below, as the acceptance
function,h(X).

, where
(EQ 1)

The creation of additional control points serves two
purposes: 1. It reduces the complexity of the context func-
tion h(X,Z) used in subsequent construction. 2. By adding
a control point, one or more other control points may
become redundant, and can be removed.

The determination of the necessary conditions under
which it is possible to remove a transition function can be
difficult, depending on the scope of modifications to out-
puts and other transition functions. For example, in the
least restrictive case, where arbitrary changes to the con-
troller are allowed, determining whether a control point
can be removed is at least as hard as determining whether
the FSM currently uses the minimal number of control
points to encode state, and therefore requires at least an
implicit traversal of the deterministic state space.

At this point in the construction, any kind of state
assignment or re-encoding technique could be used to
reduce the number of control points, but arbitrary re-
encoding requires at least a partial traversal of the
machine’s deterministic state space, which may be very
expensive.

Alternatively, in the most restrictive case, where no
changes to the FSM are allowed, the test for removal
becomes simpler: Thesupport of a function F, denoted
“sup(F)”, is defined as the set of variables on which F
explicitly depends. For each a sufficient condition
for removal of transition function is:.

(EQ 2)

Because of the method of construction, it is quite likely
that the sufficient condition expressed in Equation 2 will
occur, particularly in the common case where actions are
located some distance above the terminals.

The reduction and removal process described by Equa-
tion 1 and Equation 2 is valid for any acceptance function
returned from a node during the build algorithm. In prac-
tice, of the standard construction operators already dis-
cussed, AND, OR, and closure offer the best chances of
control point removal. Implementation with the OR and
AND operators are fairly straight forward. The closure
operator essentially constructs anor of the incoming con-
text from previous sub-DAGs, and the acceptance func-
tion returned by the sub-DAG below it.

The circuit constructed using this algorithm for the
specification in Figure 1 is shown in Figure 6. Since the
final flip-flop has no fanout, it is removed at the end of the
build algorithm. If this graph represented only a sub-DAG
of the machine, the far right flip-flop would provide the

xa
h X′() X′ X⊆
δa

δa h′ X Z,()= h′
h xi X′∈ δi X Z,()

xa

h xi xi 1+ … xi j+, , ,() xa⇒
δa h δi δi 1+ … δi j+, , ,()=

xi X′∈
δi

xi sup ∆() sup Λ()∪∉

acceptance function passed to following sub-DAGs as
context.

5.0. Experimental Data

Results for these algorithms are compared against pre-
vious results for PBS (using Clairvoyant)[10] and against
results based on the extracted, state-minimized STG
encoded with NOVA, JEDI, and a simple one-hot scheme.
The last three encodings done from a minimized STG are
meant to simulate the standard DFA-based synthesis algo-
rithm. All of the examples listed in Table 2 were synthe-
sized with the current algorithms and reduced (via SIS’s
“script.rugged”) in less than 40 seconds of CPU time.
Using standard encoding techniques, for example JEDI[5]
or NOVA[6], some examples could not be encoded and
reduced in 40 minutes of CPU time.

For each encoding, the three columns below show the
number of literals in factored form (L), the mapped logic
depth (D) and the number of registers in the design (R). In
all examples, SIS’s “script.rugged” was used to simplify
the logic. The library used for mapping contained only a
latch, a two-input nand, a two-input nor, and an inverter.

On the left side of the table are results for implementa-
tion making use of the algorithms presented in this paper.
The column labeled “states” contains the number of states
that exist in these machines. This was determined by read-
ing the BLIF output for the controller into SIS [8] and
extracting the STG.

Comparison to the PBS compiler results show the com-
piled designs are uniformly better in at least one of the
three categories. On average, the current techniques used
59% fewer registers, 45% fewer literals, and had 8%
smaller logic depth.

On the right side of the table, the same statistics are
shown for NOVA, JEDI, and one-hot encoding. The
extracted STG was minimized using STAMINA[7], and
the number of states in the resulting STG is shown in the
column “min states.” The three encodings were done
based on this minimized STG, reduced using “scrip-
t.rugged” and the results are shown in the table.

In the cases where SIS was not able to complete the
“script.rugged” in less than 30 minutes CPU time on a

z0
z1

z0
z2

z0

z0

action1
action0

action2

FIGURE 6. The reduced circuit for the
example in Figure 1. A comparison of this
controller and one synthesized without DAG
reduction, or register removal is shown at the
top of Table 2. The number of literals is cut
nearly in half, and the number of registers
drops from 8 to 3.

accept

TABLE 2. Results for various encoding techniques

design
 example

Current
states

Clairvoyant min
states

NOVA JEDI one hot

L D R L D R L D R L D R L D R

ex1 (Fig. 1) 13 5 3 8 22 5 8 6 23 11 3 22 9 3 38 9 6

mouse 10 3 2 4 18 5 4 3 10 3 2 10 3 2 10 3 3

xymouse 20 3 4 10 36 5 8 9 42 11 4 35 6 4 59 4 9

mouse2 24 4 6 8 36 5 10 7 36 14 3 28 12 3 41 8 7

xymouse2 48 4 12 50 72 5 20 49 557 67 6 592 75 6 618 18 49

count0 8 5 3 5 16 5 4 4 8 4 2 11 6 2 12 6 4

qr42 46 5 10 33 77 6 21 16 64 17 4 82 24 4 121 12 16

i8251ar 92 16 13 17 85 16 14 15 84 20 4 84 22 4 90 12 15

i2c 115 8 24 70 156 10 37 51 323 36 6 273 46 6 427 18 51

midi 223 16 106 107 604 22 166 104 447 567 420 72 7 262 14 104

match1 10 3 3 5 12 4 5 3 7 4 2 8 3 2 9 5 2
match2 21 3 7 15 26 4 12 11 38 10 4 43 12 4 61 12 11

match4 43 4 16 111 56 4 28 79 333 58 7 370 73 7 468 18 79

match8 87 4 36 6151 116 6 63 unable

match16 175 5 80 >107 236 6 138 unable

match32 351 5 176>1014 476 6 297 unable

SPARC 10 with 32 megabytes of memory, the results are
italicized. For each design, the best results are labeled in
bold. Note even though JEDI and NOVA used the mini-
mum number of registers, only in the very small examples
did the encoders offer comparable results in terms of the
number of literals and mapped logic depth.

Designs “matchn” are machines that recognize when
the pattern of the firstn input bits match the most recentn
inputs. Results for this machine demonstrate the applica-
bility of this algorithm to controllers which could not be
constructed with standard encoding techniques. The
designs “match8,” “match16,” and “match32” could not
state minimizedor encoded by JEDI, NOVA, or one-hot
because of memory faults that occurred due to the size of
the STG.

6.0. Conclusions and Further Work

We have described an algorithm for compilation of
controllers using extended tree-based regular expressions
into a gate-level circuit description. The nature of the
specification language makes it highly applicable to proto-
col intensive machines. Rather than the standard practice
of using state space traversal to minimize the machine
encoding, observability based on the structure of the tree
(an NFA model) has been used to remove unobservable
states from the system. Machine construction using these
algorithms has been shown to construct fast sequential
machines with low literal count. In fact, its efficiency has
made it practical in some cases where other encoding
methods fail completely.

7.0. References:

[1] R. W. Floyd, and J. D. Ullman, “The Compilation of Regu-
lar Expressions into Integrated Circuits,” Jo. ACM. 29:3,
1982.

[2] A. R. Karlin, H. W. Trickey, and J. D. Ullman, “Experience
with a Regular Expression Compiler,” ICCD, pp 656-665,
1983.

[3] G. Berry, G. Gonthier, “The ESTEREL synchronous pro-
gramming language: design, semantics, implementation,”
Science of Computer Programming, vol.19, (no.2):87-152,
1992

[4] M. R. Garey, D. S. Johnson.Computers and Intractability
A Guide to the Theory of NP-Completeness, New York:
Freeman, 1979.

[5] B. Lin, Synthesis of VLSI Designs with Symbolic Tech-
niques, Ph. D. Thesis, Univ. of Calif., Berkeley, UCB/ERL
M91/105, Nov. 1991.

[6] T. Villa, A. L. Sangiovanni-Vincentelli, “NOVA: State
Assignment of Finite State Machines for Optimal Two-
Level Logic Implementations,” IEEE Trans. on CAD, pp
905-924, 1990.

[7] G. Hachtel, J. K. Rho, F. Somenzi, and R. Jacoby. “Exact
and Heuristic Algorithms for the Minimization of Incom-
pletely Specified State Machines,”EDAC, pp184-91, 1991.

[8] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R.
Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Bray-
ton, and A. Sangiovanii-Vincentelli, “SIS: A System for
Sequential Circuit Synthesis,” Electronics Research Labo-
ratory Memorandum No. UCB/ERL M92/41, May 1992.

[9] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient
Implementation of a BDD Package,” 27th DAC, pp 40-45,
June 1990.

[10] A. Seawright, F. Brewer, “Clairvoyant: A Synthesis Sys-
tem for Production-Based Specification,” IEEE Trans. on
VLSI, pp 172-185, June 1994.

[11] A. Seawright,Grammar-Based Specifications and Synthe-
sis for Synchronous Digital Hardware Design, Ph. D. The-
sis, Univ. of California, Santa Barbara, June 1994.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

