
 A Graphical Data Management System for HDL-Based ASIC Design Projects

Claus Mayer, Hans Sahm, Jörg Pleickhardt

Lucent Technologies — Bell Labs Innovations
Thurn-und-Taxis-Str.10, D-90411 Nürnberg, Germany

Abstract
Efficient and secure project data management is a key

requirement for todays HDL ASIC design projects. This pa-
per introduces a RCS-based data management system,
which focuses on the requirements of ASIC project teams.
The project- and the user’s working directories are strictly
separated, data transfer is explicitly triggered by checking-
in or checking-out files. There are cumulative check-out op-
erations available that consider hierarchical and logical
dependencies between the files and generate script files for
further data processing.

The directory structures are configurable and transpar-
ent to the users, no proprietary or binary configuration files
are involved.

The entire data management functionality is accessible
on command level as well as from a graphical user inter-
face, which also serves as a convenient interface to third
party tools.

1 Introduction

With the growing complexity of todays ASICs and the
trend towards a strictly HDL-based design methodology,
the need for a project data management system that enables
multiple designers to work on a common project database
is apparent. The most important tasks of a ASIC project
data management system are:

• store all project-related data in a common data reposito-
ry with a configurable and transparent file structure

• restrict file access to authorized users

• enable multiple designers to work on the project files in
a coordinated way (file locking)

• provide a history of all previous revisions of each file,
including changelog information

• handle hierarchical and logical dependencies between
the various files

• generate and handle script files for third party tools.

Using data management systems is common practice in
the software development, and there are various toolsets
available (such as RCS, SCCS, CVS [1,2]), which provide

basic data management features for text files. However, if
used without further measures, these tools only cover a sub-
set of the above requirements and they are to be used on
command level rather than providing a more convenient
(graphical) user interface.

This led to the implementation of a RCS-based data
management system that focuses on the demands of HDL
ASIC design project members and project administrators.

The decision to use RCS [1] as the underlying toolset
was derived due to its availability (RCS is part of the free
GNU software distribution) and its compact and fast revi-
sion management, which is based on reverse delta changes.

2 Data Management Concepts

Choosing an appropriate structure of project- and user
directories for storage and verification of project data is an
essential prerequisite for successful project management.
Furthermore, the transparency of all resulting data files and
directory structures significantly contributes to the accep-
tance of a data management system. This also implies that
no binary or undocumented configuration file formats must
be introduced by the data management system. Bearing
these points in mind, the following basic data management
concepts and terms have been drawn:

• All project-related files are stored within a common
project directory, which is owned by a dedicatedproject
useraccount. The project directory is write protected on
system level — only the project user may directly write
into it. Read permissions are granted for all project
members.

• Theproject administrator is the person responsible for
the entire design project and the only one who has direct
access (that is, the password) to the project user ac-
count. The project administrator also determines the
project configuration by means of three special configu-
ration files (which are explained below).

• each project members’ working directory (also called
local directory) is independent from the project directo-
ry — there are no symbolic links between both of them.

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE



• The data management functions treat a design as a col-
lection ofmodules, each of them representing a single
design entity (or hierarchical block). For each module,
the database can hold a set offile types (e.g., a VHDL
source file, a synthesized schematic, etc. [3,4]).

• a project directory may refer to other project directories
in order to import specific modules or module hierar-
chies from there. The reference may be bound to a spe-
cific release of the reference project — if it is not, any
changes to the reference projects’ data- and administra-
tive files immediately propagate to the main project (in-
cluding changes to the design hierarchy). All modules
are imported ‘read-only’: the main project’s members
cannot directly alter the files in a reference project.
However, imported files may be overridden by corre-
sponding files in the main project.
Typically, reference projects are used to provide librar-
ies of versalite design units that can be referenced from
within other ASIC projects later on.

• there are two classes of file types: thetext files are kept
under RCS control, which implies that they support all
RCS-related features like file locking, revision/release
control and changelog information. In contrast to that,
thebinary files are just copied into the project directory.

• data transfer between project- and local directories is
handled by means of explicitcheck in andcheck out
commands. The data management functions directly
operate on files, which are identified by their name and
file extension: the leading name refers to the module
whereas the extension determines the corresponding file
type. Note that this implies a mapping between design
modules and related data file names [4].

• Only authorized users may check in or otherwise modi-
fy a file in the project directory. The check-in permis-
sions are granted on a per-module basis. A global
CHANGELOG file keeps track of all modifications that
have been made to the project directory so far.

• A notification mail system ensures that the project
members are kept informed about changes to all mod-
ules they are interested in.

Until now, we focused on concepts that are related to the
project directory. For the local directory (that is, the project
member’s working directory), the following points are of
importance:

• single files may be checked out either for editing (which
locks the file) or for read-only access.

• all files under edit are located directly within the local
directory

Project_dir

RCS

module1 .vlintmoduleNACCESS

module1.vhdl,v

Local_dir

sources compile_all

module1.vhdl module2.vhdl moduleK.vhdl

Check-Out

directory

file

created by pco

(pco)

DB

module1.db

Check-In
(pci)

HIERARCHY

CHANGELOG

RELEASES work.mod1.vl

HIERARCHY.release

created by pci

module3.vhdl

DATABASE

Figure 1: project- and local directory example



• files that are checked out for read-only access are placed
in theircheckout directory rather than in the current di-
rectory, which helps to prevent the working directory
from being trashed with lots of files. The checkout di-
rectories are defined by the project administrator - they
determine file structure within every project member’s
working directory.

• read-only check-outs can be executed on single files as
well as on complete hierarchical subtrees of the design,
which causes all affected files to be checked out. The hi-
erarchical dependencies are defined by the project ad-
ministrator.

• the check-out operations also consider dependencies
between different file types. For instance, a dependency
‘file type .o depends on .c’ would cause a check out on
xxx.o to actually fetch xxx.c if it has changed more re-
cently.

• incremental check-out operations cause only the outdat-
ed files to be checked out.

• As a side effect, the check-out procedure generates
script files that are required to further process the files
being checked out. The contents of the script files is
freely configurable.

The check-out options mentioned above can be com-
bined — thus, an incremental, hierarchical checkout would
only affect the files below the specified top-level that have
been modified since the last check-out operation.

3 Configuration Files

The directory- and file arrangements in the project- and
local directories are freely configurable by the project ad-
ministrator. Figure 1 gives an example of the directory
structures for VHDL projects chosen at our site.

The various configuration items are specified by means
of three ASCII files with predefined names that are located
directly within the project directory. All configuration files
have similar, format-free syntax conventions and allow C-
style commenting. Each of the files deals with different
configuration aspects, which are explained in the next sec-
tions.

3.1 The DATABASE File

TheDATABASE file defines the set of binary and text file
types (including their file extensions) that may be used
within the project and the way to handle them. It determines
the directory structure of the project- and local directories
as well as all dependencies between various file types. In
addition to that, it specifies the set of script files that are
written upon check-out operations and describes their con-
tents.

In order to provide more flexibility, the DATABASE file

may contain references tovariables, which expand to pre-
defined textual values.

Besides a set of built-in variables, the project adminis-
trator may define an arbitrary set of global and module-spe-
cific variables in the ACCESS file.

3.2 The ACCESS File

The ACCESS file defines all administrative parameters
of a project (e.g., project name, project administrator name,
global variables, etc.) and defines the set of modules the
project consists of. For each module, a set of

• valid file extensions (which refer to the extensions de-
fined in the DATABASE file)

• project members with write (check-in) permission

• project members to be notified about changes

• user defined variables to be referenced in the DATA-
BASE file

can be specified.

3.3 The HIERARCHY File

The HIERARCHY file represents the inter-module de-
pendencies and levels of hierarchy. A project tree like:

would result in the following HIERARCHY file:
top_level := module1, module2;

module2 := package2;

module1 := module3, module4;

module3 := package1;

Any hierarchical check-out operations of complete de-
sign subtrees are based on the information stored within the
HIERARCHY file. As we will see later on, the graphical
user interface displays the hierarchical dependencies as hi-
erarchy tree.

The hierarchical dependencies may be grouped within
Hierarchy Sets, which are selectively enabled or disabled
depending on hierarchy configurations and the file types in-
volved. This allows for multiple sets of hierarchy trees
within the very same project.

Finally, the HIERARCHY file optionally specifies the
referenced project directories and defines which module hi-
erarchies are to be imported from which project directory
(and release).

4 Implementation Concepts

A very important factor regarding the usability and thus

module3

module4
module1

package2module2

top_level

package1



the acceptance of a data management system is the way its
functionality is presented to the project members. In order
to satisfy the demands of both novice and experienced us-
ers, both basic user interface types are supported: the entire
data management functionality is available on system
(command-) level as well as on GUI level. Both ways of
launching a command are functional equivalent and may be
combined or alternated at any time — in fact, the graphical
user interface employs the command level tools to perform
its tasks, as indicated by the software hierarchy shown in
Figure 2.

5 The Command-Level Tools

On Command level, the following stand-alone-com-
mands [5] are available:

• pci
is the only tool that allows authorized users to modify
the contents of the project directory. The project mem-
bers use it to check in new files or to delete existing files.
Furthermore, pci can alter the locking state and the de-
scription of a file.
The project administrator uses pci to create or change
symbolic releases on certain revisions of the files within
the project directory.
Any changes pci applies to the project directory are pro-
tocolled in the CHANGELOG and RELEASES files.

• pco
retrieves data from the project directory by checking-
out a single file or all files below a hierarchical branch
of the design. Pco also considers dependencies between
the various file types and generates script files for third
party tools.

• pdiff
compares one or more local files against their database
pendants and lists the differences.

• pstatus
displays the contents of the project directory and option-
ally provides detailed information on single modules.

RCS — Revision Control System

project data- and configuration files

pci, pco, pdiff, plog, pstatus

VGuide — graphical user interface

File
level

Command
level

GUI
level

Figure 2: the software hierarchy

• plog
displays all RCS-related information that is available
for a specific text file (changelog, revision numbers,
symbolic release names).

All remaining administrative tasks can be handled by di-
rectly editing the respective configuration file in the project
directory. However, the graphical user interface provides a
much more convenient interface to these files.

6 The Graphical User Interface

The main objective of the graphical user interface
VGuide [5] is to enhance the usability of the project data
management tools by

• visualizing the current state and the dependencies be-
tween the project-related data files, including the option
to focus on well-defined subsets thereof

• providing a convenient interface to the functionality of
the stand-alone commands

• providing a convenient way to configure the project
without the necessity to edit configuration files by hand.

The window structure of VGuide (see figure 3) closely
corresponds to the project- and local directories explained
in the previous sections.

All windows are non-modal, which implies that they can
be opened or closed at any time and in any combination if
at least either the project- or the local window stays open.
Selections (e.g., the current file and current top-level mod-
ule) are propagated through the entire application, so all
windows focus on the same component.

6.1 The Project Window

The project window represents the project directory and
displays all related information. The display area within the
project window offers two modes: the hierarchy tree visu-
alizes the hierarchical dependencies (figure 4) whereas the

Project
Window

Local
Window

Project
Administration

Reference Project
Definition

File
Information

Figure 3: VGuide window structure

Module
Administration

Hierarchy Set
Definition



file table focuses on the state and availability of the various
files (figure 5).

The project window provides access to sub-windows,
which allow to

• view and — if authorized — edit the project- and mod-
ule-specific configuration items. Modifying these items
results in new versions of the HIERARCHY and/or AC-
CESS files, which are created by VGuide.

Figure 4: project window displaying a hierarchy tree

Figure 5: project window displaying a file table

• view the detailed state and location of the current file,
including the RCS-specific settings.

Furthermore, the project window provides direct access
to all administrative files in the project directory and thus
fully covers all project-administrative tasks.

6.2 The Local Window

The Local Window (see figure 6) represents the local
working directory of the project members and serves as a
convenient frontend to all tools that are frequently executed
during the design process. This applies to the VGuide-spe-
cific data management functions as well as to all other third
party tools like editors, simulators, checkers, etc. that oper-
ate on the various source files.

The two lists in the local window represent the set of
working files that are instantiated below the current top-lev-
el module. They display the set of editable files and the pool
of referenced files, respectively. Each entry in the file lists
provides information on the state of the file (locking state,
availability, etc.).

A programmable button panel serves as interface to ex-
ternal tools.

6.3 Update Strategy

As mentioned above, VGuide may be used in combina-
tion with the stand-alone p-tools — even more, the project
configuration files may be modified on system level (e.g.,
the ACCESS file may be edited by the project administra-
tor). This implies that VGuide cannot rely on any (redun-
dant) configuration files of its own but has to scan all the
project-related files in both the project- and the local direc-
tory in order to build up its display. Furthermore, VGuide

Figure 6: the local window



should automatically recognize changes to the project files
and refresh its display accordingly.

In order to accomplish this task without consuming too
much CPU time by instantly re-reading all the project files
(polling), a trade-off between CPU usage and the coverage
of the detection of external changes had to be made.

In the project directory, only the administrative files are
checked for modifications, which ensures that all pci-relat-
ed modifications to the project directory are caught as well
(since they affect the CHANGELOG file).

The very same applies to the configuration files of the
reference projects (if any).

7 Conclusion and future work

In this paper, we have introduced a data management
system that satisfies the typical requirements of HDL ASIC
designers and project administrators. Its key features are
data security, transparency and configurability. All func-
tions are available on command level as well as on GUI lev-
el.

At our site, the data management system is combined
with a tool environment that further supports VHDL de-
signers in writing and debugging their code [6, 7]. The
close relationship to the daily design work during the devel-
opment phase has led to a very stable and reliable set of
tools, which is in practical use for more than two years.

Depending on the demands of the project teams, the data
management system is constantly extended and adapted to
the practical requirements.

8 References

[1] Tichy, F.W.: RCS - A system for version control, Software
Practice & Experience, Vol 15, 1985, pp 637 - 654

[2] The SCCS Manual Pages, available on all common UNIX plat-
forms

[3] Sahm, H., Mayer, C., Pleickhardt, J. and Späth, S.: VHDL
Coding Standard, Rev. A-0-9, 1996, Philips internal document

[4] Sahm, H., Mayer, C., Pleickhardt, J. and Späth, S.: OMI-326
Draft Standard for open review, 1995, OMIMO, Brussels
(online version: http://www.omimo.be)

[5] Mayer, C.: VHDL Development System Documentation,
1995, Philips internal document

[6] Hack, W. and Mayer, C.: Supporting Tools for a VHDL Coding
Standard, 1994, VHDL Forum for CAD in Europe,Tremezzo, Pro-
ceedings pp 117 - 121

[7] Sahm, H., Mayer, C., Pleickhardt, J., Schuck, J. and Späth, S.:
VHDL Development System and Coding Standard, 1996, 33rd
Design Automation Conference (DAC) Proceedings, pp. 777 -
782


	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


