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Abstract

This paper presents a novel approach supporting
administrative tasks within the lifecycle of design projects.
Based upon comprehensive models of design environments
and design activities it combines techniques known from
project management and mechanisms for design flow con-
trol. As a result it allows the planning, controlling and
reviewing of design projects and supports algorithmic esti-
mation of task durations and automatic computation of
plan revisions.

1. Introduction

Although the design of integrated circuits is supported
by a large variety of sophisticated CAE-tools based upon
open, integrated CAE-systems, several problems have not
been solved sufficiently up to now:
• Modern CAE-systems are so complex that administrat-

ing and even using them properly has become a prob-
lem by itself.

• Due to the complexity of modern integrated circuits
their design has to be carried out by groups of cooperat-
ing engineers (design teams). The particular activities
of the engineers involved in a design project have to be
coordinated to guarantee the smooth handling of the
entire project. Therefore all design tasks have to be car-
ried-out according to well-defined design methodolo-
gies.

• Due to the increasing competition among elctronics
companies, it is crucial to the development of new
products to save time between the presentation of an
idea for a new product and the product’s introduction
into the market (time to market). Therefore, the detailed
planning of design activities based on precise estima-
tion of time and costs is indispensable.
Quite obiously these problems can only be solved by

providing tools within design environments, which support
the administative tasks in the lifecycle of design projects.
In particular the following problem areas have to be
addressed:
• administration of complex design environments
• time and resource planning for design projects
• supervision and coordination of design activities
• project reviewing

A homogeneous, integrated solution for these problems
requires a combination of techniques known from project
management as well as mechanisms for design flow con-

trol. Furthermore sophisticated information models of the
design environments and design activities have to provided.

1.1 Related Work

While techniques for project management are well
known and widely used [6, 10, 11], mechanisms for design
flow control are still subject to current research (e. g. [1, 2,
3, 5]; for a detailed discussion of existing systems see [9]).
Especially no systems exist, which combine project plan-
ning and design flow control in an integrated solution.

1.2 Structure of this document

Within the PLASMA project an integrated concept has
been developed, which meets the requirements stated
above. The following two sections describe the two infor-
mation models, which form the basis for this concept: the
design environment model and the design activity model.

Based upon these information models a set of mecha-
nisms has been developed, which support the planning,
controlling and reviewing of design projects. The mechan-
ims for these three problem areas are covered in sections 4
to 6, whereas section 7 focuses on how these mechanisms
have been integrated into one homogeneous concept.

Section 8 briefly describes, how the mechanisms pre-
sented in this paper have been implemented. An overview
of future extensions is given in section 9.

2. Design Environment Model

Design project planning as well as design flow control
require information about the available design environ-
ment. Therefore an information model to represent the
required information has to be provided.

To define such an information model, we first have to
state what a design environment is. Quite obviously, a
design environment is the set of all resources, which are
directly involved in the design process. Thus an environ-
ment for the design of integrated circuits consists of hard-
ware resources (computers, peripherals), software
resources (CAD tools), human resources (i. e. the persons
working on design projects) and data resources.

A comprehensive information model of the design envi-
ronment must contain information about all these resources
as well as information about the relations and dependencies
exisiting between them. For all resources we basically need
two kinds of information:
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• characteristic features
• function within the design environment

While it is quite easy to describe the characteristic fea-
tures of a resource, it is much more difficult to describe its
function. The information model developed for the
PLASMA system uses the concept of classification to
describe the function of resources, i. e. classes of resources
can be defined and inserted into a resource taxonomy. All
resources within a class have the same characteristic fea-
tures and therefore have the same function within the
design environment.

As it is impossible to define one resource taxonomy,
which is adequate for all design environments, PLASMA
does not use a fixed taxonomy. The definition of the taxon-
omy is a part of the information model itself.

 

2.1 Description of Software Resources

 

To illustrate the main concepts used within the design
environment model, an example description of CAE tools
(software resources) is used. As stated above, it is impossi-
ble to define a fixed taxonomy which is suitable for all
CAE-tools. Nevertheless there are criteria, which can be
used for classification:
• the kinds of data produced or consumed by a CAE-tool
• the design operation performed by the tool

An example taxonomy, which is based upon a model of
the design process described in [7], can be found in [9].

The taxonomy of software resources as well as the
information about specific CAE-tools can be described
using RDL (Resource Description Language). Figure 1
shows an example RDL description of three software
classes (generator, simulator, circuit-simulator) and one
CAE-tool (spice).

The description of software classes mainly consists of
the definition of input and output data of the CAE-tools.
The data types used to characterize the inputs and outputs
(e. g. circuit-netlist) are also defined in the design environ-
ment model. In addition hardware requirements can be
described by referencing an adequate hardware class and
specifying additional constraints (see software class cir-
cuit-simulator).

The description of a specific CAE-tool contains all
information necessary to invoke this program (e. g. com-
mand line arguments). The information which can be
described using RDL is similar to the information covered
by the CFI Tool Encapsulation Specification (TES; [4]),
although the syntax is quite different. In addition to the
information covered by TES, RDL can be used to describe
the taxonomy of CAE-tools as well as information about
the types of design data manipulated by the CAE-tools,
available hardware resources and persons involved in the
design process. 

Figure 2 shows an EXPRESS-G diagram of the global
structure of the information model, which forms the basis
of RDL.

 

3. Design Activity Model

 

The information about the static structure of a design
environment contained in the information model presented
in the previous section is not sufficient for planning and
controlling design projects. Additional information about
the dynamic aspects of design are needed, i. e. information

about how the design environment is used within a design
project has to be described.

Therefore information about the work flows within a
design project have to be formally described. In particular
two kinds of information are needed:
• all activities within design projects
• the dependencies between these activities

 

3.1 Basic Structure of Work Flows

 

PLASMA uses flow graphs to represent all kinds of
work flows. The nodes of these graphs represent activities
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is

 

 circuit-simulator
  

 

redefine

 

 sim-model, sim-stimuli, sim-out;
  

 

version

 

 “3e2”
  

 

input

 

 sim-model : spice-netlist;
  

 

input

 

 sim-stimuli : spice-cmd-file;
  

 

output

 

 sim-out : spice-raw-file 

 

prefix

 

 “-r “;
  

 

parameter

 

 no-init : boolean := false 

 

    prefix

 

 “-r “;
  

 

parameter

 

 term-type : string 

 

    prefix

 

 “-t “;
  

 

parameter

 

 batch-mode : boolean := false

 

    prefix

 

 “-b “;
  

 

parameter

 

 server-mode : boolean := false

 

    prefix

 

 “-s “;
  

 

parameter

 

 interactive-mode : boolean
    := true 

 

prefix

 

 “-i “;
  

 

command-structure

 

    [no-init] [term-type] [sim-out]
    [batch-mode | server-mode | 
     iteractive-mode]
    (sim-model | sim-stimuli)*
  

 

end

 

 

 

command-structure

 

;
  

 

environment-variable

 

 
    PATH := “/opt/spice/bin”;

 

end

 

 

 

software

 

 spice;

 

Figure 1: Example RDL description



 

of arbitrary complexity. Each activity describes an opera-
tion, which produces output data from given input data and
requires a set of resources to execute this operation.

By connecting the inputs and outputs of design activities
arbitrary complex activities can be described. Based on the
granularity of the operations PLASMA distinguishes
between different kinds of work flows.

 

3.2 Design Methodologies and Design Processes

 

As stated in the introduction, design projects can only
be successful, if all design tasks are carried out according
to well-defined design methodologies. To enforce the
accordance to these design methodologies they have to be
formally described in a machine-processable form.

The PLASMA system distinguishes two kinds of design
flows: design processes and design methodologies. Both
are used to represent detailed descriptions of recurrent
design tasks.

The description of design processes is based on the exe-
cution of specific CAE tools. Hence they describe concrete
design flows, which can be used to control the processing
of design tasks. Figure 3 shows a simple design process,
which describes the actions which have to be carried out
when the schematic of a circuit is entered.

Since design processes are directly based on specific
CAE-tools they are not portable from one design environ-
ment to another. To ensure the portability of design flows
an abstraction of design processes, called design methodol-
ogy in PLASMA, is needed. Such design methodologies

describe design flows based on abstract design operations,
which are derived from the taxonomy of CAE tools. Figure
4 shows the design methodology, which abstracts the
design process in figure 3.

To make the porting of design methodologies as easy as
possible, PLASMA contains a tool which derives design
processes from design methodologies semi-automatically.

 

3.3 Design Project Plans

 

In contrast to design methodologies and design proc-
esses, which describe recurrent design tasks, a project plan
describes the unique structure of a single design project. It
describes the partitioning of a project into subprojects and
tasks. As project plans are used to compute the time plan
for a project they must not contain cycles. Therefore the
task nodes in a project plan are relatively coarse grained.

Since iterative techniques are typical for the design of
integrated circuits, the tasks in a project plan are described
in terms of design methodologies and design processes,
which allow the description of design cycles. Figure 8
shows an example of a simple project plan.

 

4. Design Project Planning

 

The main task of project planning is to determine relia-
ble information about how much time the project will take
and which resources will be needed, before the project
actually starts. In particular the following steps have to be
taken:
• definition of project structure
• estimation of task durations
• time planning
• resource planning

 

Figure 2: Design Environment Information Model
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Figure 4: Example Design Methodology
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The following sections describe how these steps are per-
formed in PLASMA using the two information models pre-
sented in the previous sections.

4.1 Defining the Project Structure

As described in section 3.3 design projects are defined
using flow graphs. Each task node in this graph is linked to
a design methodology and a design process, which define
how the task has to be carried out. The resources needed
for a specific task directly result from the design process
used. Thus the selection of adequate resources can be per-
formed automatically using the information contained in
the design environment model. Nevertheless the project
leader has the possibility to assign resources by hand,
which is especially senseful for the selection of human
resources (designers). The result of this first step is a so-
called project flow graph as shown in figure 5.

4.2 Estimating Task Durations

To compute a time plan for a design project the duration
of all tasks has to be estimated. This is usually done manu-
ally, i. e. by asking an experienced designer. PLASMA
however uses a different strategy. As all tasks are formally
defined by design processes, estimates for the task dura-
tions are computed using this knowledge.

The design activity model contains estimation functions
for each atomic design step (i. e. tool run). The input of
these functions are parameters characterizing the complex-
ity of input data (e. g. the number of logic gates in a netlist)
and parameters describing the performance of the
resources used (e. g. specFP rate of a computer). Further-
more estimation functions exist, which compute the
expected complexity of the data produced by an atomic
design step.

In most cases these estimation functions cannot be
derived analytically. Therefore they are derived from
empirical data using statistical methods (see section 6).

Using these functions the time consumption and
expected output complexity of each atomic design step in a
design process can be estimated. The overall time con-
sumption of a task, i. e. the whole design process, can then
be computed by finding the maximum cost path in a
directed graph.

4.3 Time and Resource Planning

Based upon the estimated task durations it is now possi-

ble to compute the time and resource plan for the design
project. For this computation the project flow graph is
transformed into a network diagram. The temporal depend-
encies between the task nodes in the resulting project net-
work are directly derived from the data dependencies.

The network diagram is then used to compute an initial
time plan, which does not take resource constraints into
consideration. Starting from this initial time plan resources
are reserved for the project to be planned. If a needed
resource cannot be reserved for the time interval computed
for a task, PLASMA’s planning algorithm first tries to solve
the problem locally by using an adequate other resource. If
this is impossible, too, several actions have to be carried
out:
• PLASMA queries the design environment model, when

an adequate resource will be available
• a special allocation task with a fixed start date is

inserted into the network diagram 
• a dependency between the task requiring the resource

and the allocation task is inserted
• a new time plan is computed

The iteration consisting of resource reservation, modifi-
cation of the network diagram and time planning is
repeated until all required resources have been successfully
assigned. For the computation of the initial time plan as
well as the time plans containing resource constraints a
modified version of the Metra-Potential-Method (MPM;
[6]) is used.

5. Design Flow Control

The time and resource plan of a design project are
directly used to control the execution of the project. To
guarantee the smooth handling of the entire project the fol-
lowing mechanisms are needed:
• observation of project progress
• activation of design tasks
• execution of design processes

Furthermore the whole course of the project is logged to
gather information needed to review the project and draw
conclusions for future projects.

5.1 Supervising Project Progress

Although the described mechanisms for project plan-
ning deliver accurate time and resource plans for a project,
it is quite unusual that these plans can be kept during
project execution. Typically two kinds of problems lead to
violations of the project plan:
• task durations have been estimated too optimistic or

pessimistic
• reserved resources cannot be allocated because they are

either damaged or blocked by other tasks which are out
of schedule
As these problems invalidate the existing project plan it

is necessary to revise the plan whenever such problems
occur. Therefore the project progress has to be monitored
continuously.

PLASMA uses an algorithm based on fixed time inter-
vals, which are derived from the granularity of the time
plan, to do this. At each time step this algorithm checks,
whether all tasks which should have been started are actu-
ally being worked on. If the early start of a task has
elapsed, those tasks that prevent the task under considera-

Figure 5: Example project flow graph
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tion to be started, are computed and the responsible design-
ers are notified. If the late start of a task has elapsed the
project leader is informed and a plan revision will be com-
puted as soon as possible.

While this algorithm only monitors the progress of the
project, the information contained in the project plan can
also be used to actively control the course of the project.
This is done by an event-driven scheduling system, which
works on two levels of granularity: the task level and the
design step level.

5.2 Controlling Design Tasks

A task can be carried out if and only if all required input
data is available. This situation can only occur, if another
task has been successfully completed. Whenever this situa-
tion occurs, PLASMA’s macro scheduling algorithm com-
putes all tasks, which depend on the task that has just
ended. If all input data for one of these tasks exist, a dis-
patcher process for the task (macro dispatcher) is started.

This dispatcher tries to allocates all resources reserved
for the task. If this is impossible the algorithm tries to allo-
cate alternative resources. If this is impossible, too, a plan
revision has to be computed and the task is blocked until all
resources become available.

After all resources have been allocated successfully the
design process associated with the task is executed.

5.3 Controlling Design Steps

Design processes are executed using a similar schedul-
ing algorithm as described above, the so-called micro
scheduler. Like tasks, design steps can only be carried out
if all required input data exists. Therefore the events used
by the micro scheduler are based on the termination of
design steps.

Whenever a design step ends, those design steps using
its output data are computed and it is checked whether they
become executable. In this case a dispatcher process for the
design step (micro dispatcher) is started.

As all required resources have already been allocated on
the task level, the micro dispatcher only has to check,
whether the resources allocated are still functional. If prob-
lems occur the micro dispatcher performs the same actions
as the macro dispatcher.

Using the described two-level scheduling and dispatch-
ing system PLASMA is able to determine violations of the
project plan as early as possible and to adapt the time plan
to the changed situation. Furthermore the automatic sched-
uling of design processes guarantees that all tasks are car-
ried out according to the recommended design
methodologies.

6. Reviewing Design Projects

During project execution various kinds of information
are written to a project log. The log includes for example:
• estimated and actual duration of design tasks and

design steps
• estimated and actual load of resources
• problems that led to plan revisions

These informations can be used as a detailed documen-
tation of the course of the project. But they form a valuable
source of information for the planning of future projects,

too. For example they can be used to construct estimation
functions for the duration of design steps.

But to make the best use of them, they have to be post-
processed, analysed and interpreted. Therefore the final
version of PLASMA will contain tools, which support
these tasks. In particular tools for the following operations
are needed:
• graphical display of resource load protocols
• statistical analysis of the duration of design activities

related to the complexity of the design data processed
• deriving functions for the estimation of time consump-

tion and output complexity of design data
• tracking down problems, which led to plan revisions

To accomplish some of these tasks existing programs
(e. g. for statistical analysis) can be used.

7. Integrated Planning, Control and
Review of Design Projects

In the previous sections a set of mechanisms, which sup-
port the administrative tasks in the three phases of a design
project have been described briefly. But the overall power
of the concept realized in PLASMA only becomes evident,
if we have a closer look on how these mechanisms cooper-
ate. Figure 6 illustrates how the components of PLASMA
interact.

Figure 6: Integration of described mechanisms
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From this figure it becomes obvious that PLASMA con-
sists of two nested control loops. The inner one consists of
project planning and project execution and enables the
automatic computation of plan revisions. The outer loop
consists of project planning, project execution and project
reviewing, because the information gained by reviewing a
project has a direct influence on the design activity model
and hence an indirect influence on project planning.

8. Current State of Implementation

All mechanisms presented above have been imple-
mented in a prototype, which consists of four main compo-
nents:
• CARMA (Computer-Aided Resource Management)

provides all tools to construct and maintain the design
environment model.

• CAPPLAN (Computer-Aided Project PLANning) con-
tains all tools to construct and maintain the design
activity model as well as for planning design projects.

• CAPEX (Computer-Aided Project Execution) provides
mechanisms for supervising, controlling and logging
design projects.

• CAPA (Computer-Aided Project Analysis) contains
utilities for analysing project logs.
Although the PLASMA components have been

designed to be implemented as cooperating programs,
which interact in a client-server style, the current prototype
is a monolithic application. To gain quick and reproducible
experimental results, this prototype can be used to simulate
design projects.

9. Future Work

The PLASMA prototype showed that the described con-
cepts can be implemented. Furthermore, it became obvious
that the integration of project planning and controlling a
project’s execution has several advantages over the existing
separation of these problem areas. Therefore we are cur-
rently planning to integrate the PLASMA mechanisms into
an existing design environment to verify the experimental
(simulated) results in the real world.

Furthermore we are working on several extensions of
the concepts presented in this paper, which are mostly
related to PLASMA’s planning strategies. These extensions
include:
• supporting successive refinement of the project plans

(„evolutionary planning“)
• integrate mechanisms for time, resource and cost opti-

mization
Another interesting topic is the adaptation of the con-

cepts described in this paper to other application areas like
software engineering or production planning and control.

10. Conclusion

Starting from the increasing administrative problems in
the field of electronic circuit design, a new concept sup-
porting administrative tasks throughout the whole lifecycle
of design projects has been presented. This concept closes
the gap between project planning and design flow control.
As a result, planning and controlling form a closed control
loop. This concepts shows several advantages compared to

the existing separation between project planning and
project execution:
• simplified selection of resources and detailed resource

planning based on a comprehensive model of the design
environment

• algorithmic estimation of task durations enabled by for-
mal descriptions of design processes

• project execution control through direct use of project
plans

• automatic computation of plan revisions, which may
become necessary due to problems during project exe-
cution

• easier inclusion of experiences from former projects
and tuning of planning mechanisms by analysing
project protocols
The only disadvantage lies in the fact that the informa-

tion contained in the models of the design environment and
the design activities has to be entered into the system. But
despite of occasional changes this has to be done only once
and is supported by special tools.
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