
A New HW/SW Partitioning Algorithm for Synthesizing the Highest
Performance Pipelined ASIPs with Multiple Identical FUs

Nguyẽ̂n Ngo. c Bı̀nh�y, Masaharu Imai�y, and Akichika Shiomi�z

yDept. of Information & Computer Sciences zDept. of Computer Science
Faculty of Engineering Science Faculty of Information

Osaka University Shizuoka University
1-3 Machikaneyama-cho 3-5-1 Johoku-cho

Toyonaka-shi, Osaka Hamamatsu-shi, Shizuoka
Japan 560 Japan 432

E-mail: fbinh,imaig@ics.es.osaka-u.ac.jp E-mail: shiomi@cs.inf.shizuoka.ac.jp

Abstract
This paper introduces a new HW/SW partitioning algo-

rithm for automatic synthesis of a pipelined CPU architec-
ture with multiple identical functional units (MIFUs) of each
type in designing ASIPs (Application Specific Integrated Pro-
cessors). The partitioning problem is formalized as a combi-
natorial optimization problem that partitions the operations
into hardware and software so that the performance of the de-
signed ASIP is maximized under given gate count and power
consumption constraints, regarding the optimal selection of
needed FUs of each type. A branch-and-bound algorithm
with proposed lower bound function is used to solve the for-
malized problem. The experimental results show that the pro-
posed algorithm is found to be effective and efficient.

1 Introduction
Embedded systems [1] implement dedicated functions

such as control of anti-blocking brakes, the instrumentation
and control of an assembly line or compression and encoding
of audio, video and data in a multi-media system. Thus, the
function is well defined in advance and the embedded system
is installed once. An embedded system is implemented partly
in hardware (HW) and partly in software (SW) by using opti-
mization tools for the HW design, codesign of HW and SW,
and design of embedded SW. Design of embedded systems
has been developed for several years, but the tight integration
of HW and SW design and some particular design problems
is one of the new issues. Especially, an Application Specific
Integrated Processor (ASIP) is a dedicated microprocessor
that is designed putting a special application field in mind.
It contains a CPU core, memory (RAM, ROM), and periph-
eral circuits as shown in Figure 1. ASIP is used in embedded
systems where the performance, hardware cost, and power
consumption are important factors.

In the traditional embedded system design, system archi-
tects decide which operations will be implemented in HW

�The authors were formerly with the Department of Information and
Computer Sciences, Toyohashi University of Technology, Toyohashi-shi,
Japan 441.

This research is supported in part by Grant-in-Aid for Scientific Re-
search Nos. 07558038 and 07680353 from the Ministry of Education, Sci-
ence and Culture, Japan.

or SW. In order to produce an efficient result in reason-
able design time, an efficient HW/SW codesign partitioning
method should be used. Many HW/SW partitioning methods
have been proposed. Gupta and De Micheli [2] introduced a
method that moves operations from HW to SW to meet per-
formance constraint at minimal cost. Ernst, et al. [3] take the
opposite approach moving time critical operations from SW
to HW. Woo, et al. [4] introduced a codesign method that di-
vides the operations into HW, SW and codesign groups. Then
the designer manually investigates the HW/SW tradeoff by
distributing the implementation of the codesign operations
between HW and SW.

CPU
RAM

ROM

Peripheral

Figure 1: ASIP components.

The ASIP design optimization problems can be classified
into 3 classes: (1) highest performance design, (2) least HW
cost (gate count) design, and (3) lowest power consumption
design. The HW/SW codesign problem addressed in this pa-
per is related to the highest performance pipelined ASIP de-
sign with gate count and power consumption constraints. Our
approach differs from the above mentioned traditional meth-
ods in automating HW/SW partitioning at operator level to
get an optimal design of the ASIP.

A HW/SW codesign system PEAS-I (Practical Environ-
ment for ASIP development - type I) [5] employs a formal

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

method to synthesize an optimal instruction set processor
by solving Instruction set implementation Method Selection
Problems (IMSP) types 1, 2 and 3. IMSP-1 [6] is set up as-
suming no interaction among the operations, and each opera-
tion was to be implemented using a separate HW module. On
the other hand, IMSP-2 [7] is an extension of IMSP-1 by tak-
ing resource sharing into account. While IMSP-1, 2 are for
designing the highest performance ASIPs, IMSP-3 [8] yields
the design of ASIP with the least HW cost subjecting to exe-
cution cycle and power consumption constraints.

The main part of PEAS-I is the architecture informa-
tion generator, which automatically performs the optimal
HW/SW partitioning to decide the best CPU core architec-
ture under given constraints, as well as define an optimal in-
struction set for the selected architecture. Once the HW/SW
partitioning has been performed, the HW portion will be gen-
erated in HDL, that can be accepted as input to the high level
synthesis tool PARTHENON [9]. The SW portion will be
compiled into the code of the selected instruction set by a C
compiler and simulator generated by the application program
development tool automatically. In other words, PEAS-I ac-
cepts an application program with input data and will gen-
erate the optimal ASIP (CPU core, instruction set, and soft-
ware tools such as C compiler and simulator) automatically
by using the IMSP solvers for HW/SW partitioning. These
features make PEAS-I differ from other HW/SW codesign
systems such as ASIA [10] and CASTLE [11], where the
HW/SW partitioning is done manually in these systems.

2 Pipelined CPU Architecture with MIFUs
The target CPU to be generated by PEAS-I belongs to a

class of Harvard architecture with separate data bus and in-
struction bus. The minimum part in the PEAS-I CPU core
architecture is ‘Kernel’ which consists of an ALU, a one-bit
shifter, and a register file. The CPU core may include other
functional units (FUs) such as multiplier, divider, and so on.
Moreover, while the CPU may contain the Kernel and dif-
ferent types of FUs, it is assumed that there can be multiple
identical FUs (MIFUs) as shown in Fig. 2. Note that so far
the PEAS CPU cores were assumed to have no more than one
FU of each type.

The pipelined architecture synthesized by PEAS-I con-
sists of four stages: (1) IF (Instruction Fetch and de-
code), (2) EX (EXecution), (3) MEM (MEMory access), and
(4) WR (Write back to Register file), respectively. While
each of IF, MEM, and WR stages takes only one cycle, EX
stage takes one or more cycles. The PEAS-I CPU is with a
RISC type of the load/store architecture and each control step
corresponds to one clock cycle. The architecture has a reg-
ister bypass to forward the computation results to Kernel or
FUs. Each FU can be multi cycle and pipelined. For the for-
mer CPU architecture, we have developed IMSP-2P (IMSP-2
for Pipeline) [12, 13] for the high performance ASIP design,
and IMSP-3P [14] for the least gate count ASIP design.

In this paper we deal with IMSP-2P for the presented
CPU core with MIFUs and we call it as IMSP-2P-MIFU,
which is an abbreviation of “Instruction set implementation
Method Selection Problem type 2 for Pipelined architecture
with Multiple Identical Functional Units of each type.” In the
following sections we define the IMSP-2P-MIFU HW/SW
partitioning problem, its formalization with a proposed algo-

Ctrl

Kernel

FU FU FU FU

A1 A2 B1 B2
1 Bit

Shifter
(Changeable)

ALU

FUs
Type A

FUs
Type B

Register
File

Figure 2: PEAS CPU core architecture with multiple
identical FUs.

rithm, and describe the experimental results.

3 Partitioning Problem Formalization
The instruction set architecture of the designed ASIP is

based on the GNU C Compiler (GCC) abstract machine
model [15]. The reason behind that choice is as follows:
(1) the generated ASIP is assumed to execute application
program written in C language, and (2) GCC is a widely ac-
cepted public-domain software that generates an efficient ob-
ject code. The set of operations and functions that can be
generated by GCC is chosen to be the set of candidate in-
structions that can be included in the designed ASIP. The
GCC Register-Transfer Language (RTL) operations are di-
vided into Primitive and Basic operations. The primitive
operations contain the minimum operations that can be in-
cluded in the ASIP chip so that it can execute any C program.
The primitive operations should be implemented in HW. The
basic operations contain other C operators and functions that
are not primitive operations and can be implemented using
some HW choices (such as fast or slow HW modules) or us-
ing SW subroutine that uses primitive operations. Please re-
fer to Refs. [8, 12] for the primitive and basic operations.

The IMSP-2P-MIFU HW/SW partitioning problem is de-
fined as follows:

“Select the implementation methods of the basic oper-
ations, among HW choices and SW, and define the needed
number of identical FUs of each type so that the perfor-
mance of the designed pipelined ASIP is maximized un-
der given gate count and power consumption constraints,
taking the functional module sharing into account.”

We formalize this problem as a combinatorial optimiza-
tion problem, which can be solved using an algorithm based
on the branch-and-bound method.

3.1 Definitions and Notations
In the rest of this paper, the following definitions and no-

tations are used:
(1) The “implementation method” refers to any of HW or

SW implementations of an operation. For any operation there
might be many HW implementations such as fast or slow HW
modules.

(2) “n” denotes the total number of different basic opera-
tions (or number of basic operation types) to be considered.

2

(3) “fi” denotes the execution frequency of operation #i
in the given set of application programs, where 0 � i � n.
f0 is for execution frequency of all primitive operations.

(4) “M” denotes the whole set of implementation methods
that realize all operations.

(5) “Mi” denotes the set of implementation methods
which realize operation #i, where Mi �M , and 1 � i � n.

(6) “xi” denotes an implementation method that realizes
operation #i, where xi 2Mi, 1 � i � n.

(7) “ki(xi)” denotes the number of identical FUs for
operation #i when implemented by method xi, where
1 � i � n. Then X = (x1; x2; . . . ; xn) and K =
(k1(x1); k2(x2); . . . ; kn(xn)) represent an architecture config-
uration of the PEAS CPU with MIFUs. (In fact, K depends
on X, i.e. K = K(X).)

(8) “kmaxi ” denotes the maximal number of identical FUs
for operation #i.

(9) When Mi \Mj 6= � (i 6= j), and if Mi \Mj con-
tains a functional module x, then x can be used to implement
operations #i and #j simultaneously.

(10) “S” represents the set of selected implementation
methods of the whole basic operations. That is, S =Sn

i=1fxig. Generally, jSj � n. When one or more functional
module(s) is/are shared, j S j< n, otherwise j S j= n.

(11) “ti(xi)” denotes the execution cycle of operation #i
when implemented by method xi, where 1 � i � n.

(12) “a(xi)” and “p(xi)” denote the area and power con-
sumption required for implementation method xi, respec-
tively, where 1 � i � n. “a(x0)” and “p(x0)” are for the
Kernel only.

(13) “A max” and “P max” denote the maximum allow-
able gate count and the maximum allowable power consump-
tion, respectively, for the selected functional modules in the
ASIP chip.

(14) “N” denotes the total number of basic blocks (BBs)
in the application program’s GCC RTL code.

(15) “t(Bj ; X;K)” denotes the execution cycles needed
to execute basic block Bj using a combination of implemen-
tation methods X with K, where 1 � j � N .

(16) “Fj” denotes the execution frequency of basic block
Bj in the given application program, where 1 � j � N .

(17) “cj” denotes clock cycles needed to define control
(e.g., branch delay) from blockBj to another one, where 1 �
j � N .

(18) “b” denotes execution cycles reduced by un-taken
branches in execution of the given application program.
3.2 Problem Formalization

The IMSP-2P-MIFU HW/SW partitioning problem can be
formalized as a combinatorial optimization problem as fol-
lows:

Find solution vectors

X = (x1; x2; � � � ; xn)
K = (k1(x1); k2(x2); � � � ; kn(xn))

which minimize the objective function:

T (X;K) =
NX

j=1

fFj �
�
t(Bj ; X;K) + cj

�
g � b (1)

subject to:

X

xi2S

fki(xi) � a(xi)g � A max; (2)

X

xi2S

fki(xi) � p(xi)g � P max ; (3)

and
0 � ki(xi) � kmaxi (1 � i � n): (4)

The key point in computing T (X;K) in Eq.(1) is to ob-
tain the value of t(Bj ;X;K). We have developed a HW/SW
partitioning-oriented pipeline scheduling algorithm to esti-
mate t(Bj ; X;K) for basic block Bj under configuration X
and K, which is an extension of a scheduling algorithm [16].
Note that the algorithm in Ref. [16] has a limitation where
kmaxi = 1 (i = 1; � � � ; n):

The pipeline control hazards are addressed in introducing
the coefficients cj . Note that the number of clock cycles due
to control hazards is equal to

PN

j=1(Fj�cj) �b. The pipeline
scheduling algorithm detects and resolves all types of data
hazards and structural hazards by ensuring that no more than
one instruction can be issued or completed at each control
step. We have extended the scheduler for the general case
with any vectors X , K. In the solution vector K, a compo-
nent ki(xi) = 0 (for some i) means none of the FUs of type
i has been chosen and the basic operation of type i is imple-
mented by SW.

Note that the problem defined by Eqs.(1)–(4) under the
condition kmaxi = 1 (i = 1; � � � ; n) is the same problem
defined in Ref. [12] for IMSP-2P. That is, we here deal with
a more general case.

4 IMSP-2P-MIFU Solver
4.1 Input and Output

The input to the IMSP-2P-MIFU solver includes the fol-
lowing items:
(i) The GCC’s RTL code of the given application program,
(ii) Fj’s for j = 1, � � �, N ,
(iii) b (#execution cycles reduced by un-taken branches),
(iv) constraint parameters A max and P max, and
(v) the module information database, which includes execu-
tion cycle count, latency, area, and power consumption of
each implementation method of all operations.

The output of the IMSP-2P-MIFU solver includes the op-
timum implementation method of each basic operation, the
number of MIFUs of each type, and pipelined schedules of
BBs. The instruction set of the designed ASIP will include
the primitive operations as default and those basic operations
that are selected to be implemented in HW. The algorithm au-
tomatically integrates the functional module sharing among
basic operations into one HW module whenever possible.
4.2 Algorithm

Because IMSP-2P-MIFU as well as IMSP-2P is NP-hard,
and in order to solve it in reasonable computation time, the
branch-and-bound method is used. The branch-and-bound
method is known as one of the most effective methods to
solve combinatorial optimization problems. The branch-and-
bound algorithm is a tree searching technique, in which the
process of searching an optimum instruction set is viewed by

3

the algorithm as finding a leaf node in a search tree. One of
the most important issues in solving problems efficiently by
this method is to find a tight lower-bound function to prune
as many non-optimum solutions as early as possible. The
lower-bound function used in the IMSP-2P-MIFU solver is
the same as in the IMSP-2P as follows:

Lower bound = (f0 + Stallfast)

+
d�1X
i=1

ffi � ui(xi)g +
nX
i=d

fi ;
(5)

ui(xi) =

8><
>:

1; if xi is a HW
implementation;

ti(xi); if xi is a SW
implementation;

(6)

Stallfast = T (Xfast; K1) �
nX
i=0

fi ; (7)

where the parameter d represents the depth of the node under
consideration, Stallfast is the number of pipeline stalls in
executing the given application program using the hypothet-
ical FUs of one cycle denoted by Xfast, and T (Xfast;K1)
is computed by using Eq.(1), and K1 is with kmax

i = 1 (i =
1; � � � ; n): Please refer to Ref. [12] for derivations of Eqs.
(5)–(7). Note that the module sharing capability and heuristic
reordering are the same as in the IMSP-2, IMSP-2P solvers.
4.3 Design Space Exploration

Besides designing a good lower bound function, it is nec-
essary to have a strategy to exploit the design space effi-
ciently. As mentioned in Ref. [12], IMSP-2P is with the
design space of up to 1:5 � 108 nodes for 14 basic opera-
tion types. In the case of IMSP-2P-MIFU, the number of
nodes in the design space becomes

Qn

i=1 k
max
i times larger

than those of the former design space of IMSP-2P. This is
because when operation #i is considered to be implemented
in HW by method xi, the algorithm investigates the neces-
sary number of identical FUs chosen currently by xi on the
values from 1 to kmax

i incorporating with other basic oper-
ations’ implementation methods to find the best K. For ex-
ample, when n = 7, kmax

i = 4 (for all i), the IMSP-2P-MIFU
solver could be 47 = 16484 times slower than the IMSP-2P
solver. However, we can reduce the number of searches by
re-defining the values of kmax

i ’s using the information on the
currently selected FUs, the design constraints, and the appli-
cation program’s RTL code.

Assuming that on the current depth of the search an FU
with delay D cycles and latency L cycles (L = D for non-
pipelined FUs) for operation #i is chosen, we can note that the
number of identical FUs should not exceed L (we use L(xi)
to describe the latency of FU for xi) because the operations
are executed in the pipeline manner and pipeline hazards such
as structural hazards must be eliminated. Moreover, it should
also not be larger than the maximum number of the basic op-
erations of type i within each basic block, i.e., less than or
equal to

mi = max
1�j�N

fno: of operations #i in Bjg: (8)

On the other hand, the maximum number of identical FUs
for operation #i can be chosen when all other operations are

supposed to be implemented in SW, then the sums of gate
counts and power consumption of these identical FUs and
those of the Kernel must be satisfied the design constraints
in Eqs.(2) and (3). Note that every implementation method
includes the Kernel as the minimum HW. Summarizing and
denoting the number of identical FUs for operation #i for the
current status (with the implementation method xi) as �max

i

we have the following estimation:

�max
i = min fkmax

i ; L(xi); mi;

bA max�a(x0)
a(xi)�a(x0) c; bP max�p(x0)

p(xi)�p(x0) cg (9)

where a(x0) and p(x0) are gate count and power consumption
of the Kernel, respectively. Then, the IMSP-2P-MIFU solver
uses

0 � ki(xi) � �max
i (for all i) (10)

instead of Eq.(4). Clearly, �max
i � kmax

i . In many cases
�max
i becomes 1 when FU is with D = 1 or large gate count

as well as power consumption, thus no more than one FU
of that type can be chosen. At the beginning of the algo-
rithm, the solvers check for the given design constraints to
ensure their correctness (e.g. at least the design must con-
tain the Kernel, and so on). Note that Eq.(9) is applied to the
HW choice of operation #i only, i.e., when a(x0) < a(xi) �
A max and p(x0) < p(xi) � P max hold. At the begin-
ning of the algorithm, a large value (e.g. 9999) is given to
kmax
i , then the IMSP-2P-MIFU will define the best selection

of identical FUs automatically.

5 Experiments and Results
This section describes the effectiveness and efficiency of

the proposed algorithm.
The experimental conditions are the same as in Ref. [12]

with a HW/SW module information database of both
pipelined and non-pipelined FUs as well as SW subroutines,
and the following sample programs: ESS (Equation System
Solver program, which solves a system of two linear equa-
tions using Cramer’s rule), IMC (Inverse Matrix Calculator
program that computes the inverse of a non-singular 3 � 3
matrix using Cramer’s rule), and diffeq (a program for solv-
ing a second order differential equation from Ref. [17]).

These sample programs with associated input data were
fed to APA (Application Program Analyzer) of the PEAS-I
system to obtain the execution frequencies of basic opera-
tion, basic blocks, etc. The analyzed results are shown in
Refs. [12, 13]. The code optimization was performed by
the GNU C Compiler [15], the pipeline scheduling was per-
formed by the scheduler described in Ref. [16].
5.1 Effectiveness

Using the analyzed information from the given application
program, the IMSP-2P-MIFU algorithm accordingly selected
the optimum partitioning for different values of A max and
P max. This capability is the same as of the IMSP-2P [12].
The power consumption was ignored to simplify the exper-
imental cases by giving a large value to P max. Because
there are one-cycle FUs (a multiplier mul csa, an extender
extend, and a shifter b alsft) in the database (i.e. D = L =
1), the solver never selects more than one of such FUs be-
cause of Eq.(9). The number of selected identical dividers
varies depending on the constraints. Table 1 represents part

4

Table 1: Selection of identical FUs by IMSP-2P-MIFU with
kmax
i

= 4 (for all i) for IMC.

A max Gate Exe. (# identical FUs)
(Kgates) Count Cycles Module name

150 110939 65702 (3)div 2seq p3
110 85554 65732 (4)div 2seq p6
85 81812 65762 (2)div 2seq p3
81 70055 65792 (3)div 2seq p6
70 66534 65822 (4)div 2seq p9
52 45046 66242 (2)div 2seq p9
45 40982 67033 (3)div 2seq
40 39353 67813 (3)div 2seq
39 35174 67873 (2)div 2seq
35 33545 68473 (2)div 2seq
27 26405 84879 (2)mul seq
26 25764 85209 (2)div seq

Table 2: Selection of identical FUs by IMSP-2P-MIFU with
kmax
i

= 4 (for all i) and without multipliers of D = L < 4 in
HW database for IMC.

A max Gate (# identical FUs)
(Kgates) Count Mudule name

150 116911 (4)div 2seq p6 (2)mul bpr p2
116 104512 (2)div 2seq p3 (3)mul bpr p4
104 89234 (4)div 2seq p9 (3)mul bpr p4

89 78490 (3)div 2seq p9 (3)mul bpr p4
75 68409 (2)div 2seq p6 (4)mul bpr p8
65 64243 (3)div 2seq p9 (3)mul bpr p8
64 63009 (2)div 2seq p6 (3)mul bpr p8
56 53499 (2)div 2seq p9 (3)mul bpr p8
52 48099 (2)div 2seq p9 (2)mul bpr p8
46 44035 (3)div 2seq (2)mul bpr p8
44 43627 (2)div 2seq (3)mul bpr p8
42 38227 (2)div 2seq (2)mul bpr p8
37 36910 (2)div 2seq (3)mul bpr

of the experimental results for IMC with kmax

i
= 4 (for all

i). To show the effectiveness of the IMSP-2P-MIFU for other
type of FUs, we removed multipliers with D = L < 4 from
the database, then ran IMSP-2P and IMSP-2P-MIFU with
kmax
i

= 4 (for all i). Some of the results are shown in Tab. 2.
Note that FUs with the number of identical FUs equal to 1 are
not shown in Tabs. 1 and 2. Please refer to Ref. [12] for the
names and characteristics of the modules. Figures 3 – 5 show
the area (gate count) vs. execution cycle tradeoff as well as
the performance improvement by IMSP-2P-MIFU in com-
paring to IMSP-2P for ESS, IMC, and diffeq, respectively.
Using the IMSP-2P-MIFU, we can select the pipelined ASIPs
with MIFUs with higher performance of about 7% compared
to IMSP-2P for these sample programs. It was found that
there are at most 6 operations of the same type (multiplica-
tion/division) in each basic block for these sample programs.
For application programs with more operations of the same
type the better improvement can be expected.

5.2 Efficiency
The IMSP-2P-MIFU with the proposed algorithm is so

efficient that the optimal pipelined ASIP as well as its in-

58

59

60

61

62

63

30 35 40 45 50 55 60

E
X
E
C
U
T
I
O
N

C
Y
C
L
E
S

(
x
1
0
0
0
)

AREA CONSTRAINT (Kgates)

IMSP-2P for ESS
IMSP-2P-MIFU for ESS

Figure 3: Area vs. execution cycle tradeoff for ESS.

struction set can be selected within several seconds on a PC
with Pentium P54-120 (UNIX FreeBSD 2.0.5R) for any con-
straint. The average number of visited nodes in the search
tree is about 248, 404, and 332 with the average time of 3
secs, 7 secs, and 4 secs for ESS, IMC, and diffeq, respec-
tively.

6 Conclusion and Future Work
In this paper an effective and efficient HW/SW codesign

partitioning algorithm for designing the highest performance
pipelined ASIPs with MIFUs of each type under given gate
count and power consumption constraints has been intro-
duced. A branch-and-bound algorithm was used to solve the
presented partitioning problem and was implemented in C
language. A good lower bound function for the algorithm
has been presented. According to the experimental results,
the proposed algorithm is found to be able to solve a consid-
erable size partitioning problem in a reasonable computation
time (typically within several seconds on a PC with Pentium
P54-120). The effectiveness and efficiency of the algorithm
have been demonstrated through performing a set of sample
programs. The proposed algorithm is able to improve the
performance of pipelined ASIPs, especially for application
programs with many operations of the same type in a basic
block.

However, there are following limitations in this work:
(1) the cost of other components of CPU such as RAM,
ROM, register file, peripheral circuits (ASICs) was not ad-
dressed; (2) data and instruction bus width was not addressed;
(3) the power consumption is still a crude approximation.
Switching activity of the HW modules and the power con-
sumption in case of the SW implementations should be taken
into account, e.g., by using the technique proposed by V. Ti-
wari [18]; (4) the sample application programs are mainly
computational and small. Larger application programs, e.g.
DSP programs, should be fed to the PEAS-I system; etc.

Our further research needs to investigate these issues. The
development of an IMSP-3P-MIFU HW/SW partitioning al-
gorithm (as an extension of the IMSP-3P [14]) for designing

5

66

68

70

72

74

76

78

80

30 35 40 45 50 55 60

E
X
E
C
U
T
I
O
N

C
Y
C
L
E
S

(
x
1
0
0
0
)

AREA CONSTRAINT (Kgates)

IMSP-2P for IMC
IMSP-2P-MIFU for IMC

Figure 4: Area vs. execution cycle tradeoff for IMC.

a least gate count pipelined ASIP with MIFUs under power
consumption and execution cycle constraints is also planned.

References
[1] R. Camposano and J. Wilberg: “Embedded System Design,” in

Design Automation for Embedded System, R. Camposano and
W. Wolf, eds, vol. 1, nos.1–2, pp. 5 – 50, Kluwer Academic
Publishers, Jan. 1996.

[2] R. Gupta and G. De Micheli: “Hardware-Software Cosynthesis
for Digital Systems,” IEEE Design & Test, pp. 29 – 41, Sep.
1993.

[3] R. Ernst, J. Henkel, and T. Benner: “Hardware-Software
Cosynthesis for Microcontroller,” IEEE Design & Test, pp. 64
– 75, Sep. 1993.

[4] N. Woo, A. Dunlop, and W. Wolf: “Codesign from Cospecifi-
cation,” Computer, pp. 42 – 47, Jan. 1994.

[5] A. Alomary, T. Nakata, Y. Honma, J. Sato, N. Hikichi, and M.
Imai: “PEAS-I: A Hardware/Software Co-design System for
ASIPs,” Proc. of EURO-DAC’93, pp. 2 – 7, 1993.

[6] M. Imai, A. Alomary, J. Sato, and N. Hikichi: “An Integer Pro-
gramming Approach to Instruction Implementation Method Se-
lection Problem,”Proc. of EURO-DAC’92, pp. 106 – 111, 1992.

[7] A. Alomary, T. Nakata, Y. Honma, M. Imai, and N. Hikichi:
“An ASIP Instruction set Optimization Algorithm with Func-
tional Module Sharing Constraint,”Proc. of ICCAD-93, pp. 526
– 532, Nov. 1993.

[8] A. Alomary, T. Nakata, Y. Honma, A. Shiomi, M. Imai, and
N. Hikichi: “An ASIP Instruction Set Optimization Algo-
rithm with Execution Cycle Constraint,” Proc. of the 4th Syn-
thesis And SImulation Meeting and international Interchange
(SASIMI’93), pp. 34 – 43, Nara, Japan, Oct. 1993.

[9] Y. Nakamura, K. Oguri, and A. Nagoya: “Synthesis “Synthesis
from Pure Behavioral Descriptions,” in High-Level VLSI Syn-
thesis, R. Camposano and W. Wolf, eds, pp. 205-229, Kluwer
Academic Publishers, 1991.

28

29

30

31

32

33

34

35

30 35 40 45 50 55 60

E
X
E
C
U
T
I
O
N

C
Y
C
L
E
S

(
x
1
0
0
0
)

AREA CONSTRAINT (Kgates)

IMSP-2P for diffeq
IMSP-2P-MIFU for diffeq

Figure 5: Area vs. execution cycle tradeoff for diffeq.

[10] I-J. Huang and A.M. Despain: “Synthesis of Instruction Sets
for Pipelined Microprocessors,” Proc. of DAC’94, pp. 5 – 11,
1994.

[11] J. Wilberg, et al.: “Design Flow for Hardware/Software
Cosynthesis of a Video Compression System,” Proc. of
Codes/CASHE ’94, Grenoble, France, 1994.

[12] N.N. Binh, M. Imai, A. Shiomi, and N. Hikichi: “A Hard-
ware/Software Partitioning Algorithm for Pipelined Instruc-
tion Set Processor,” Proc. of EURO-DAC’95, pp. 176 – 181,
Brighton, U.K., Sep. 1995.

[13] N.N. Binh, M. Imai, A. Shiomi, and N. Hikichi: “A Hard-
ware/Software Codesign Method for Pipelined Instruction Set
Processor Using Adaptive Database,” Proc. of ASP-DAC’95,
pp. 81 – 86, Chiba, Japan, Aug. 1995.

[14] N.N. Bı̀nh, M. Imai, A. Shiomi, and N. Hikichi: “A Hard-
ware/Software Partitioning Algorithm for Designing Pipelined
ASIPs with Least Gate Counts,” Proc. of DAC’96, pp. 527 –
532, Las Vegas, USA, Jun. 1996.

[15] R. Stallman: Using and Porting GNU CC, Free Software
Foundation, Version 1.40, 1991.

[16] N.N. Binh, M. Imai, A. Shiomi, and N. Hikichi: “A Pipeline
Scheduling Algorithm for Instruction Set Processor Design Op-
timization,” Proc. of APCHDL’94, pp. 59 – 66, Toyohashi,
Japan, Oct. 1994.

[17] P.G. Paulin, J.P. Knight, and E.F. Girczyc: “HAL: A Multi-
paradigm Approach to Automatic Data Path Synthesis,” Proc.
of DAC’86, pp. 263 – 270, 1986.

[18] V. Tiwari, S. Malik, and A. Wolfe: “Power Analysis of Em-
bedded Software: A First Step Towards Software Power Mini-
mization,” IEEE Trans. VLSI, vol.2, no.4, pp. 437 – 445, Dec.
1994.

6

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

