
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00  1996 IEEE

Timing Verification for Asynchronous Design

Rhodri M. Davies and John V. Woods
Department of Computer Science, University of Manchester,

Manchester, M19 3PL, U.K.
Email: rdavies@cs.man.ac.uk jvwoods@cs.man.ac.uk

Abstract

This paper describes a technique for verifying timing
conditions inherent in self-timed VLSI designs that make use
of the micropipeline design strategy. By checking bundling
constraints during simulations, design faults may be de-
tected, whilst timing information extracted during the pro-
cessing may be used to identify modules requiring optimisa-
tion. These analyses may be built around existing simula-
tors.

1 Introduction

Recently there has been a resurgence of interest in self-
timed (or asynchronous) design. In this methodology there
is no global clock controlling the synchronisation of a cir-
cuit; instead, adjacent modules communicate with each
other, negotiating the transfer of data.

The renewed interest in self-timed design arises from its
potential to address areas in which there are perceived to be
problems with the synchronous approach:

Clock Distribution: As feature sizes have been reduced
and clock speeds have increased, the generation and
distribution of global clocks has become an increas-
ingly complex task. Recent designs, such as the DEC
Alpha [4], have shown that with careful work and so-
phisticated CAD support these problems may be over-
come, but that this requires significant resources, both
in terms of design complexity and silicon area.

Complexity: VLSI designs are becoming increasingly
complex. Managing this complexity can be a chal-
lenging task, particularly where all the components in
the design are interlinked by the global clock.

One approach to reducing complexity is to introduce
increased abstraction by dividing the design into mod-
ules. The top levels of the design are then specified in

terms of the interfaces of those modules without need-
ing to be aware of their internal implementation. This
also facilitates the re-use of existing designs through
the development of libraries of complex components.
The self-synchronised communication in a self-timed
design makes it easy to apply modular abstraction.

Performance: In a globally synchronous design the clock
period is determined by the worst case delay through
the slowest signal path between clocked register stages.
In a self timed design, adjacent modules may transfer
data as soon as the producer has completed its opera-
tion and the receiver is ready to accept more data. Mod-
ules may even adjust their timing according to the data
they are processing. For example, an adder could op-
erate more quickly in cases where the carry propagate
chains are short than when the carry must be propa-
gated across the entire word. Consequently the aver-
age delay through a self-timed module approaches the
’typical’ case rather than the worst-case.

Power Consumption: In basic synchronous modules,
components such as latches consume power on every
clock transition, irrespective of whether the module
is active or not at that moment. This problem may be
reduced by adding clock gating, but the equivalent
behaviour is inherent in a self-timed circuit, which
will become dormant whilst it waits for fresh input.

None of the major CAD systems provide specific sup-
port for self-timed design, although many existing tools for
tasks such as schematic capture, layout and simulation are
equally applicable to both synchronous and asynchronous
design. In other areas such as synthesis, optimisation and
validation, existing tools are not suitable for use with self-
timed circuits.

To compensate for this, specialised packages have been
developed. Most of these allow specification in some form
of CSP based language [6], signal transition graph [1] or
state machine [2] and then synthesise a circuit, normally
using standard cells as the basic building block. Many of

these packages are limited in the size and complexity of
the designs which can be processed. The most complete of
these systems is based on a CSP-like language called Tan-
gram [8]. Circuits specified in Tangram may be simulated,
synthesised, laid-out and optimised. The circuits produced
using this system are delay insensitive, operating correctly
irrespective of delays in logic elements and wiring.

At Manchester University the design of two generations
of a self-timed implementation of the ARM architecture1

have been undertaken. These AMULET processors [5] are
based on Sutherland’s micropipelines which compromise
delay insensitivity, selecting a more cost-effective solution
using local delay management.

2 The micropipeline design strategy

The micropipeline framework was described by Ivan
Sutherland in his 1988 Turing Award Lecture [7]. Adjacent
modules in a micropipeline are connected by two handshake
signals and a data bus (see figure 1).

2.1 Bundled data interface

In this strategy, the sender module places data on the bus
then sends a req signal. This indicates to the receiver that its
input data is available so it may begin processing. When the
receiver has no further requirement for the input data it sends
back an ack signal. The sender must hold the data steady
until it receives the ack. It may then output the next set of
data. This arrangement is referred to as the bundled data in-
terface.

ReceiverDataSender

req

ack

Figure 1. The bundled data interface.

The information in the data bundle is encoded in the con-
ventional manner with the voltage levels of the signals indi-
cating the data value. This is known as a single-rail encod-
ing as opposed to the dual-rail encoding used in some other
asynchronous techniques. The later uses no handshake sig-
nals but instead two wires are used for each data bit, with
transitions not only indicating the value but also providing
the timing information. The single-rail datapaths used in
micropipelines are similar to those used in equivalent syn-
chronous circuits. The absence of timing information within
the data signals requires the additional handshake signals to
provide local control of delays.

1ARM is a trademark of Advanced RISC Machines Ltd.

2.2 Bundling constraints

The timing constraints that must be applied to ensure
correct operation of a bundled data interface are known as
bundling constraints. The basic constraints are:

1. The receiver must not see a req until its input data is
stable.

2. The receiver must not send an ack until it has no further
need for its input data.

3. The sender must hold its output data steady between
sending the req and receiving the ack.

In practice these simple rules are complicated by the need to
allow suitable set-up and hold times and by the edge times
of the signals involved.

As a result of these restrictions, circuits must be con-
strained to ensure that the delay through the control path is
greater than that through the data path. Careful timing anal-
ysis of the paths may be required together with the inclusion
of additional matching delays in the control path. This strat-
egy is known as a bounded-delay timing model since the cir-
cuit will operate correctly only if delays on the data lines are
within the limits set using the control signals.

In this scheme there is an inherent conflict between the
need to add extra delay to the control path to allow a suitable
safety margin and the need to match the two paths as closely
as possible to ensure maximum performance of the circuit.

2.3 Two-phase protocol

In his paper, Sutherland describes a two-phase commu-
nications protocol for handshake signals (see figure 2). In-
formation is carried by transitions rather than by the volt-
age level of the signal; rising and falling edges are equiva-
lent in meaning. This protocol, which minimises the num-
ber of transitions on each wire, was used in the design of
AMULET1.

1st transaction 2nd transaction

ack

req

Figure 2. The two-phase handshake protocol.

A selection of event control modules are used to build
handshake control circuits. The most fundamental of these
are the XOR and Muller C gates which respectively perform

OR and AND functions on transition based signals. Other
modules perform more sophisticated functions such as arbi-
trating between two asynchronous requests.

2.4 Four-phase protocol

It has been found that, in practice, two-phase signals of-
ten need to be converted into four-phase signals to drive
latch circuits. A four-phase signalling protocol is illustrated
in figure 3, from which it can be seen that a four-phase pro-
tocol may be interpreted in terms of the voltage levels of
the signals. This protocol involves more transitions on the
handshake lines, but it is better matched to the requirements
of efficient latch circuits and so avoids the need for frequent
conversions between protocols which has been found to be
a bottleneck in AMULET1 [3]. Consequently, four-phase
signalling has been used extensively in AMULET2 and the
timing verification described in this paper will be discussed
in terms of a four-phase protocol. The basic techniques de-
scribed here are equally applicable to two-phase circuits.

1st transaction 2nd transaction

ack

req

Figure 3. The four-phase handshake protocol.

3 Design flow

The selection of the micropipelined approach with its
single-rail datapaths allowed the use of standard cells, tools
and test vectors from the synchronous versions of the ARM
architecture as a basis for the AMULET development work.
This resulted in a reduction in the resources required to de-
velop the self-timed processors and also influenced the se-
lection of the design flow and tools used (see figure 4).

A behavioural model of the processor was first devel-
oped. This was then refined through schematics to layout,
making use of both custom design and standard cells. These
design operations and the associated simulations were per-
formed with the support of the standard synchronous design
tools provided by the Compass CAD system2. Simulations
at the schematic level were performed using the Compass
switch level simulator and TimeMill3. Spice was used for
characterisation of the custom blocks, while TimeMill was
used for accurate but fast simulation of the extracted layout.

2Produced by Compass Design Automation.
3TimeMill is a trademark of EPIC Design Technology Inc.

Schematics
Simulation
Compass TSim

TimeMill

Layout
Full Custom

Standard Cell

Simulation
Spice

TimeMill

Simulate same test

vectors

High Level Description

Net-compare

Behavioural Simulation
ASim

Bundle
Checker

Figure 4. AMULET2 design flow.

3.1 Validation

During the debugging of micropipelined circuits it is ad-
vantageous to check the bundlingconstraints since errors re-
sulting from their violation can be hard to track back to their
cause. In addition, such checks add to the confidence in the
design obtained from other validations.

In performing bundling constraint checks it is required
that:

� The checks may be applied at different levels in the hi-
erarchical design, starting with individual components
then moving up to progressively more complex mod-
ules until the design may be checked as a whole.

� The bundle definitions from low levels in the hierarchy
may be included, without modification, into the valida-
tions of higher levels in the design.

� The bundles and associated handshake signals may be
specified in some concise, easily read format.

� The active edges of the handshake signals may be spec-
ified since both active-high and active-low signals may
be used.

� Although the default set-up and hold times may be
specified for ease of use, more specific set-up and hold
times appropriate to each bundle may be declared, re-
flecting the different kinds of latches used in the design.

Some existing synchronous design tools do allow the check-
ing of set-up and hold times, but these are based around the
assumption that there are only a few clock signals and set-up
and hold times are normally measured relative to the same
clock signal. It was not considered practical to make use of
these existing tools in view of the large numbers of hand-
shake signals and the requirements listed above.

Due to the interactions between modules a static analysis
would be complex and would either require extensive mod-
ifications to the source of an existing path analysis tool or

the development of a completely new tool. As a result a dy-
namic, empirical approach was adopted, observing the be-
haviour of the circuit duringsimulations, as described in sec-
tion 4.

3.2 Optimisation

Having completed the initial design of a processor and
validated its operation, the next stage is to optimise its per-
formance. In synchronous design the basic optimisation
task is to find a way of speeding up the critical worst-case
path that determined the clock speed. In a synchronous
pipelined implementation the critical path through each
stage can be analysed in isolation from the other stages and
it is easy to identify the stage with the longest critical path,
the determination of which may be based on a static analysis
of the worst case delay for each component; there are tools
to automate this process.

In asynchronous design the optimisation goals are not as
clear cut. The main target for optimisation is the “typical”
behaviour of the circuit, rather than the worst case. Identifi-
cation of this “typical” behaviour may not be easy, particu-
larly where the delay through the circuit is data dependent.
Although long worst case delays can be tolerated, they can
have an adverse effect on other stages in the micropipeline
because they cause the pipeline to fill up, and this may need
to be taken into account during the optimisation of the cir-
cuit. Similarly extremely fast responses under some circum-
stances can result in bubbles in the pipeline, during which
the pipeline is not fully utilised. Consequently it is desirable
to measure the maximum, minimum and ’typical’ delays for
each module.

The main measures of the performance of a mi-
cropipeline (or an individual module) are the latency and
the cycle time. The latency is the time for information to
propagate from the input to the output, whilst the cycle
time is a measure of how rapidly the micropipeline can
respond; that is the time from accepting one item of data to
being able to accept the next. One common optimisation
is to trade latency for cycle time or vice versa, according
to the environment in which the module is being used.
Consequently, determination of these statistics is useful in
the rational optimisation of micropipelines.

Static analysis of the maximum and minimum latency is
possible using existing critical path analysis tools. Analysis
of the “typical” latency is more difficult, particularly where
the delays in a module are data dependent. Analysis of the
cycle time is more complex since it is affected by the speed
at which “downstream” stages reply to the module under ex-
amination, so it is dependent on both the structure of the mi-
cropipeline and the data passed through it.

Mathematical modelling of micropipelines is a current
research topic and although this may produce tools for pre-

dicting and optimising the performance of self-timed cir-
cuits, for the moment the only practical analyses of cycle
times and typical latencies are empirical. Acquisition of
these statistics requires the same basic information as bun-
dle checking, so the two operations may be combined into a
single tool.

4 Bundle checking

As a result of the consideration of the points raised in the
previous section and taking into account the resources avail-
able, it was decided to develop a dynamic bundle checker
and statistics gathering tool, built around an existing simu-
lator. Although a dynamic analysis will be limited by the
coverage of the simulations that it observes, it was not con-
sidered feasible to develop any form of static analyser.

Previous experience with building tools around simula-
tors had demonstrated that although “screen-scraping” the
normal human-readable output of a simulator is possible,
it not efficient. It is more satisfactory for the simulator to
produce the same information in a more easily accessible,
concise format. In addition, the accuracy of the analysis is
clearly dependent on the accuracy of the underlying sim-
ulator, both in terms of timings and voltage levels. The
TimeMill package was chosen as the underlying simulator
since its timing accuracy was suitable and it can produce a
trace file that may be read by the bundle checker.

4.1 Error checks

The trace information available to the bundle checker
records the time at which a signal crosses either of the logic
thresholds, and this information is sufficient to allow the tool
to perform some “sanity checks” on the handshake and data
signals as well as checking the basic bundling constraints.
The checks that it performs are illustrated in figure 5 and de-
scribed below. As shown on the diagram, the edge times of
the signals are taken into account in the checks, which are
based on the ‘worst-case’ relationships between the differ-
ent signals and their respective edge times.

Bad handshake signal The handshake signals are checked
to ensure that all transitions are “clean”. For example
an error is recorded if a handshake signal goes from 1
to undefined back to 1 instead of making the clean tran-
sition 1-undefined-0.

Bad data An error is recorded if a bundled data signal is
found to be undefined when req becomes active.

Constraint violation This form of error is generated when
a bundled data signal changes during the period be-
tween req becoming active and ack becoming active.

Hold time

Data

Logic 1 threshold

Logic 0 threshold

Undefined region

Req and Ack both active on rising edges.

Ack

Bad data check

Req

Active period statistics

Constraint check period

Set-up time

Figure 5. Checks performed by the tool.

Set-up time violation When a data signal change is too
close to the active edge of the associated req signal, a
set-up time violation is recorded. The set-up time is
measured from the end of a transition on a data signal
to the start of the active edge on the req signal.

Hold time violation If a data signal is not held steady long
enough after the active edge of the associated ack sig-
nal a hold time violation is flagged. The hold time is
calculated from the end of the active edge on the ack
signal to the start of an edge on the data signal

In order to support these checks the tool makes use of
several interlinked data structures. One of these relates
each signal to any bundles in which it is used and indicates
whether it is used as a req, ack or data line, bearing in mind
that one signal may be included in several bundles and may
perform different functions within those bundles. For exam-
ple in some latch structures the same signal is used as a req
to the next stage and an ack to the previous one. A further
data structure recorded the times of the most recent transi-
tions on the req, ack and data lines for each bundle. By ex-
amining and updating these data structures it is possible to
perform all the checks described above.

4.2 Bundle descriptions

A simple plain-text format was selected for the descrip-
tion of bundles since this facilitated easy creation and mod-
ification of the definitions and, with provision for the inclu-
sion of comments, allowed the definitions to be easily read-
able and self-documenting. Table 1 illustrates a typical bun-
dle definition file.

It is easiest for designers to work in terms of symbolic
names, so these are used in the definitions file. They are then
converted to the corresponding net numbers within the bun-
dle checker.

As can be seen from the table this definition format makes
provision for the use of default set-up and hold time and for
specification of the active edges of the handshake signals.

;example bundle definition file
;default set-up and hold times:
def sut = 2
def ht = 1
;The list of bundles
; req ack rqedg akedg sut ht bundle
req1 ack1 f f * * data1[0:4]
req2 ack2 r f 3 5 A data[0:31]
;Include bundles from the next level in the design
include level1.bundles level1

Table 1. A bundle definitions file.

4.3 Hierarchical designs

When building complex circuits it is normal to make
use of a hierarchy of units, and unique signal names
are generated by catenating the names of all the units in
the hierarchy onto the basic signal name, for example,
level0.level1.level2.signal.

The bundle checker was designed to work with such hier-
archical structures by allowing the inclusion of bundle def-
inition files for each level in the design. Table 1 includes
an illustration of the way in which this is done. The include
declaration specifies the name of the next bundle file in the
hierarchy and the unit name that is to be prepended to any
signal names mentioned in that file. Each bundle definition
file may include many definition files, and those included
files may include further files. In this way it is possible to
check individual low level components independently of the
rest of the structure, but it is also easy to provide complete
checks of the whole structure with each component being
checked in the environment in which it is expected to op-
erate.

4.4 Practical considerations

The basic concept and implementation of the bundle
checker are simple, but there are a number of practical con-
siderations that complicate its design.

Firstly, traces can be so large that it may not be possible
to store them as files. The bundle checker has been designed
so that, if the simulator allows it, data can be transferred via
a pipe rather than a normal file, making the processing time
the limit to the size of problem that can be tackled.

The use of symbolic names rather than net numbers in the
bundle definitions is clearly desirable in the interests of read-
ability, but it can cause problems due to aliasing. It is com-
mon practice to have several alternative symbolic names for
the same signal at different levels in the design hierarchy,
but with the underlying tools used by the bundle checker
only one of these names will be visible. Further difficul-
ties occur where a signal crosses a hierarchical boundary,

but is known by the same name at both levels. For exam-
ple, a signal may only visible as level0.signal when the hi-
erarchy implies that level0.level1.signal should be an alias
for the same signal. These considerations do not affect the
checking of a single level design, but can cause complica-
tions when the “hierarchical-include” mechanism is used.
To avoid these difficulties the bundle definitions file makes
provision for the declaration of aliases and for dropping se-
lected unit name components from a signal name when the
bundle definition is used as part of a hierarchy.

One further complication may arise during circuit initial-
isation, during which it is possible that conditionsmay occur
which the checker considers to be errors. To avoid these spu-
rious errors the tool may be set to ignore any errors during a
specified initialisation period.

4.5 Statistics

The bundle checker was also instrumented to produce
statistics useful during optimisation of a design. The current
version of the tool does not record the actual cycle time; in-
stead it records the time between the req signal for a bundle
going active and the associated ack being received, a time
marked as the active period on diagram 5. This records the
time between a sender making a new set of data available
and a receiver acknowledging that data. The full cycle time
includes this active period plus the time for the sender to pre-
pare the next set of data.

The measurement of the active period rather than the cy-
cle time reflects the bundle checker’s view of the design in
terms of bundles of signals rather than in terms of modules
with input and output signals: the definitions file contains
no information about components, only about signals. This
also accounts for the absence of any latency statistics. It
would be possible to calculate latency and cycle times using
the same simulator traces, but this would require additions to
the definitions file and extensions to the program or the pro-
vision of an additional tool. Consequently the measurement
of the active period has been used, since it provides much of
the same information as the cycle time. To aid interpretation
of the results, the tool records the maximum, minimum and
average active periods for each bundle. It also records the
minimum set up and hold times, making it possible to iden-
tify over-generous matching delays.

5 Conclusions

The Amulet project has demonstrated that complex self-
timed designs are feasible, and that existing VLSI CAD
packages can support the development of these designs.
However, experience with AMULET has shown that the ad-
dition of a few simple analyses can greatly improve the abil-
ity to optimise and validate the circuits produced.

A tool implementing the bundle checking functions de-
scribed here was implemented. The source code and docu-
mentation for the tool is available from:
http://www.cs.man.ac.uk/amulet/projects/horn/index.html
It was used in the design of AMULET2, during which it was
able to identify a number of potential problems which might
otherwise have been overlooked or have resulted in errors
that were hard to track down. As shown in figure 4, the
checker was applied to schematic based simulations to give
an early indication of potential problems and was later used
with extracted layouts to obtain more accurate analyses.

The bundle checker uses the results produced by simula-
tors capable of accurate time modelling. Should the use of
self-timed design become more extensive, CAD support of
this type will be required and these analyses could be inte-
grated into existing simulators. Alternatively, as described
here, they can be performed by separate programs if the
simulator provides suitable “hooks” for attaching additional
analyses.

This work was funded by the European Community through
the OMI HORN project (project number 7249). The in-
put and assistance of the OMI-DE AMULET2 development
team is gratefully acknowledged

References

[1] T. A. Chu and L. A. Glasser. Synthesis of self-timed control
circuits from graphs: An example. In Proceedings of ICCD,
pages 565–571, 1986.

[2] B. Coates, A. Davis, and K. S. Stevens. Automatic synthe-
sis of fast compact self-timed control circuits. In Proceed-
ings of the IFIP working conference on Asynchronous Design
Methodologies, Manchester, U.K., 1993.

[3] P. Day and J. V. Woods. Investigations into micropipeline
latch design styles. IEEE Transactions on VLSI Systems,
3(2):264–272, June 1995.

[4] DEC. A 300 MHz quad-issue CMOS RISC microprocessor
(21164). In Proceedings of ISSCC, pages 182–183, San Fran-
cisco, Feb. 1995.

[5] S. Furber, P. Day, J. Garside, N. Paver, and J. Woods.
AMULET1: A micropipelined ARM. In Proceedingsof Com-
pCon’94, San Francisco, Mar. 1994. IEEE Computer Society
Press.

[6] A. J. Martin. Synthesis of asynchronous VLSI circuits. In
J. Staunstrup, editor, Formal Methods for VLSI Design. North
Holland, 1990.

[7] I. E. Sutherland. Micropipelines. Comm. ACM, 32(6):720–
738, June 1989.

[8] C. H. van Berkel, J. Kessels, M. Roncken, R. W. J. J. Saeijs,
and F. Schalij. The VLSI-programming language Tangram
and its translation into handshake circuits. In Proceedings of
EDAC, pages 384–389, 1991.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

