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Abstract
This paper presents a system level HW/SW partiton-
ing methodology and its implementation as CAD tool
for the optimization of heterogeneous multiprocessor
systems. Starting from modelling of the signal process-
ing scheme and of the available processor resources,
performance and expense measures are estimated for
a �nite set of processor modules. Based on these
measurements, a numerical optimization can be car-
ried out by using mixed integer linear programming as
mathematical framework, leading to a heterogeneous
system, which is optimal in terms of area expense and
throughput rate.

1 Introduction
The domain of advanced, digital signal processing

(DSP) systems is characterized by an increase con-
cerning computational power and throughput rate re-
quirements. A typical DSP system consists of several
algorithms with rather di�erent requirements for each
single algorithm. Examples can be found in video cod-
ing, with source rates ranging from 1.5 Mbyte/s for
visual telephony [1] (H.261, CIF 10 Hz) up to 15.6
Mbyte/s for MPEG-2 [2] (CCIR-ITU 601). One suit-
able way to achieve compact VLSI realizations with
high throughput meeting these requirements are hard-
ware architectures, consisting of dedicated modules on
one side and programmable units on the other side.
These composite architectures are therefore referred
to as heterogeneous multiprocessor systems.
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Fig. 1: Heterogeneous Multiprocessor

Herein, the dedicated modules are highly suitable

for performing tasks like FIR �ltering, FFT, etc.,
with a prede�ned sequence of operations, thus of-
ten called low-level algorithms. On the other hand,
programmablemodules, like RISC-based architectures
are more appropriate for the implementation of high-
level algorithms, like segmentation, feature extrac-
tion, due the large amount of data- and control-
dependencies between successive operations of the al-
gorithm. Furthermore, often medium-level algorithms
are also part of a composite signal processing scheme.
In this case both, dedicated as well as programmbale
modules are appropriate for an implementation (see
Fig. 1).

Nevertheless, it is conceivable that for each single
algorithm of a composite scheme a large multitude of
dedicated as well as programmable processor alterna-
tives can be found. Thus, the question arises, which
combination of processors leads to an optimal hetero-
geneous multiprocessor system for a given signal pro-
cessing scheme. Due to the large multitude of possible
combinations, it is impossible for the human designer
to choose manually the best one. Therefore, a system-
atic design methodology for the optimization of het-
erogeneous systems is mandatory, including the parti-
tioning of a composite DSP scheme into hardware, i.e.
dedicated or programmable processors.

Today's state-of-the-art CAD environments provide
no su�cient support with respect to the derivation of
heterogeneous systems. There are DSP environments
like CATHEDRAL II, 2nd [4] available today, in or-
der to derive VLIW architectures addressing medium
throughput applications. However, advanced signal
processing applications demand for architectures pro-
viding extremely high computational and throughput
rates. Furthermore, DSP prototyping and codesign
systems like PTOLEMY [5], and GRAPE-II were de-
veloped, with a focus either on simulation, software
synthesis, or on prototyping aiming at target plat-
forms consisting of FPGAs or commercial DSPs. To
summarize, to our opinion, none of these environments
su�ciently supports the designer in the domain of het-
erogeneous multiprocessor system development. Thus,
a new methodology for the partitioning and optimiza-
tion at the system level has been developed and will
be presented.

The organization of this paper is as follows: Sec-
tion 2 presents the proposed methodology. First re-
sults, using a video coding scheme as case study are
presented in Section 3. Section 4 gives some hints on



the implementation as CAD tool. Concluding remarks
are provided in Section 5.

2 The CAD-Tool HMOPS
The investigated approach HMOPS1 consists of

three main steps. It starts from modelling of al-
gorithms and architectures in a domain-speci�c way.
Then, a set of performance and expense measures is es-
timated for the implementation of algorithms on ded-
icated as well as programmable modules. Finally, an
overall optimization is performed. The single steps of
our tool are explained in more detail below.

2.1 Modelling Algorithms&Architectures

Due to the di�erent ways of hardware implementa-
tion of a speci�c algorithm, we choose a description for
algorithms and architectures which is independently
from each other. As mentioned before, in composite
video signal processing schemes, the di�erent kinds of
algorithms, can be distinguished in regular low{level
algorithms on one side and non-regular, data depen-
dent medium{level algorithms on the other side. Typ-
ical examples of low{level algorithms are �ltering (FIR,
IIR, etc.), transform (DCT, DFT, etc.), and motion
estimation (BMA, etc.). On the other side adaptive
quantization (Q, etc.), run and variable length coding
(RLC, VLC) are typically classi�ed as medium{level
algorithms. All these algorithm classes can be sub-
divided hierarchically in di�erent speci�c algorithms.
Therefore, we use a hierarchical description of algo-
rithms in form of a tree (Fig. 2).
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Fig. 2: Hierarchical Description and Assignment

With respect to the design space exploration of
heterogeneous systems, it is desireable to characterize
each node of the tree by a prede�ned set of parameters.
To describe for example possible algorithm classes, the
set � was introduced, including all relevant parame-
ters of an algorithm class. For example, in case of a
2{dimensional �lter algorithm, like FIR four param-
eters are mandatory, i.e. � = fTW ; TH ;KW ;KHg.
In more detail, TW designates the width and TH the
height for an rectangle image block of pixels to be �l-
tered by a FIR algorithm. Additionally, KW ;KH are
necessary, in order to specify the width and height for
the size of the kernel window, to be passed over the
rectangle image block. To clarify the meaning of the

1Part of the methodology described is currently under de-
velopment as a CAD tool called HMOPS (Heterogeneous
MultiprocessorOPtimization and Synthesis)

four parameters they are visualized in Figure 3. Fur-
thermore, for any regular low-level algorithm class a
similar set of parameters can be derived.
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Fig. 3: Parameter Set � for 2D-FIR Filtering

Related to the description of algorithms, architec-
tures are described in a tree, too. Contrary to the
nodes of the algorithm{tree, the hardware units has
to be distinguished in more detail, especially in case
of programmable architectures. Therefore, our de-
scription is based on a generic multiprocessor model
[7]. Depending on the degree of detailization, a global
module like a processor presents the top level of the
architecture tree (Fig. 8). It continues with lower lev-
els until basic blocks BB like ALUs, ACCUs, registers,
etc. are reached. In each level, any node (module)
of the architecture{tree is declared by its type as pro-
cessing unit (PROC), memory (MEM), interconnection
network (ICN), or control unit (CTRL). Whereas in
programmable processors all possible unit{types are
used, in case of dedicated (array) processors, the most
important unit{type is the PROC-module. Contrary
to that, the control part is often neglectible. Distin-
guishing dedicated and programmablemodules, in this
paper we use for dedicated processor elements the ab-
breviation PE , respectively.

Another important parameter, the formation (mod-
ule order) of single modules, characterize the way of
data execution. Possible module orders are: sequen-
tial(SEQ), parallel (PAR), pipeline (PIPE), and array
(ARRAY) structures. Due to the fact, that especially
for dedicated processors we only need PROC-module-
types (PEs), the module order SEQ, PAR, PIPE, and
ARRAY is used to distinguish the dedicated architec-
tures in more detail. With other words, the type of a
dedicated processor is identical with its module order.
Additionally parameters of the algorithm or architec-
ture have to be speci�ed in the next section with the
aim of estimate performance measures.

2.2 Estimating Performance and Expense
Since we are interested in the best combination of

dedicated and programmable processors, it is neces-
sary { prior to the optimization { to characterize each
single processor alternative by some performance and
expense measures . The most relevant measures which
have to be estimated for dedicated as well as pro-
grammable processors in our approach are:

Computation Time �
The computation time � corresponds to the num-
ber of clock cycles, necessary to compute once
any speci�c video processing algorithm ALGO2

2This type of style denotes an abstract object like an algorithm,
task or a processing element.



using a processor P. To put it another way, �
denotes the time interval between i) reading the
�rst input value and ii) producing the last out-
put value.
Pipeline Interval �
In contrast to this, the pipeline interval � reects
the ability of a processor in terms of pipelining,
when the same algorithm ALGO is computed
repeatedly by a processor P, each time with a
new input data set. Thus, � denotes the number
of clock cycles after which a new invocation of
the algorithm with a new input data set can be
computed again.

For the sake of clarity, these performance measures
are again visualized in Figure 4.
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Fig. 4: Overlapped and pipelined Execution

I1; : : : ; I6 represent consecutive invocations of the
same algorithm, but with a new input data set. The
reading of the input and the writing of the output data
blocks are marked as dashed rectangles in the timing
diagram.

Besides these performance parameters, describing a
processor P in terms of computation time and pipeline
interval, the most relevant expense parameter is the
silicon area of a processor alternative:

Area Expense A
The area expense A is an estimate in terms of
transistor expense or silicon area, respectively.
It can be estimated considering the particular
areas of the ALUs, registers, etc. Their area ex-
pense has to be accumulated bottom-up along
the architecture tree. So, the e�ort for the cal-
culation of the area expense is relatively low.

As mentioned before, in case of dedicated (array)
processors, the most important unit is the processing
unit, consisting of an array of regular processing nodes
or elements, PE in short terms. In contrast to this,
for a programmable processor the processing part, the
memory part, the controlling part, as well as the in-
terconnection network are important hardware units
in terms of the overall area expense.

To characterize any processor alternative, we are
now tackled with the problem of estimating these per-
formance and expense measuresM = f�; �;Ag for dif-
ferent dedicated and programmable modules. Clearly,
these measures have to be estimated prior to the over-
all optimization. Nevertheless, from an estimation
point of view it is reasonable to distinguish between
dedicated and programmable processors, as described
next.

2.2.1 Dedicated Processors

In case of dedicated (array) processors, which are
preferably suitable for the implementation of reg-
ular low-level algorithms, the performance and ex-
pense measures can be even calculated deterministi-
cally. Opposite to programmable processors, there is
no estimation required. This is due to the fact, that in
case of regular low-level algorithms performance mea-
sures like computation time � and pipeline interval
� only depend on the algorithm class ALGO and its
characteristics like the total number of operations, the
maximum achievable concurrency of operations, etc.
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Fig. 5: Dedicated Processor Types

Nevertheless, in order to restrict the possibly large
design space to a �nite set of dedicated architectural
alternatives, a processor library with four di�erent
dedicated processor types for each (low-level) algo-
rithm class was developed. The library contains di�er-
ent templates of processor modules, whereas the tem-
plates di�er with respect to their ability of computa-
tional concurrency, i.e. pipelining and parallel pro-
cessing. Fig. 5 shows the di�erent dedicated processor
types, called SEQ, PAR, PIPE, and ARRAY. For ex-
ample, SEQ denotes a processor type, performing all
operations of the algorithm sequentially with one ded-
icated PE , leading to a low area expense at the cost
of a large execution time. In contrast to this, the pro-
cessors of type PAR and PIPE provide the possibility
to execute the operations of the algorithm in parallel
or in a pipelined mode. The processor of type AR-
RAY provides both parallel and pipelined execution
of operations by a two dimensional grid of process-
ing elements. Consider, for example a �ltering algo-
rithm 2D-FIR with an image block size of 8�8 pix-
els and a kernel window of 3�3 �lter coe�cients, i.e.
� = fTW ; TH ;KW ;KHg = f8; 8; 3; 3g.
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Then, the alternative dedicated architectures of



type SEQ, PAR, PIPE, and ARRAY are sketched as
schematic on a register transfer level in Fig. 6 with the
two di�erent PEs (MA, A) emphasized, whereas MA
stands for multiplication and addition, and A stands
for addition.

It can be shown, that the performance attributes
of the architecture type SEQ, PAR, PIPE, and AR-
RAY strongly related to the parameter set �, i.e.
TW ; TH ;KW ;KH . This is also true for the expense
measure, e.g. silicon area A. So, the performance and
expense measures of such dedicated architectures can
always be calculated deterministically with respect to
the class ALGO and the associated parameter set �.

2.2.2 Programmable Processors

Considering the exiblity an algorithm can be exe-
cuted on a programmable processor, the evaluation of
the total execution time T is much more di�cult, than
on dedicated processors. In case of programmable
hardware, for an exact evaluation of the execution
time a complete simulation on register transfer level
is necessary. This leads to a high e�ort, especially,
at an early design-stage. Furthermore, the programm
instructions have to be known. Due to these facts, we
use an estimation approach, which is based on the al-
gorithm modelling and on the knowledge concerning
clock cycles for basic operations and memory accesses
of a programmable processor.

For our estimation approach the detailed instruc-
tion or programm code of the processed algorithm is
not required. This leads to a moderate e�ort for mod-
elling the execution time of one algorithm on a pro-
grammable hardware. The strategy is as follows: an
assignment has to be performed, to determine the way
an algorithm, for example the block matching algo-
rithm three step search (3SS), is computed by a mod-
ule (see Fig. 2). To evaluate the time for arithmetical
and logical operations of the algorithm, those oper-
ations are matched to suitable PROC-modules. Fur-
thermore, necessary clock cycles for memory accesses
are considered, if the operands and results of each op-
eration are assigned to some proper MEM-modules,
too.

Considering the supposition that the instruction
code is not taken into account, the actual approach
for estimating the execution time does not consider
the controlling. This simpli�cation is admissible, be-
cause controlling mainly occurs simultaneously to the
computation and the data input- and output-transfer.
Then, the execution time T of an algorithm is com-
posed of the time for execution of basic operations Top
and the communication time TI=O . The speci�c time
intervall Top is evaluated with regard to the number of
clock cycles for one operation on the assigned module,
the number of operations, and possible parallel execu-
tion. In contrast to that, TI=O depends on the access
time Tacc for the �rst address of a data block and the
transfer time Ttransfer which denotes the number of
clock cycles to transfer the rest of the data block from
memory into a module or vice versa. This leads to
TI=O = Tacc + Ttransfer. The transfer time itself de-
pends on the size of the data blocks and on the band-
width between the PROC- and the MEM-modules or

between di�erent MEM-modules ( e.g. 1.- and 2. level
cache). To calculate the total execution time T , it
should be mentioned, that operations and I/O occured
concurrently. Therefore, an overlapping time Toverlap
is introduced, leading to T = Top+TI=O�Toverlap. Op-
posite to Top and TI=O the exact evaluation of Toverlap
supposes the knowledge at which time a computation
and communication process begins and at which time
it ends. Due to the fact, that a necessary schedul-
ing could not be speci�ed at an early design stage, we
developed a method [7] to estimate the time Toverlap
and the total execution time T as accurate as possible
avoiding scheduling techniques.

The evaluation of T starts at the lowest level of the
algorithm tree, which means T is evaluated for each
single operation, �rst. Then these time durations are
taken into account to evaluate the execution times of
the upper tasks. The evaluation repeats along the
algorithm tree from bottom to top until the top task-
node attains. To model possible access conicts on
modules, possible miss penalties for memory accesses,
etc., additional runs are necessary. In order to derive
T in each run, the execution time is recalculated for
each task of the algorithm-tree.

2.3 Optimization

Finally, after the possible design space for a com-
posite video signal processing scheme has been ex-
plored based on a �nite set of dedicated and pro-
grammable processors, it is necessary to select from
the large amount of alternative modules the most suit-
able combination for an optimal overall multiprocessor
system. In order to judge a certain solution, the per-
formance and expense measures, which were derived
during the estimation step, are used as input to the
optimization procedure. Furthermore, the cost func-
tion of the optimization procedure has to take into
consideration all those parameters, having an impact
on the achievable performance in terms of computa-
tion time T and periodic computation time P as well
as on the hardware expense in terms of silicon area A.
Based on the cost function above, the optimization
procedure has to determine which is the most suitable
processor type for any task, and which is the best tem-
poral order concerning task execution and data trans-
fer. It can be shown, that this leads to a combinato-
rial optimization problem. One basic approach using
mixed integer linear programming (MILP) in order to
tackle this kind of optimization problems can already
be found in [8]. But we extended these models by
inclusion of 1) periodic and overlapped processing of
tasks and 2) a parametrizable library with di�erent
dedicated and programmable processor alternatives.
For more details concerning our MILP model the in-
terested reader is referred to [9].

Nevertheless, in order to solve our optimization
problem using MILP, an e�cient solution strategy is
necessary. Branch-and-bound is known to be suitable
for solving an ILP or a mixed ILP. Therefore, we have
implemented a speci�c branch-and-bound strategy in
Fortran 77 for our MILP formulation, by adapting the



BLAS3 routines as part of the LAPACK4 package to
our needs. Futhermore, for the sake of exibility, we
developed a special parser, which reads a textual de-
scription of an MILP and automatically generates all
matrices and vectors needed by the LAPACK routines.

3 Case Study: Video Encoding
To demonstrate the feasibility of the proposed sys-

tem level methodology for a typical DSP system, the
encoder of the hybrid video codec scheme H.261 [1]
was chosen.
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Fig. 7: Video Encoder Scheme for H.261

The H.261 scheme is used for data reduction neces-
sary to transmit video data on a line with p�64kbit/s
(1 � p � 30), e.g. video telephone, video conferenc-
ing, or even multimedia. H.261 consists of several reg-
ular low-level tasks as well as irregular medium level
tasks, see Fig. 7. As architectural example we chose
the programmable video signal processor AxPe640V
[3] and additional dedicated processor models as base
for our optimization. The AxPe640V consists of a
RISC kernel and a more dedicated coprocessor named
Low Level Coprocessor (LCP). The AxPe640V is able
to perform the coding of the H.261 scheme in real time,
at a maximum frame rate of 10 Hz. Nevertheless, the
question arises if an improvement in terms of through-
put rate of the AxPe640V is possible by an extension
with dedicated modules.

In the following sections we model the algorithm
tree as well as the architecture tree, �rst. Then the
results of the estimation approach for dedicated pro-
cessor modules and the AxPe640V are shown. Finally,
the actual optimization results are presented.

3.1 Modelling
Applying our system level partitioning and opti-

mization tool means to start from the modelling. The
modelling consist i) of the hierarchical algorithm tree,
denoting the composite video signal processing scheme
(H.261) on one side, and ii) of the hierarchical descrip-
tion of the available processor modules on the other
side. Concerning the speci�cation of the architecture
tree (Fig. 8), we decided to present only the tree for
the AxPe640V programmable video signal processor.
For the sake of simplicity, the architecture trees of all
dedicated processor modules are not presented here.

3.2 Estimation
Based on the set of dedicated modules presented

earlier as well as on the programmable video signal

3BLAS: Basic Linear Algebra Subprograms
4LAPACK: Linear Algebra PACKage
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processor AxPe640V, we estimated the performance
and expense measures for all processor modules, which
are currently supported. Concerning the computation
time � measured in number of clock cycles, the results
of the estimation for FIR, DCT, and IDCT are shown
in Fig. 9.
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Fig. 9: Estimated Computation Time �

The length of the di�erent bars corresponds to the
number of clock cycles, when executing the algorithm
on the related architecture. For each algorithm or row
of the chart, the four top bars correspond to the exe-
cution time of the dedicated modules, i.e. SINGLE,
PAR, PIPE, and ARRAY. The last bar of each row
corresponds to the estimated execution time for the
AxPe640V. The accuracy of the execution time esti-
mation for the programmablemodule various from 1%
up to 7%. This demonstrates, that our estimation ap-
proach is suitable to evaluate the execution time for
programmable processors.

3.3 Optimization
Finally, the optimization was carried out. Based

on the estimation step, the MILP model was derived,
leading to 117 variables and 208 restrictions, which is
of rather moderate size for any LP solver. We experi-
enced, that optimal solutions could be derived within
a few CPU seconds. In order to direct the search dur-
ing the optimization, we assumed four di�erent design
priorities with respect to the weights of the system
parameters A; T; P; Y .

3.3.1 Results

In a �rst approach, we examined if it is reasonable
to improve the given programmable architecture mod-
ule (AxPe640V) by additional dedicated modules, as
mentioned before. Herein, our goal was to derive a
heterogeneous system primarily with minimum area



expense A and additionally small latency T and com-
putation period P , i.e. A � T; P � Y .

Based on these assumptions, the optimization was
carried out, providing the partitioning and the task
scheduling (see Fig. 10).
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The derived heterogeneous system consists of the
programmable module AxPe640V, and furthermore
two dedicated modules of type SEQ and PIPE. As can
be seen, the medium-level tasks as well as some of
the low-level tasks are mapped onto the AxPe640V.
This example reveals, that additional dedicated mod-
ules improve the performance in terms of throughput
rate of the overall system, with a small area overhead
(�A = 3%), compared to a single AxPe640V solution.

4 Implementation
The presented system level partitioning and op-

timization tool is currently under development as
a protoype CAD implementation in COMMON
LISP/CLOS 5 on Sparc Stations. First of all the set of
algorithms for the composite image processing scheme
can be selected. Then, the set of tasks, their data-
and control dependencies are speci�ed by the user.
Afterwards, the estimation is performed, calculating
performance and expense measures. Finally, the op-
timization is performed. The results of the optimiza-
tion can be analyzed using a graphical user interface
(GUI), based on CLUE/CLX 6.

5 Conclusion
In this paper, a system level HW/SW partitoning

methodology and its implementation as the CAD tool
HMOPS for the optimization of heterogeneous multi-
processor systems has been presented. Starting from a
hierarchical modelling of algorithms and architectures,
an approach for estimating performance and expense
measurements, like execution time and processor area
was developed. Based on these measurements, it be-
comes possible to optimize heterogeneous multipro-
cessor systems for composite DSP schemes with re-
spect to maximal throughput rate and minimal area
expense.
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