
Automatic Structuring and Optimization of Hierarchical Designs
Heinz-Josef Eikerling, Wolfgang Rosenstiel

Universität Tübingen
Technische Informatik

Sand 13
D-72 076 Tübingen, Germany

{eikerlin,rosenstiel}@peanuts.informatik.uni-tuebingen.de

 Abstract

In this paper an approach for the optimization of digital
synchronous designs is described. The optimization is done
for smaller components which are the result of a partition-
ing process. The actual optimization is done on a graph
which reflects the communication structure between the
modules. Sequential don’t care conditions are extracted
and used for sequential optimization. As experimental re-
sults show, the robustness of the subsequent logic synthesis
methods can be increased while achieving a significant
gain in cost and power consumption. This is shown by ap-
plying the described methods to a set of benchmarks ob-
tained from high-level synthesis.

1 Introduction
State-of-the-art synthesis systems are concerned with

the optimization of large, digital designs which are pro-
duced by higher level synthesis tools. Normally, a hierar-
chical, structural description at the RT-level is given which
is described in an HDL. The description is passed to logic
synthesis and stepping through other activities the design
becomes manufacturable.

The outcome of the higher level synthesis tasks is a
structural (RTL) description which consists of a set of con-
nected entities. For instance, on the top level the RTL de-
scription can be roughly divided into two parts, the
controller and thedatapath. Both parts are connected by
status and command lines. Since especially in the presence
of arithmetic operators or if a large number of entities is en-
countered, appropriate partitioning methods for the datap-
ath have to be devised. At the boundaries of the parts of the
decomposed datapath a certain potential for optimization
can be expected. Boundary optimization in current synthe-
sis systems is reduced to the propagation of constants from
one entity to the next. The exploitation of these don’t care
(DC) conditions at the hierarchy boundary of the datapaths
parts is limited.

If we incorporate the controller into the optimization
procedure, the extraction and treatment of sequential DCs.
This is not directly applicable to large systems of interact-
ing components due to complexity reasons comes into
mind. However, the conditions provide an additional option
for sequential optimization of the generated parts.

This paper deals with the automatic optimization of this
kind of systems. We propose a two-stage approach. First,
the complexity of the problem is reduced by applying a par-
titioning strategy which exploits the hierarchy of operators
and the regularity of repetitive interconnection patterns in
the datapath. Second, we use symbolic methods for DC ex-
traction (co-simulation) which can be used by the subse-
quent logic optimization task.

1.1 Previous and Related Work
As pointed out above, the task consists of partitioning a

digital synchronous system into a set of blocks and subse-
quently optimizing this set of interacting components.

Apart from the technical side which is extensively sum-
marized in [9], partitioning of RT-level descriptions has
mainly focused on partitioning of combinational logic.
Camposano [3] proposed a method to minimize the number
of blocks for the subsequent logic synthesis task. For the
actual partitioning (clustering) a similarity function is used
which is defined for low-level (atomic) operators. Hierar-
chical building blocks and sequential dependencies among
the connected modules are not considered.

The decomposed structure can be regarded as a set of in-
teracting finite state machines. The problem of optimizing
these systems is frequently referred to as hierarchical se-
quential synthesis.Watanabe [12] andDamiani [5] inde-
pendently proposed schemes for the optimization of
interacting components modeling one component as a non-
deterministic finite state machine. However, both tech-
niques are limited to the optimization of state machines
with up to 100 states only. Moreover, they are not applica-
ble to datapath components because datapaths components
(e.g. registers with load enable) constitute rather dense
transition systems which hardly can be handled by explicit
methods. Therefore, we propose to use subsets of the entire
DC set which can be computed efficiently using a co-simu-
lation approach.

1.2 Outline
The paper is organized as follows. First, we describe the

hierarchical partitioning algorithm which is dedicated to
the datapath logic. For reasons of efficiency, the partition-
ing step is not carried out on the netlist directly. Instead, a
weighted graph model is employed. Second, we describe
how to incorporate the controller into the optimization

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

process. Finally, we give an overview of the actual imple-
mentation and present some experimental results.

2 Partitioning
2.1 Design Representation

The input of the partitioning task is ahierarchical net-
list , i.e. a sequence of hypergraphs or
cells (instances of these cells are referred to as
cell instances) which are connected bywires in
the set . Pins are the terminal nodes in . Inputs and
outputs of the cells are referred to aspins (corresponding
instances at the cell instances are calledpin instances). In
the hypergraphs wires are running between
pins and pin instances. Each cell except for leaf cells in the
hierarchy are composed out of instances of other cells. We
maintain ahierarchy graph in which a cell is
connected to a cell if there is an instance with

 being instantiated in . Each cell in-
stance contains a pointer to its
corresponding cell.

 is a dag. At the top-level we distinguish two
main cells: the datapath and the controller. We refer to

as the datapath cell. The index is
given by a topological sorting of the nodes in .
The graph can be modified by expanding cell in-
stances and by combining cell instances to form new cells.
Each cell may be composed out of other cell instances con-
stituting to the overall behavior. The controller can be rep-
resented either by a symbolic state transition table or by an
implementation (netlist). For the datapath we concentrate
on a mux-based design, i.e. the routing of data is done via
muxes.

2.2 Optimization Objectives
We will concentrate on the following criteria for optimi-

zation:

• is the area of cell which is given by sum-
ming up the sizes of gates and latches required to imple-
ment . For reasons of simplicity, we do not take
wiring area into account.

• describes the power consumption of a mod-
ule . Notice, that this criterion normally depends on
the target technology and the set of input patterns on
which the module will operate, i.e. this may vary for
each cell instance with . In our ap-
plication we consider the power dissipation due to
switching activity. For this, a CMOS implementation is
assumed. We assume static probabilities of 0.5 for an
input pin of the cells. In this case, we achieve an addi-
tive quantity and can study design alternatives on aver-
age sets of input patterns.

• is the communication of the cell with the
environment. By the minimization of the communica-
tion also the performance can be increased because in-
terconnections between modules can be kept short.
These quantities are described for cells and cell instanc-

es, i.e. for measure we have

N C1 … Cn, ,{ }=
Ci Vi Ei,()

CI Vi∈
Ei Vi

Ci Vi Ei,()

H N D,() Ci
Cj CI

cell CI() Cj= Ci
cell CI() C1 … Ck, ,{ }∈

H N D,()

Cd d 1 … n, ,{ }∈, d
H N D,()

H N D,()

Area C() C

C

Power C()
C

CI cell CI() C=

Comm C() C

m Area Power Comm, ,{ }∈

. In the further description we will
refer to as the characteristic for the module
which results out of the combination of the instances
and .

2.3 Problem Formulation
Restructuring or partitioning amounts to finding a parti-

tioning of the datapath into blocks of manageable size with-
out deteriorating the characteristics of the design too much
by separating parts of the design. The size of the block is as-
sumed to be an indicator for the complexity of the subse-
quent logic synthesis step.
Input. A hierarchical netlist . We have
weighting functions for the estimated
size and for the number of sequential ele-
ments of a cell . For all pairs of cell instances and

 in the netlist which are connected by a wire and each
measure we assume a
weighting function to be given ()

We have functions and
 to constrain the size of the

blocks in terms of area and number of sequential elements.
Output. Let be the cell which results out of by it-
eratively expanding cell instances. The output is a disjoint
decomposition of the set of in-
stances in .
Optimize. The objective of optimization is (1) the minimi-
zation of the number of partitions , (2) of the cut size

and (3) of the block constraint penalty function

Because the number of blocks which have to be deter-
mined by the partitioner is not fixed, this type of problem is
calledfree netlist partitioning problem (FNPP). The corre-
sponding threshold variant is a NP-complete problem [7],
even for very simple and restricted issues of this problem,
i.e. only the flat hierarchy is considered, all node and edge
weights are uniform () and a static
bound function is used for and :

Therefore, an heuristic approach is justified.

2.4 Partitioning Library
For the partitioning step we need information on how to

decrease the cut size by merging two cell instances into one
partition. Moreover, we have to provide information about
the design characteristics of the modules.
Design Information. For each cell, the design library con-
tains information about the area and power consumption pa-
rameterized on the number and type (input, output, both) of

m CI() m cell CI()()=
m CI1 CI2,()

CI1
CI2

Nd Cd … Cn, ,{ }=
Area: Nd IR +→

Seq: Nd IN→
C CI1

CI2
m Area Power Comm, ,{ }∈

αm 0 1,[]∈

c CI1 CI2,() αm 1
m CI1 CI2,()

m CI1() m CI2()+
---–

 ⋅
m∑=

boundA: IR + IR + ∞{ }∪→
boundS: IN IN ∞{ }∪→

Cd' Cd

ΠCd'
SCI 1, … SCI p,, ,{ }=

SCI Cd'

p

c ΠCd'
() 1

2
--- c CI1 CI2,(),

CI1 CI2, Cuti∈∑i 1=

k∑⋅=

r ΠCd'
() boundA a()()

i 1=
p∑ boundS s()()

i 1=
p∑+=

c 1≡ Area 1≡ Seq 1≡, ,
boundA boundS

boundX
 x() 0 if x X≤,

∞ else.,

=

the pins and the wordlengths of these pins. For meta-cells
(swapping, splitting and merging of bus lines) no design
information is being provided since incorporating the cor-
responding cell instances into any partition only changes
the communication cost which can be evaluated statically
out of the context of the instance.

The information about the design data of a particular el-
ement of the library is stored in a dictionary. The data can
be accessed via a string which is uniquely assigned to each
cell. This data may heavily depend on the particular script
which is used for logic synthesis and on the gate library
onto which the RTL description will be mapped. By main-
taining a persistent version of the dictionary we achieve
flexibility concerning these parameters.
Partitioning Information. The partitioning library gives
information on how the characteristics ,

 and decrease if two
instances and are merged.The values are given
by considering all possible connection types occurring in
the actual datapath implementation.

The information is determined a priori by passing the
combined cell instances to logic synthesis running a de-
fault script. The connection topology has a big influence
on the design characteristics of the merged instance. For
keeping the partitioning library as small as possible we
proceed by defining some rules for abstracting from the
actual shape of the connection topology:

(1) We define an ordering on the set of cells . This is
done by analyzing the string which is associated with
the cells of the connected instances and .

(2) The set of nets (except for the clock) connecting the in-
stances and are classified as follows:

 is the set of common input nets used by
both instances, and de-
scribe the set of nets which are connecting the outputs
of with the inputs of and vice versa assuming

. is the set of
common control lines from the controller. The set of
all possible connection pattern is shown in figure 1. In
figure 2 an example for different connection types
leading to different characteristics when merging is
shown.
Normally, due to the high regularity of the generated

structure, not all connection patterns will occur which sig-
nificantly reduces the storage requirements for maintain-
ing the partitioning information. For instance, the output

Figure 1. Connection types for cell instances.

CI1 CI2

ci (CI1,CI2)

in (CI1,CI2)

out (CI1,CI2)

cs(CI1,CI2)

Area CI1 CI2,()
Power CI1 CI2,() Comm CI1 CI2,()

CI1 CI2

<

CI1 CI2

CI1 CI2
ci CI1 CI2,()

in CI1 CI2,() out CI1 CI2,()

CI1 CI2
cell CI1() cell CI2()< cs CI1 CI2,()

of a functional unit and the selector channel of a multiplexor
or decoder and components with different wordlengths will
never be connected. Similar to the access of cell characteris-

tics we also define a dictionary for the partitioning data. A
connection of two instances is mapped to a string which
consists of the strings of the corresponding cells and cardi-
nality of the net types , ,

 and .
This abstraction becomes clear if we notice that most

connections run between multiplexors and registers or mul-
tiplexers and functional units. For instance, it does not make
a distinction to what particular mux-input a register output is
being connected. For the representation of both, the design
and partitioning data base, randomized search trees have
been used which give fast access () and update times
(where is the number of entries).

2.5 Partitioning Algorithm
Due to the reasons pointed out, we propose a heuristic ap-

proach for the solution of the free partitioning problem.

2.5.1 Restructuring of the Datapath
In some cases it is useful to replicate cell instances if the

decrease concerning one measure is high compared to the
increase in the other criteria. There exists a trade-off because
excessive replication of instances will also increase the input
size. In our methodology, replication is done for all cell in-
stances representing constants because this does not influ-
ence the cost for wiring, the area and/or the power
consumption. However, these instances significantly con-
tribute to the sequential DC set (set of values observable at
sequential elements).

In the first stage the sizes of the instances in the data-
path are estimated by considering the information in the
design dictionary. The contribution to the total area is

. However, sometimes the cells are too big to be
fed into logic synthesis directly (e.g. if a 32-bit signed inte-
ger array multiplier has been used). If this happens, we need
to generate a proper area estimate which is done by analyz-
ing the hierarchy tree . For this, we recursively
compute an estimate for the cell instances in . Let
the estimated quantity be . If

REG

REG REG

(a) (b) (c)

4

4

44 4

4

44 4

4 4

4

Figure 2. Connection types for a multiplexor/regis-
ter with enable combination. All combinations are
distinct compared to all other instances. Connec-
tion types are [0,0,4,0] in (a), [0,0,0,4] in (b) and
[0,4,0,4] in (c). The corresponding relative areas are
82 (a), 79 (b) and 62 (c).

ci CI1 CI2,() cs CI1 CI2,()
in CI1 CI2,() out CI1 CI2,()

O 1()
O nlog() n

CI
Cd

Area CI()

H N D,()
cell CI()

Areaest CI() Areaest CI() A>

is true we cannot expect to achieve a partitioning which is
correct with respect to the block size constraint. We expand
one level of the hierarchy in and examine the expanded
instances . The expansion step is carried out
for all cells for which is true. The result
is the cell .

2.5.2 Graph Construction
The partitioning is carried out on an intermediate model

which we refer to as theconnectivity graph. For each in-
stance in a node is inserted. A weight

 is assigned to each
node which describes the approximated size of the vertex
in the top-level datapath cell. Two nodes are connected via
an edge in the connectivity graph if the corresponding in-
stances are connected in the netlist. The weight of an edge
is given by . We will denote
the connectivity graph by .

2.5.3 Graph Partitioning
For partitioning we have implemented a problem-

specific genetic algorithm (GA) similar to the one de-
scribed in [1]. Due to lack of space we can only present the
essentials. The population is encoded by sorting the set (a)
of edges and (b) of nodes in . We assign a solution to
each member of the population (chromosome) by passing
it to a fast problem specific heuristics. Depending on the
type of sorting of the objects (nodes or edges) we can select
among a node oriented and a edge oriented method. A gene
represents the value, which is associated with the object
leading to the order. The edge oriented method works as
follows: initially, all nodes form a cluster. Run through all
edges in the given order. Merge the blocks

and if the resulting size and number of se-
quential elements of the new block is acceptable. The node
oriented method works similarly.

Different results can be achieved by perturbing the set
of edges and nodes. This perturbation is done during the
computation of the initial population and during runtime
by applying the genetic operators (point mutation and one-
site crossover). The GA works as follows: first, the initial
population is determined. As long as the stopping criterion
is not fulfilled, the chromosomes of the current population
are scanned and cost and fitness values are computed. The
best two chromosomes are always copied into the new pop-
ulation. During a reproduction step, two chromosomes are
selected based on their fitness, the cross-over operator is
applied with probability and the result is
copied into the new population, unless both populations
reach the same size. After applying the cross-over operator
the mutation operator is applied with probability

 to each gene in the entire new population.
We have used the operator

for comparing different partitionings of . The
relative cut size in the formula is given by

if and 0 otherwise. Similarly
the relative values and can be computed.

Depending on the characteristics of we can either
choose the node or the edge oriented method. Since this is
mostly the case and the runtime of the method is reasona-
ble, especially when compared to the subsequent logic syn-
thesis task, we propose to run both methods and pick the
best result. is set to 100% for all measures. With our
implementation, the best results were achieved by setting

, and the population size
and number of generations to 100. The function

is used for bounding the size and the number of sequential
elements in each partition.

3 Sequential Optimization

3.1 Don’t Care Extraction
The outcome of the prior partitioning task is a function-

al decomposition of the datapath which models adetermin-
istic, synchronous system. The generated logic blocks can
be directly transferred to logic synthesis. Better results can
be achieved by considering the sequential DCs arising
from unreachable and equivalent states. However, even the
application of symbolic techniques [2] which were rather
successful for datapath components fails if complex com-
ponents (e.g. multipliers) are used. Even data abstraction
[4] does not help in this case, since we have to specify the
DC conditions at the Boolean level.

3.2 Symbolic Co-simulation of the Controller
The gain of sequential DCs arising from pure datapath

portions is limited since sequential components (e.g. regis-
ters) will normally store all data available at the primary in-
puts. Therefore, all states will be reachable. Moreover, the
decision upon how to process data depending on the value
of a particular variable is made in the controller. Therefore,
considering the datapath components separately equivalent
state pairs are seldom to occur unless sophisticated feed-
back between branch arbitration logic (e.g. comparator)
and data routing (e.g. multiplexor) is partly implemented in
the datapath. Normally, the controller constitutes the arbi-
tration logic. Therefore, for sequential DC generation the
controller needs to be involved in the optimization proce-
dure.

The DC generation proceeds as follow. Assume, we
have computed a -way partitioning of the datapath. First,
the controller is tentatively duplicated times and is add-
ed to all generated partitions as shown in figure 4. By par-
titioning the datapath also the status and command lines
can be partitioned into disjoint sets of control and status

CI
CI1' … CIe', ,

Areaest CI j'() A>
Cd'

CI Cd' v
wnode v() Area CI() Seq CI(),〈 〉=

wedge v1 v2,() c CI1 CI2,()=
Gc

Gc

Gc

e vi vj,{ }=
Π vi() Π vj()

Probc 0 1,[]∈

Probm 0 1,[]∈

Φ Π1 Π2,() κM Mrel Π1 Π2,()⋅
M cut p r, ,{ }∈∑=

Π1 Π2, Gc

cutrel Π1 Π2,()
cut Π1() cut Π2()–

cut Π1() cut Π2()+
--=

cut Π1() cut Π2()+ 0≠
p r

Gc

κM

Probm 0 001,= Probc 0 6,=

boundX
⁄ x() 0 if x X≤,

e2 a A–() A⁄ 1– else.,

=

p
p

signals. The local controller can now be minimized with
respect to these reduced sets of signals.

Reachable states.Let and be number of latches
(state variables) in the -th part. The set of states in the par-
titions are given by (controller) and

 (datapath). The set of the product states is
given by . Let denote a prod-
uct state. The set of reachable product states
of the product machine starting from the reset state can be
computed by an efficient symbolic state space traversal
[10] based on BDDs. By existentially quantifying out the
state variables of the controller in , we obtain
the set of reachable states of the datapath part

By quantifying out the state variables of the datapath the
unreachability DCs of the augmented local controllers can
be gained. Assume, that is the
amount of unreachable states which have been computed
for the local controllers during the simulation steps, then
the set of unreachable states for the lumped controller is
given by intersecting all these sets

Equivalent states.Let
describe the equivalence relation of the product states of a
partition. Then

is the set of all equivalent state pairs of the datapath.
Analogously, the sets can
be used to compute an approximation of the equivalent
state pairs of the lumped controller which is given by

Combinational Don’t Cares.Besides the sequential DCs
we can also specify the combinational DCs at the control-
ler outputs by computing the range of the functions bound
to the control lines. Since the status lines do not intersect,
the external DC set for the controller is given by the dis-
junction of the ranges of the functions at the outputs of the
datapath components.
Sequential Optimization.Before passing the structure to
logic synthesis, one can try to use more sophisticated se-
quential optimization techniques to obtain an optimized
implementation. In [6] a synthesis procedure is described
which works entirely on the implicit representation. A sim-

ple transformation which can be performed quickly is to
remove the set of redundant latches.

4 Implementation and Experimental Results
We have implemented two tools.REPART is the parti-

tioning tool which can be executed. Files can be read in
BLIF or VHDL format. The partitioning and design infor-
mation are read from a file. The sequential resynthesis sys-
tem (SRS) and logic synthesis parts are separated
processes. For logic synthesis a pipe mechanism has been
implemented for fast communication betweenREPART
and the logic synthesis systemSIS [11]. The partitioning li-
brary can be generated on demand if no appropriate design
data and/or partitioning information is available.

On this basis a couple of experiments have been carried
out. First of all, the partitioning tool has been used for the
structuring of datapaths in order to facilitate or even to im-
prove runtime of logic synthesis on datapaths obtained
from the high-level synthesis systemPMOSS [8] which
targets a mux-based architecture. The benchmarks are ei-
ther standard high-level synthesis benchmarks (gcd, ellip,
diffeq) or taken from experiments which were carried out
in a codesign scenario (fibo, atoi) [8]. During behavioral
synthesis, hardware resources are allocated out of the li-
brary which is given by a set of C++ generators.

Table 1 shows the characteristics of the datapaths in
terms of primary input and output count. The next column
shows the area estimate which was gained by summing up
the sizes of the optimized instances in the datapath. Note,
that this gives an upper bound on the size of the datapath.
The next 3 columns give the results for the flat synthesis of
the datapath which was impossible to compute for the big-
ger problem instances. For optimization the rugged script
has been used. Next the same data for the partitioned ver-
sion was given using the same script. We have used bounds
of and in and .
For smaller benchmarks, these values were taken such that
a bipartitioning resulted. The time limit for synthesis was
set to 1000 CPU seconds. The weights were set to
100%. Finally, we give the results which were obtained af-
ter partitioning and sequential optimization. The given
runtime data includes time for partitioning, time for se-
quential optimization and logic synthesis. As can be seen,
for most examples the partitioned design optimized by or-
dinary Boolean techniques comes close to the result for the
flat (global) synthesis and it is significantly better than the

datapath
controller

Part1

Part2

Part3

Part4

control

status

Figure 3. Result of partitioning.

ncp ndp
i

Scp IBncp=
Sdp IBndp=

S Scp Sdp×= s scp sdp,()=
SR scp sdp,()

SU S SR–=

SU sdp() scp Scp∈()∃ SU scp sdp,()()=

SU 1, scp() … SU p, scp(), ,

p

SU sdp() SU i, scp()
i 1=
p∏=

E s s',() E scp sdp s'cp s'dp, , ,()=

E sdp s'dp,() scp s'cp, Scp∈()∀ E scp sdp s'cp s'dp, , ,()=

E1 scp s'cp,() … Ep scp s'cp,(), ,

E scp s'cp,() Ei scp s'cp,()
i 1=
p∏=

datapathcontroller

DCs

DCs

DCs

DCs

Figure 4. Symbolic co-simulation step for se-
quential DC exctraction.

Part1

Part2

Part3

Part4

datapathcontroller

DCs

DCs

DCs

DCs

DCs

Part1

Part2

Part3

Part4

(a) (b)

A 1000= S 20= boundA
 boundS

αm

result for the hierarchical synthesis (3rd column). The
number of generated partitions is shown in the 10th col-
umn. For the larger examples, an entire treatment of the da-
tapath is not feasible. Note, that for all designs a significant
acceleration of the synthesis step can be achieved. In all
cases, the application of the sequential optimization option
gives significant gains in cost and power consumption (last
3 columns).

5 Conclusions and Future Work
We have presented a method for the optimization of hi-

erarchical datapaths which exploits the hierarchy of the li-
brary cells during the partitioning process. This is because
the sizes of the components may vary significantly and
therefore instances will have to be partitioned in order to
facilitate logic synthesis. Moreover, we have shown how to
integrate the controller into the optimization procedure
which is used in order to get proper sets of DCs for the gen-
erated functional descriptions. The presented approach was
mainly dedicated to the implementation of the design as a
multi-level circuit, i.e. as an ASIC. However, one could al-
so think of tailoring the presented methods to map the cir-
cuit description to FPGAs. Therefore, one will have to
encompass the knowledge about how to efficiently com-
bine partitions in order to obtain cost efficient FPGA im-
plementations into the partitioning process.

 Acknowledgements

This work has been supported by Deutsche Forschungs-
gemeinschaft under grant SFB 358, project B3.

 References
[1] I. Ahmad and M. Dhodhi. On the m-Way Partitioning Problem.

The Computer Journal, 38(3):237–244, 1995.
[2] R.E. Bryant. Symbolic Boolean Manipulation with Ordered Bi-

nary-Decision Diagrams.ACM Computing Surveys, 24(3):293–
318, September 1992.

[3] R. Camposano and R. Brayton. Partitioning before Logic Syn-
thesis. InProc. of the International Conference on Computer-
Aided Design, pages 324–326, Santa Clara, CA, November
1987.

[4] F. Corella, M. Langevin, E. Cerny, and et. al. State-Enumeration
with Abstract Descriptions of State Machines. InProc. of the
CHARME’95, pages 146–159, Frankfurt, 1995. IFIP WG10.5.

[5] M. Damiani. Nondeterministic Finite-State Machines and Se-
quential Don’t Cares. InProc. of the European Conference on
Design Automation, pages 192–198, Paris, France, 1994. IEEE.

[6] H.-J. Eikerling, M. Schmidt, and W. Rosenstiel. A Fully Sym-
bolic Framework for Area-minimizing Hardware Resynthesis. In
IFIP Workshop on Logic and Architecture Synthesis, pages 163–
171, INPG, Grenoble, France, December 19-20 1995.

[7] M. Garey and D.S. Johnson.Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman, 1979.

[8] W. Hardt and W. Rosenstiel. Speed-Up Estimation for HW/SW-
Systems. InCODES/CASHE, Pittsburgh, PA, March 1996.

[9] Th. Lengauer.Combinatorial Algorithms for Integrated Circuit
Layout. Teubner-Wiley, 1990.

[10] B. Lin, H. Touati, and A.R. Newton. Don’t Care Minimization
of Multi-Level Sequential Logic Networks. InProc. of the Inter-
national Conference on Computer-Aided Design, pages 414–
417, Santa Clara, CA, 1990.

[11] E.M. Sentovich, K.J. Singh, C. Moon et al. Sequential Circuit
Design Using Synthesis and Optimization. InProc. of the Inter-
national Conference on Computer Design, pages 328–333, Cam-
bridge, MA, 1992.

[12] Y. Watanabe and R. Brayton. State Minimization of Pseudo
Nondeterministic FSM’s. InProc. of the European Conference
on Design Automation, pages 184–191, Paris, France, 1994.

.

Benchmark

PIs/POs

(dp.)

Est. Area

(hier.)

Synthesis (flat)

Area / Power / Synth. Time

 Synthesis (partitioned)

Area / Power / Synth. Time p

Sequential Optimization

Area / Power / Synth. Time

fibo04 11 / 5 436.0 337.0 1142.4 10.5 362.0 1203.7 4.7 2 321.0 1014.3 8.1

fibo08 15 / 9 1003.0 684.0 2293.6 10.7 724.0 2400.7 20.7 2 662.0 2105.1 25.0

fibo16 23 / 17 2003.0 1371.0 4579.1 22.7 1452.0 4794.7 16.6 3 1398.0 4587.3 120.1

fibo32 39 / 33 3740.0 2748.0 9173.8 54.5 2811.0 9305.6 58.6 4 2712.0 9034.3 64.8

gcd04 17 / 6 399.0 352.0 1191.8 7.1 375.0 1402.7 7.0 2 340.0 1063.2 10.3

gcd08 25 / 10 775.0 664.0 2260.2 15.0 685.0 2509.3 13.2 2 644.0 2213.3 17.0

gcd16 41 / 18 1523.0 1283.0 4407.9 44.9 1297.0 5380.0 28.4 2 1158.0 4103.3 35.8

gcd32 73 / 34 3452.0 - time-out - 2487.0 11.18.7 78.0 4 2238.0 10437.7 87.0

atoi04 22 / 11 649.0 471.0 1630.4 7.2 480.0 1654.0 7.3 2 445.0 1362.7 8.0

atoi08 30 / 20 1297.0 925.0 3240.3 20.7 949.0 3678.0 11.2 2 871.0 3043.4 15.4

atoi16 46 / 37 2589.0 1863.0 6396.9 64.7 1995.0 8096.0 16.1 3 1798.0 6086.0 20.6

atoi32 78 / 70 5961.0 - time-out - 4010.0 15798.0 150.4 6 3867.0 13641.3 186.3

ellip04 69 / 33 1558.0 - time-out - 1576.0 5208.0 62.8 2 1515.0 5113.4 78.2

ellip08 101 / 65 2920.0 - time-out - 3044.0 10096.3 126.0 3 3044.0 10101.3 158.0

ellip16 165/129 5840.0 - time-out - 5749.0 18973.7 240.9 6 5696.0 17185.4 267.3

ellip32 293/257 17003.0 - time-out - 11108.0 19867.5 487.6 17 11000.0 39897.5 500.5

diffeq04 44 / 13 1518.0 1301.0 3266.0 82.6 1382.0 3346.0 43.7 2 1250.0 3034.0 98.0

diffeq08 44 / 13 3342.0 2742.0 6669.8 450.6 2701.0 6605.0 105.2 4 2722.0 6699.0 133.0

diffeq16 44 / 13 7789.0 - time-out - 5332.0 11510.7 187.5 8 5196.0 10413.7 283.3

diffeq32 44 / 13 22521.0 - time-out - 11525.0 24164.0 407.6 23 11163.0 23519.0 854.5

Table 1. Results of hierarchical optimization process. All data refers to an implementation using the mcnc.genlib
assuming a 20 MHz clock. Power consumption is measured in µW assuming V dd to be 5V. Area refers to grid count
of a standard cell implementation. Synthesis time refers to CPU seconds on a Sun Sparc SS20-M712.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

