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Abstract

In this paper, we propose an approach for designing fuzzy
controllers. To reduce design time, we employ two high-level
design methods: VHDL and VHDL-based logic synthesis,
and Satechartswith a VHDL backend for graphical design
description. Afuzzfier and a defuzzfier parts of a fuzzy con-
trol system are captured in VHDL, as these parts perform
complex arithmetical operations. A rule base of the con-
troller isdescribed in Satecharts, and thenistranslated into
VHDL. A complete description of the systemis assembled in
VHDL, and is synthesized using VHDL-based logic synthe-
sis. The efficiency of the generated hardware is explored for
FPGA technology.

1 Introduction

Today, till only a few full custom or semi-custom in-
tegrated fuzzy controllers exist and most of them are as-
sembled from standard cells at the gate level. Our design
approach presented here is a high-level one. The usage
of high-level modeling methodologies for modeling fuzzy
controllers reduces development time significantly, making
rapid design of custom fuzzy hardware possible.

VHDL [5] for design capture and VHDL-based logic syn-
thesis are an efficient method for designing complex hard-
ware. However, for describing regular structures like finite-
state machines, adifferent approachis more appropriate. For
describing such structures, we employ Statecharts. I1n addi-
tion, a commercial tool based on Statecharts incorporates a
VHDL generationfacility for generating synthesizable code.

We have employed the Statechartsformalism for capturing
arule base of afuzzy control system. Using this high-level
approach, design timeis reduced significantly, and different
designs of the rule base can be explored in the short time.
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Thefuzzifier and defuzzifier partsof the system, whichincor-
porate a lot of mathematical computations, are described in
VHDL as ahand-coded design. We assembl e the fuzzy con-
trol system, and synthesize a gate level description for field-
programmabl e gate array (FPGA) technology.

This paper is organized as follows: in section 2 we give
a brief introduction to fuzzy controllers. Section 3 lists de-
sign choices we have made, and section 4 brings a descrip-
tion of the design flow. Section 5 shows how is arule base
of afuzzy controller described in Statecharts. A fuzzifier and
adefuzzifier of the controller are modeled in VHDL, as pre-
sented in section 6, and section 7 bringsthe trangl ation of the
rule base to VHDL. Section 8 outlines the testbench genera-
tion. The developed model is synthesized and implemented
as sketched in section 9. We draw our conclusions in sec-
tion 10.

2 Fuzzy controllers

In this section, we introduce a simple controller for a gas
heater system, which serves as an example to the various
steps involved when designing a fuzzy controller. The con-
troller is sensitive to two input variables delivered by sen-
sors: the room temperature and, assuming there is no stable
gas quality, the current gas heating value. The controller’s
output influences the valve opening angle for the gas supply
viaan active element, e.g., a servo motor.

A membership function gives the degree of membership
of an input value to every fuzzy set. The input may belong
to more than one fuzzy set. In the example application, the
sensed room temperature is divided into three overlapping
fuzzy sets caled “coal”, “tepid”’, and “warm”. A similar
classification and membership assignment are made for the
gas quality, namely “poor”, “medium” and “high”.

In figure 1, we show the calculation of the output variable
valve angle when concrete values are assigned to the inputs



temperature (denoted i) and quality (denoted i5). Thevalue
11 isamember of fuzzy sets “cool” and “tepid” with mem-
bership degrees f1 (i1) and f2(i1). For thevalueis, only the
fuzzy set “medium” is relevant with a membership degree
F3(i).

The fuzzified input variables are inputs to the rule base.
The sample controller usesninerules, displayedintable 1, to
find an output fuzzy set. Rule 32, for example, isinterpreted
in full English text as:

i f temperature i s tepid and gasquality i s
medium t hen valveangle i s half

In our example, the rule R21 selects the output fuzzy set
“large” with the membership degree min(fi(i1), f3(i2))
and the rule R32 the output fuzzy set “half” with the mem-
bership degree min(f7(i1), f3 (i2))-

The membership degreesdelimit the output set defining an
area. The solution fuzzy set is composed by combining all
such areas, and taking the ordinate of the gravitational center
of thearea.
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Figure 1. Input and output fuzzy sets.

Rule | Temperature | Gasquality | Valveangle
R11 COOL POOR HUGE
R21 COOL MEDIUM LARGE
R22 TEPID POOR LARGE
R31 COOL HIGH HALF
R32 TEPID MEDIUM HALF
R41 TEPID HIGH SMALL
R42 WARM POOR SMALL
R51 WARM HIGH TINY
R52 WARM MEDIUM TINY

Table 1. Fuzzy rule base for the gas heater control.

3 Design choices

We have implemented a dedicated fuzzy chip, capable
of performing stand aone operations, rather then to extend
somegeneral purpose processor with fuzzy instructions. Our
decision isinfluenced by severa facts:

¢ adedicated chip offersthe highest execution speed,

e design timeis short, due to the usage of synthesis and
high-level design tools,

e low cost of real-estate.

For designing a rule base of a controller, we have used a
high-level modeling approach instead of encodingit directly
in VHDL. The reasonsfor this choice are:

¢ ahigh-level design approach reduces the design time,
e global design functionality is evaluated in a short time,
o different design choices are quickly explored,

e edit-compile-debug cycle is fastened [4],

o thedesignisrepresented graphically inanatural and un-
derstandable way,

e trandlation of a high-level model into VHDL is sup-
ported, so that VHDL -based logic synthesis can be em-
ployed.

Accordingto Costaet al. [1], in describing afuzzy controller
in VHDL as hand design, the most time consuming process
iswriting a synthesizable VHDL description at the register-
transfer level. The usage of high-level design tools reduces
these efforts.

For high-level modeling, we have selected Statecharts, be-
cause of

e existence of tools supporting system modeling in State-
charts,

e support for validating Statecharts models,
e support for converting Statecharts modelsin VHDL,
o efficiency of Statechartsfor hardware modeling.

Modeling a rule base of a fuzzy control system in State-
chartsis efficient and simple, because of the rule base regu-
larity. The graphical presentation of arule baseis easily un-
derstandable, and easier to survey and adapt than a VHDL
description. Additionally, the built-in smulator of the front-
end tool supports the quick validation of the actual model.
Using the Statechartsformalism wewere ableto explore sev-
eral different rule basesin ashort time. Simulating the State-
chartsmodel under a Statecharts simul ation environment, we
have fine-tuned the rules, and then picked the best rule base
for hardware implementation.

A fuzzifier and a defuzzifier of a fuzzy control system
perform mathematical operations, such as multiplications
and divisions. For describing such parts, direct encoding
in VHDL at the register-transfer level is more efficient. In



VHDL, the minima number of multipliers, adders and di-
viders can be instantiated, resulting in a more efficient real-
ization.

We have used field-programmablegate arrays (FPGAS) as
hardware platform, because they are complex enough to be
used for rapid prototyping of complex systems, and for the
final implementation of a chip, if only a small humber of
piecesis needed. They offer more flexibility than ASICs, as
when adesign is not needed any more, the chip can berepro-
grammed for a new hardware.

4 Design flow and environment

The rule base and the fuzzifier and the defuzzifier are
modeled in parallel and separately in different design en-
vironments. For designing the rule base we have used the
Statecharts-based SPeeDCHART design tool [2], whereas
for validating the fuzzifier and the defuzzifier, and for inte-
grated system simulation we employ the Synopsys VHDL
system simulator [8].

The Statechartsmodel is convertedto aVHDL codeusing
the export facility of SPeeDCHART. The VHDL models of
all system partsareintegrated, and further system simulation
and debugging are performed under the VHDL environment.

We have used the SynopsysVHDL design analyzer/FPGA
compiler [7] for logic synthesis. Additionaly, we have
used the XSl Xilinx/Synopsysinterface[11] and X-BLOX as
cell generator (XACT 5.1). Thetarget technology is Xilinx
XC4000 FPGAS[10].

5 A Statechart modd of therule base

Each rule of the base has the form:

if pp and p, and ... and p, then C

where p;, 1 < i < n denotesthe premises of this fuzzy rule,
and C isits conclusion. Assoon as al fuzzified inputs are
available, theruleis applied.

We represent every rule with a substate rul e_i j, as
showninfigure2. Thestate C;; isentered assoonasall input
variablesare available, and if all premises of therule are sat-
isfied. The membership degree of the output fuzzy setis cal-
culated in this state, by finding the minimum of the premises
membership degrees.

Rules with the same conclusion are grouped. If any con-
clusion of this subset of rulesisreached, the transition to the
state O; istaken. The conclusive membership degree of the
classi is calculated as the maximum of all conclusive mem-
bership degrees of the rulesin the group.

A part of the Statecharts description of therule basefor the
gas heater application is shown as hierarchical decomposi-
tion in figure 3, produced by the SPeeDCHART tool. Five
statecharts, one for each rule group, activate the output fuzzy
sets. Rules of the same class are described at the next lower

Figure 2. Statecharts model of arule base.
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Figure 3. Statecharts model of therule base of the gas
heater controller.

hierarchical level. The membership degreesof theresult sets
are calculated as indicated.

6 VHDL modds of the fuzzifier and the de-
fuzzifier

While the rule base is described in Statecharts, the fuzzi-
fier and the defuzzifier used in our fuzzy controller have been
described in hand-optimized VHDL.

Inputsto the fuzzifier are input variables (8 bit wide), and
outputsare vectorscontaining membership degreesfor al in-
put fuzzy sets. To each input fuzzy variable correspondsone
output vector, whose range depends on the number of fuzzy
sets (number of fuzzy sets multiplied by 8).

A part of the VHDL description of a fuzzifier is given in
figure4. Inthearchitecture body, membership degreesof the
input signal are calculated for each fuzzy set. Inan early ver-
sion, we have added inputsfor changing the ranges of fuzzy
sets. So, we could change the ranges of fuzzy sets without
having to recompile the source code. Once the ranges of the
input sets are determined, these inputs are removed from the
entity declaration, and are declared as constants.

The generated hardware contains several comparators, an
adder and amultiplier. To handleseveral input variables, two
approaches are possible: @) for each input variable, a fuzzi-
fier handling one input variable is instantiated, or b) a sin-
gle component is used for fuzzification of all input variables,



Proc_fuzzifier:
BEG N
IF reset ='1" THEN
menb_var => (Qthers <= '0");
ELSIF cl ock’ EVENT AND (clock = "1") THEN
IF (in_var < tmn) THEN

PROCESS (i n_var)

menb_var (7 downto 0) <= tnp;

ELSIF (in_var < tnm2n) THEN

menb_var (15 downto 8) <= tnp;
ELSIF (in_var < tnm8n) THEN

END PROCESS;

tmp :=conv_std_| ogi c_vector(unsigned(unsigned(in_var) - unsigned(start)) * unsigned(delta), 8);
nmenb_var (set_nr*8-1 downto 8) <= (Gthers =>'0");

tnp := conv_std_|l ogi c_vector(unsi gned(unsigned(in_var) - unsigned(tmln)) * unsigned(delta), 8);
nmenb_var (7 downto 0) <= conv_std_l ogic_vector(1 - unsigned(tnp), 8);

nenb_var (set_nr*8-1 downto 16) <= (Gthers => '0");

Figure 4. Part of the VHDL description of a fuzzifier for one input variable.

Add_and_di vi de:
BEG N

IF reset =1 THEN
nomn_reg <= (Ghers =>"'0");

ELSIF cl ock’ EVENT AND clock = '1" THEN
IF (present_step = First) THEN

PROCESS( cl ock, reset)

ELSIF (present_step = Second) THEN

ELSIF (present_step = Divide) THEN
out _var <= nomin_reg / denom n_reg;
END | F; END I F;
END PROCESS;

denom n_reg <= (Gthers =>"'0");

nom n_reg <= unsi gned(nom n_reg) + unsigned(conv_std_| ogi c_vector
(unsi gned(menb_var (1*8-1 downto (1-1)*8)) * unsigned(anlm,
denom n_reg <= unsi gned(denomi n_reg) + unsigned(nmenb_var(1*8-1 downto (1-1)*8));

16));

Figure 5. Part of the VHDL description of a defuzzifier. The division unit is implemented as a function.

multiplexed in time. The decision which approachto use de-
pends on area and performance constraints.

The defuzzifier is modeled in a similar way. Inputsto the
defuzzifier arevectors, onefor each controlling variable. The
range of the vector is determined by the number of the solu-
tion fuzzy sets — it contains an 8 bit membership degree for
each output fuzzy set. The defuzzifier determinesthe gravi-
tational center of the solution fuzzy set, and delivers the re-
sults as an 8 bit output control signal.

In implementing the defuzzifier, we have used the method
proposed by Yager [3]. Thisapproachrequires2N additions,
N multiplications, and one division, where IV is the number
of output fuzzy sets of asingle output variable. We have re-
duced the hardware to two adders, one multiplier, and one
divider. The adder and the multiplier are multiplexedin time
to perform 2V additionsand N multiplications.

In our application with one output variable and five fuzzy
sets, we have to perform five additions and multiplications,
before the division can start. The division unit is imple-
mented to be fast, at the cost of chip area. We have imple-

mented a17 by 9 bit division as eight subtractions performed
successively.

A part of the VHDL description of the defuzzifier is
listed in figure 5. The input is a membership set vec-
tor (menb_var) and the output is the control variable
(out _var) 8 bit encoded. A finite state machine controls
five successive additions and multiplications, and then starts
the dividing unit.

7 A VHDL description of therule base

The high-level description of the rule base in Statecharts
istrandated to synthesizable VHDL code. Theconversionis
performed because of thefollowing reasons. having all parts
of a system in the same language makes the verification of
the whole system possible, and logic-level synthesistoolsdo
not support synthesis from a graphical description.

A part of the code generated from the Statecharts descrip-
tion of therule baseis givenin figure 6: This code evaluates
rule R21 from the rule base. In process Rul e_21, the cal-
culation of the minimal membership degrees of the premises



Rul e_21:
BEG N
CASE state_large_1 IS
WHEN S21b =>
m n21<= m n(nenb_t enp( COQL) ,
WHEN ot hers => nul | ;
END CASE; END PROCESS;

PROCESS (menb_t enp, nmenb_qual ,

menb_ang(1l) <= max( min2l, mn22 );
VWHEN ot hers => nul | ;
END CASE; END PROCESS;

state_l arge_1)

menb_qual (MEDIUM) ) ;

)

Qut_cal c: PROCESS(..., min2l, min22, out_large, ..
BEG N
CASE out _large IS
WHEN 02 =>

Figure 6. A part of the VHDL description of the rule base.

of rule 21 is performed. Rule R21 together with rule R22
belongs to the rule group with the conclusion “large”. In
process Qut _cal ¢, the maximum calculation for thisrule
group is performed.

The generated VHDL code is easy to read, and is simi-
lar to hand coded VHDL code. A difference is the usage
of case statements for encoding rules, instead of ani f -
t hen statement, which may be a more natural choicein the
coding process. From the hardware efficiency point of view,
both coding styles result in the same hardware realization.
Another differenceisthe partitioning of each rulein distinct
processes.

A graphical presentation of arule base is much easier to
understand, as well as to model, than VHDL. The usage of
a high-level modeling approach reducesthe design time sig-
nificantly.

8 Simulation and testbench creation

Statecharts are not only suitable for designing state-based
reactive systemsthemselvesbut can al so be used for specify-
ing their working environment and thus may serveasabasis
for testbench development. Instead of developing case stud-
iesand/or test vectors, thedesigner createsamodel of theen-
vironment and steps down the design processin parallel with
the controller itself.

The testbench as well as the controller are modeled in the
same way. Like for the controller development, Statecharts
can be used as adesign front-end for the rule base testbench.
The controller is then simulated directly in Statecharts or —
after VHDL generation—in the VHDL environment.

Thereisasignificant improvementin design time and fault
coverage compared to standard testing methods. Using the
described method, we were able to implement our design
controller in a couple of days. The most time consuming
process was the encoding of the fuzzifier and defuzzifier in
VHDL. Especially when designing the rule base, theinterac-
tive testing and observation of the external behavior is eased
considerably.

The proposed method has several advantages:

¢ thedesigner isobligedto spend morethought on the en-
vironment of the system, almost as much asin adesign
method based on formal semantics. Ashedoessoinan
early design phase, the costs of searching for an optimal
solution can be kept small,

high level design tools encourage the use of Statecharts
models not only for the design itself but also for smu-
lation testbenches,

e when reaching the FPGA prototype level, it is much
cheaper to test the system prototype by connecting it
to another FPGA prototype of the system environment.
Especially in an industrial environment where expen-
sive machines are controlled by electronic devices, er-
roneous behavior in the integration test stage may have
disastrous consequences.

9 Synthesis and technology mapping

After design verification, the Synopsys design compiler
[7] isused to performlogic synthesis. Theresult of synthesis
isagate-level description of the controller.

Table 2 showstheresults of synthesisof the examplefuzzy
controller with two input and one output variables, and arule
base consisting of ninerules. The number of fuzzy setsof in-
put variablesisthree, and for the output variableisfive. The
resolution of all variablesis 8 hits.

Theimplementation of the fuzzifier instantiates two fuzzi-
fication units, onefor each input variable. Each unit contains
three comparators, an adder and amultiplier. The number of
comparators depends on the number of input fuzzy sets. If
areaconstraintsarecritical, only onefuzzification unit can be
used, multiplexed in time, for fuzzifying several input vari-
ables. In our design, we have used a separate unit for each
input variable. The realization is scalable to any number of
variables.



Synopsys Fuzzifier | RuleBase | Defuzzifier
Number of gates 1756 1062 2025
Number of CLBs 136 72 193
Time delay (ns) 4.75 6.24 4.75

Table 2. Synthesis results. Number of gates is given
for the LSI 10k library.

The defuzzifier calculates one output variable for five
fuzzy sets. Thus, thisimplementation performsfive multipli-
cations and additions, multiplexed in time, and one division.
The implementation contains two adders, amultiplier, and a
divider. We have implemented a fast divider unit at the cost
of chip area.

A defuzzifier for handling several output variables can be
implemented on different ways. a single defuzzifier can be
multiplexed in time, separate defuzzifiers can be used for
each output variable, or some combination of two. The se-
lection of the hardware configuration dependsontheareaand
performance constraints of the particular design.

We have compiled our models targeting two technologies:
Xilinx FPGAs and the LSl 10k ASIC library. For FPGA
implementation, the measure area efficiency is expressed in
number of CLBs (configurable logic blocks), whereas for
ASIC in number of gates.

Comparing our results with the ones of Costaet al. [1] for
a simple problem (a fuzzy controller with 2 inputs and one
output, arule base with seven rules, and 8 bit resolution) our
implementationissignificantly smaller. For theimplementa-
tion of afuzzy controller of comparable complexity, we have
needed only 4843 gates, versus 9392 gates used in theimple-
mentation by Costa. Costa et al. have described their model
in VHDL as hand design.

Surman et al. [6] have implemented a fuzzy controller
in FPGAs using hand-optimized CLB-level functional map-
ping. The design shows better resultsin CLB count, but in-
volvesmoredesign effort and isthus more error-prone. Full-
custom reconfigurabl e sol utions such as presented by Watan-
abe [9] make heavy use of repetitive structure elements, but
areonly feasiblein ahigh number of pieces, offering no flex-
ibility.

10 Conclusion

In this paper, we have presented a modeling approach for
describing fuzzy controllers using Statecharts and VHDL.
We have outlined a modeling scheme for designing a rule
base of a fuzzy controller using Statecharts, whereas the
fuzzifier and defuzzifier parts of the system were coded in
VHDL.

Using the Statechartsformalismfor capturing therule base
of a system has been shown to be powerful. The rule base

was captured and verified by simulation using the SPeeD-
CHART design and simulation environment. A simulation
under a graphical environment makes it easy to see which
rulesare applied. The Statechartsdescription of therulebase
istrandated into VHDL, and integrated with the hand-coded
VHDL code realizing fuzzification and defuzzification com-
ponents. Finally, the system model is synthesized to logic
level and mapped to FPGAS.

The most distinctive problem coming up when using the
introduced method is the lack of back-annotation facilities
between Statecharts and VHDL. Once the VHDL code has
been generated, thereis no way back to the Statechartslevel.

One of the advantages of the proposed method isthe sim-
plicity of constructing and experimentally fine-tuning the
rule base. Taking the standard language VHDL as backend
opens al facilities to make use of synthesistools. Thus, we
receiveall benefits of rapid prototyping and shortening time-
to-market requirements.
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