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Abstract

This paper describes a technique for verifying timing
conditionsinherent in self-timed VLS designsthat make use
of the micropipeline design strategy. By checking bundling
congtraints during simulations, design faults may be de-
tected, whilst timing information extracted during the pro-
cessing may be used to identify modul esrequiring optimisa-
tion. These analyses may be built around existing simula-
tors.

1 Introduction

Recently there has been a resurgence of interest in self-
timed (or asynchronous) design. In this methodology there
is no global clock controlling the synchronisation of a cir-
cuit; instead, adjacent modules communicate with each
other, negotiating the transfer of data.

The renewed interest in self-timed design arises from its
potential to address areas in which there are perceived to be
problems with the synchronous approach:

Clock Distribution: As feature sizes have been reduced
and clock speeds have increased, the generation and
distribution of globa clocks has become an increas-
ingly complex task. Recent designs, such as the DEC
Alpha[4], have shown that with careful work and so-
phisticated CAD support these problems may be over-
come, but that this requires significant resources, both
in terms of design complexity and silicon area.

Complexity: VLSl designs are becoming increasingly
complex. Managing this complexity can be a chal-
lenging task, particularly where all the componentsin
the design are interlinked by the global clock.

One approach to reducing complexity is to introduce
increased abstraction by dividing the design into mod-
ules. Thetop levels of the design are then specified in
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terms of the interfaces of those modul es without need-
ing to be aware of their internal implementation. This
also facilitates the re-use of existing designs through
the development of libraries of complex components.
The sdlf-synchronised communication in a self-timed
design makes it easy to apply modular abstraction.

Performance: In aglobaly synchronous design the clock
period is determined by the worst case delay through
theslowest signal path between clocked register stages.
In asdf timed design, adjacent modules may transfer
data as soon as the producer has completed its opera
tionand thereceiver isready to accept more data. Mod-
ulesmay even adjust their timing according to the data
they are processing. For example, an adder could op-
erate more quickly in cases where the carry propagate
chains are short than when the carry must be propa
gated across the entire word. Consequently the aver-
age delay through a self-timed modul e approaches the
"typical’ case rather than the worst-case.

Power Consumption: In basic synchronous modules,
components such as latches consume power on every
clock transition, irrespective of whether the module
is active or not at that moment. This problem may be
reduced by adding clock gating, but the equivalent
behaviour is inherent in a self-timed circuit, which
will become dormant whilst it waits for fresh input.

None of the mgor CAD systems provide specific sup-
port for self-timed design, although many existing toolsfor
tasks such as schematic capture, layout and simulation are
equally applicable to both synchronous and asynchronous
design. In other areas such as synthesis, optimisation and
validation, existing tools are not suitable for use with self-
timed circuits.

To compensate for this, specialised packages have been
developed. Most of these allow specification in some form
of CSP based language [6], signal transition graph [1] or
state machine [2] and then synthesise a circuit, normally
using standard cells as the basic building block. Many of



these packages are limited in the size and complexity of
the designs which can be processed. The most complete of
these systems is based on a CSP-like language called Tan-
gram [8]. Circuits specified in Tangram may be simulated,
synthesised, laid-out and optimised. The circuits produced
using this system are delay insensitive, operating correctly
irrespective of delaysin logic e ements and wiring.

At Manchester University the design of two generations
of a self-timed implementation of the ARM architecture*
have been undertaken. These AMULET processors [5] are
based on Sutherland’s micropipelines which compromise
delay insensitivity, selecting a more cost-effective solution
using loca delay management.

2 Themicropipelinedesign strategy

The micropipeline framework was described by lvan
Sutherland in his 1988 Turing Award Lecture [7]. Adjacent
modul esin amicropipelineare connected by two handshake
signalsand a data bus (see figure 1).

2.1 Bundled data interface

In thisstrategy, the sender modul e places data on the bus
then sendsareq signal. Thisindicatestothereceiver that its
input dataisavailable so it may begin processing. When the
receiver hasno further requirement for theinput datait sends
back an ack signal. The sender must hold the data steady
until it receives theack. It may then output the next set of
data. Thisarrangement isreferred to asthe bundled datain-
terface.
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Figure 1. The bundled data interface.

Theinformationin the databundleisencoded in the con-
ventional manner with the voltage levels of the signalsindi-
cating the datavalue. Thisisknown as asingle-rail encod-
ing as opposed to the dual-rail encoding used in some other
asynchronous techniques. The later uses no handshake sig-
nals but instead two wires are used for each data bit, with
transitions not only indicating the value but also providing
the timing information. The single-rail datapaths used in
micropipelines are similar to those used in equivaent syn-
chronouscircuits. The absence of timinginformationwithin
the data signalsrequires the additional handshake signalsto
providelocal control of delays.

1ARM isatrademark of Advanced RISC MachinesLtd.

2.2 Bundling constraints

The timing constraints that must be applied to ensure
correct operation of a bundled data interface are known as
bundling constraints. The basic constraints are;

1. The receiver must not see areq until itsinput data is
stable.

2. Thereceiver must not send an ack until it hasno further
need for itsinput data.

3. The sender must hold its output data steady between
sending the req and receiving the ack.

In practice these simplerulesare complicated by theneed to
allow suitable set-up and hold times and by the edge times
of thesignalsinvolved.

As a result of these restrictions, circuits must be con-
strained to ensure that the delay through the control path is
greater than that through the data path. Careful timing anal -
ysisof the paths may be required together with theinclusion
of additiona matching delaysin the control path. Thisstrat-
egy isknown as abounded-del ay timing model sincethecir-
cuit will operate correctly only if delaysonthedatalinesare
withinthe limitsset using the control signals.

In this scheme there is an inherent conflict between the
need to add extrade ay to the control path to alow asuitable
safety margin and the need to match thetwo pathsas closdly
as possible to ensure maximum performance of the circuit.

2.3 Two-phase protocol

In his paper, Sutherland describes a two-phase commu-
nications protocol for handshake signals (see figure 2). In-
formation is carried by transitions rather than by the volt-
age level of the signd; rising and falling edges are equiva
lent in meaning. This protocol, which minimises the num-
ber of transitions on each wire, was used in the design of
AMULETL.
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Figure 2. The two-phase handshake protocol.

A sdlection of event control modules are used to build
handshake control circuits. The most fundamental of these
arethe XOR and Muller C gateswhich respectively perform



OR and AND functions on transition based signals. Other
modul es perform more sophi sticated functions such as arbi-
trating between two asynchronous requests.

2.4 Four-phase protocol

It has been found that, in practice, two-phase signals of -
ten need to be converted into four-phase signals to drive
latch circuits. A four-phase signalling protocol isillustrated
infigure 3, from which it can be seen that afour-phase pro-
tocol may be interpreted in terms of the voltage levels of
the signals. This protocol involves more transitions on the
handshake lines, but it is better matched to therequirements
of efficient latch circuitsand so avoidsthe need for frequent
conversions between protocols which has been found to be
a bottleneck in AMULETL1 [3]. Consequently, four-phase
signalling has been used extensively in AMULET2 and the
timing verification described in this paper will be discussed
in terms of afour-phase protocol. The basic techniques de-
scribed here are equally applicable to two-phase circuits.

1st transaction

2nd transaction

Figure 3. The four-phase handshake protocol.

3 Design flow

The selection of the micropipelined approach with its
single-rail datapaths allowed the use of standard cells, tools
and test vectorsfrom the synchronous versions of the ARM
architecture asabasisfor the AMULET devel opment work.
Thisresulted in areduction in the resources required to de-
velop the self-timed processors and also influenced the se-
lection of the design flow and tools used (see figure 4).

A behavioural modd of the processor was first devel-
oped. Thiswas then refined through schematics to layout,
making use of both custom design and standard cells. These
design operations and the associated simulations were per-
formed with the support of the standard synchronousdesign
tools provided by the Compass CAD system?. Simulations
at the schematic level were performed using the Compass
switch level simulator and TimeMill2. Spice was used for
characterisation of the custom blocks, while TimeMill was
used for accurate but fast simulation of the extracted layout.

2pProduced by Compass Design Automation.
3TimeMill is a trademark of EPIC Design Technology Inc.
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Figure 4. AMULET2 design flow.

3.1 Validation

During the debugging of micropipelined circuitsit isad-
vantageousto check the bundlingconstraintssinceerrorsre-
sulting fromtheir violation can be hard to track back to their
cause. In addition, such checks add to the confidence in the
design obtained from other validations.

In performing bundling constraint checks it is required
that:

e Thechecks may be applied at different levelsinthe hi-
erarchical design, starting with individual components
then moving up to progressively more complex mod-
ules until the design may be checked as awhole.

o Thebundledefinitionsfromlow levelsinthe hierarchy
may beincluded, without modification, intothevalida
tionsof higher levelsin the design.

e The bundles and associated handshake signals may be
specified in some concise, easily read format.

o Theactive edges of the handshake signalsmay be spec-
ified since both active-high and active-low signals may
be used.

¢ Although the default set-up and hold times may be
specified for ease of use, more specific set-up and hold
times appropriate to each bundle may be declared, re-
flecting thedifferent kindsof latchesused inthe design.

Some exi sting synchronousdesign toolsdo all ow the check-
ing of set-up and hold times, but these are based around the
assumption that thereare only afew clock signalsand set-up
and hold times are normally measured relative to the same
clock signal. It was not considered practical to make use of
these existing tools in view of the large numbers of hand-
shake signals and the requirements listed above.

Dueto theinteractions between modulesastatic anaysis
would be complex and would either require extensive mod-
ifications to the source of an existing path analysis tool or



the devel opment of acompletdly new tool. Asaresult ady-
namic, empirical approach was adopted, observing the be-
haviour of thecircuit duringsimulations, asdescribed in sec-
tion 4.

3.2 Optimisation

Having completed the initial design of a processor and
validated its operation, the next stage isto optimiseits per-
formance. In synchronous design the basic optimisation
task isto find away of speeding up the critical worst-case
path that determined the clock speed. In a synchronous
pipelined implementation the critical path through each
stage can be analysed inisolation from the other stages and
it is easy to identify the stage with the longest critical path,
the determination of which may be based onastaticanaysis
of the worst case delay for each component; there are tools
to automate this process.

In asynchronous design the optimisation goals are not as
clear cut. The main target for optimisation is the “typical”
behaviour of the circuit, rather than theworst case. |dentifi-
cation of this“typical” behaviour may not be easy, particu-
larly where the delay through the circuit is data dependent.
Although long worst case delays can be tolerated, they can
have an adverse effect on other stages in the micropipeline
because they cause the pipelinetofill up, and thismay need
to be taken into account during the optimisation of the cir-
cuit. Similarly extremely fast responses under some circum-
stances can result in bubbles in the pipeline, during which
thepipdineisnot fully utilised. Consequently itisdesirable
to measure the maximum, minimum and "typical’ delaysfor
each module.

The main measures of the performance of a mi-
cropipeline (or an individua module) are the latency and
the cycle time. The latency is the time for information to
propagate from the input to the output, whilst the cycle
time is a measure of how rapidly the micropipeline can
respond; that is the time from accepting one item of datato
being able to accept the next. One common optimisation
is to trade latency for cycle time or vice versa, according
to the environment in which the module is being used.
Consequently, determination of these statisticsis useful in
the rational optimisation of micropipelines.

Static analysis of the maximum and minimum latency is
possibleusing existing critica path analysistools. Analysis
of the “typical” latency is more difficult, particularly where
the delays in a module are data dependent. Analysis of the
cycletimeis more complex sinceit is affected by the speed
at which“downstream” stagesreply to themodul e under ex-
amination, so it is dependent on both the structure of the mi-
cropipeline and the data passed throughiit.

Mathematical modelling of micropipélines is a current
research topic and athough this may produce toolsfor pre-

dicting and optimising the performance of sdf-timed cir-
cuits, for the moment the only practical analyses of cycle
times and typical latencies are empirical. Acquisition of
these statistics requires the same basic information as bun-
dle checking, so the two operations may be combined into a
singletool.

4 Bundlechecking

Asaresult of the consideration of the pointsraised in the
previous section and takinginto account the resources avail -
able, it was decided to develop a dynamic bundle checker
and statistics gathering tool, built around an existing simu-
lator. Although a dynamic anaysis will be limited by the
coverage of the simulationsthat it observes, it was not con-
sidered feasible to develop any form of static analyser.

Previous experience with building tools around simula
tors had demonstrated that although “screen-scraping” the
norma human-readable output of a smulator is possible,
it not efficient. It is more satisfactory for the smulator to
produce the same information in a more easily accessible,
concise format. In addition, the accuracy of the analysisis
clearly dependent on the accuracy of the underlying sim-
ulator, both in terms of timings and voltage levels. The
TimeMill package was chosen as the underlying simulator
since its timing accuracy was suitable and it can produce a
trace file that may be read by the bundle checker.

41 Error checks

The trace information available to the bundle checker
records thetime at which asignal crosses either of thelogic
thresholds, and thisinformationissufficient toalow thetool
to perform some “sanity checks’ on the handshake and data
signals as well as checking the basic bundling constraints.
The checksthat it performsareillustratedin figure 5 and de-
scribed below. As shown on the diagram, the edge times of
the signals are taken into account in the checks, which are
based on the ‘worst-case’ relationships between the differ-
ent signals and their respective edge times.

Bad handshake signal The handshake signalsare checked
to ensure that all transitions are “clean”. For example
an error isrecorded if a handshake signal goes from 1
to undefined back to 1 instead of making theclean tran-
sition 1-undefined-0.

Bad data An error is recorded if a bundled data signal is
found to be undefined when req becomes active.

Constraint violation Thisform of error isgenerated when
a bundled data signal changes during the period be-
tween req becoming active and ack becoming active.



————— Logic 1 threshold
— —  Logic 0 threshold

Undefined region

=
1 Hold time !
- = '
1Constraint check period

: . - Req and Ack both active on rising edges.
1Active period statistics

\ Bad data check

Figure 5. Checks performed by the tool.

Set-up timeviolation When a data signal change is too
close to the active edge of the associated req signdl, a
set-up time violation is recorded. The set-up time is
measured from the end of a transition on a datasignal
to the start of the active edge on thereq signal.

Hold timeviolation If adatasignal isnot held steady long
enough after the active edge of the associated ack sig-
nal a hold time violation is flagged. The hold timeis
calculated from the end of the active edge on the ack
signal to the start of an edge on the data signal

In order to support these checks the tool makes use of
severa interlinked data structures. One of these relates
each signal to any bundlesin which it is used and indicates
whether it isused as areq, ack or dataline, bearingin mind
that one signal may beincluded in severa bundlesand may
performdifferent functionswithinthose bundles. For exam-
plein some latch structures the same signal isused asareq
to the next stage and an ack to the previous one. A further
data structure recorded the times of the most recent transi-
tionson the reg, ack and datalinesfor each bundle. By ex-
amining and updating these data structures it is possible to
perform al the checks described above.

4.2 Bundle descriptions

A simple plain-text format was selected for the descrip-
tion of bundles since thisfacilitated easy creation and mod-
ification of the definitions and, with provisionfor theinclu-
sion of comments, allowed the definitionsto be easily read-
able and self-documenting. Table 1 illustratesatypica bun-
die definitionfile.

It is easiest for designers to work in terms of symbolic
names, so theseare used inthedefinitionsfile. They arethen
converted to the corresponding net numbers withinthe bun-
dle checker.

Ascan be seen from thetabl ethi sdefinitionformat makes
provisionfor the use of default set-up and hold timeand for
specification of the active edges of the handshake signals.

;example bundle definition file
;default set-up and hold times:

def sut =2

def ht=1

;Thelist of bundles

;req ack  rgedg akedg sut ht  bundle
regl ackl f f * *  datal[0:4]
reg2 ack2 r f 3 5 A_datd0:31]

;Include bundles from the next level in the design

includelevel 1.bundles levell
Table 1. A bundle definitions file.

4.3 Hierarchical designs

When building complex circuits it is norma to make
use of a hierarchy of units, and unique signa names
are generated by catenating the names of al the units in
the hierarchy onto the basic signa name, for example,
levelO.levell.level2.signal.

The bundlechecker was designed to work with such hier-
archical structures by allowing the inclusion of bundle def-
inition files for each level in the design. Table 1 includes
anillustration of theway in which thisisdone. Theinclude
declaration specifies the name of the next bundlefilein the
hierarchy and the unit name that is to be prepended to any
signal names mentioned in that file. Each bundle definition
file may include many definition files, and those included
files may include further files. Inthisway it is possible to
check individual low level componentsindependently of the
rest of the structure, but it is also easy to provide complete
checks of the whole structure with each component being
checked in the environment in which it is expected to op-
erate.

4.4 Practical considerations

The basic concept and implementation of the bundle
checker are simple, but there are a number of practical con-
siderationsthat complicateits design.

Firstly, traces can be so large that it may not be possible
tostorethem asfiles. The bundlechecker hasbeen designed
so that, if thesimulator allowsit, data can betransferred via
apipe rather than a normal file, making the processing time
the limit to the size of problem that can be tackled.

The use of symbolic namesrather than net numbersinthe
bundledefinitionsisclearly desirableintheinterestsof read-
ability, but it can cause problemsdueto aliasing. It iscom-
mon practice to have severa aternativesymbolic namesfor
the same signal at different levels in the design hierarchy,
but with the underlying tools used by the bundle checker
only one of these names will be visible. Further difficul-
ties occur where a signal crosses a hierarchica boundary,



but is known by the same name at both levels. For exam-
ple, asignal may only visible as level0.signal when the hi-
erarchy impliesthat levelO.level 1.signal should be an alias
for the same signal. These considerations do not affect the
checking of asingle level design, but can cause complica
tions when the “hierarchical-include” mechanism is used.
To avoid these difficulties the bundl e definitions file makes
provision for the declaration of aliases and for dropping se-
lected unit name components from a signal name when the
bundle definition is used as part of ahierarchy.

Onefurther complication may arise during circuitinitial-
isation, duringwhichitispossiblethat conditionsmay occur
whichthechecker considerstobeerrors. To avoidthese spu-
riouserrorsthetool may be set to ignoreany errorsduring a
specified initialisation period.

45 Statistics

The bundle checker was aso instrumented to produce
statisticsuseful during optimisation of adesign. The current
version of the tool does not record the actua cycle time; in-
stead it records the time between thereq signal for abundle
going active and the associated ack being received, atime
marked as the active period on diagram 5. This recordsthe
time between a sender making a new set of data available
and areceiver acknowledging that data. Thefull cycletime
includesthisactive period plusthetimefor the sender to pre-
pare the next set of data.

The measurement of the active period rather than the cy-
cle time reflects the bundle checker’s view of the design in
terms of bundles of signals rather than in terms of modules
with input and output signas: the definitions file contains
no information about components, only about signals. This
also accounts for the absence of any latency statistics. It
would be possibleto calculate latency and cycle timesusing
the same simulator traces, but thiswould requireadditionsto
the definitionsfile and extensionsto the program or the pro-
vision of an additional tool. Consequently the measurement
of the active period has been used, sinceit provides much of
thesameinformationasthecycletime. To aid interpretation
of theresults, thetool records the maximum, minimum and
average active periods for each bundle. It also records the
minimum set up and hold times, making it possibleto iden-
tify over-generous matching delays.

5 Conclusions

The Amulet project has demonstrated that complex self-
timed designs are feasible, and that existing VLSl CAD
packages can support the development of these designs.
However, experience with AMULET has shown that the ad-
dition of afew simpleanalyses can greatly improvethe abil-
ity to optimise and validate the circuits produced.

A tool implementing the bundle checking functions de-
scribed here was implemented. The source code and docu-
mentation for thetool is available from:
http://www.cs.man.ac.uk/amul et/proj ects’horn/index.html
It wasused inthedesign of AMULETZ, duringwhichit was
abletoidentify anumber of potentia problemswhich might
otherwise have been overlooked or have resulted in errors
that were hard to track down. As shown in figure 4, the
checker was applied to schematic based simulationsto give
an early indication of potential problemsand was later used
with extracted layoutsto obtain more accurate analyses.

The bundle checker uses the results produced by simula-
tors capable of accurate time moddling. Should the use of
self-timed design become more extensive, CAD support of
this type will be required and these analyses could be inte-
grated into existing smulators. Alternatively, as described
here, they can be performed by separate programs if the
simulator providessuitable“hooks” for attaching additional
analyses.

Thiswork was funded by the European Community through
the OMI HORN project (project number 7249). The in-
put and assistance of the OMI-DE AMULET2 devel opment
team is gratefully acknowledged
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