
Design of an Adaptive Motors Controller
based on Fuzzy Logic

using Behavioural Synthesis

Adel CHANGUEL(1), Robin ROLLAND(2), Ahmed Amine JERRAYA(1)

(1) TIMA/INPG, System-level Synthesis Group
(2) Centre Interuniversitaire de Micro-Électronique (CIME).

46, Avenue Felix Viallet, 38031 Grenoble Cédex1, FRANCE
Fax: (33) 76 47 38 14, E-mail: adel.changuel@imag.fr

Abstract

This paper combines two advanced technologies, High-
level synthesis and Fuzzy control, for the design of an
adaptive multiple motor speed controller. The obtained
solution compares favourably with classic methods in
terms of design quality. The use of Fuzzy control allows
to implement an original architecture which is faster and
smaller then classical solution based on PID. The use of
High-level synthesis results in a drastic acceleration of the
design process.

This paper presents the adaptive motor control
application, the Fuzzy control approach and the results of
the design using high-level synthesis.

1. Introduction

Motor controllers are in general implemented using a
(Proportional Integral Derivative) PID algorithm. An
explicit optimal solution for the robot arm control
problem is proposed in [1]. Various implementations in an
analogue technology have been proposed. However in this
case we have an extra constraint of designing the full
system in a pure digital technology.

When the Adaptive Motor Speed Controller (AMSC) is
modelled using a PID algorithm [2], the obtained design
has a relative long execution time. This is due to the
complexity of the computation needed by the PID
algorithm. In fact, this application has a reaction time
constraint of 6 ms that must be respected. So, many PID
circuits are needed to control 18 motors, and the design
obtained will be relatively big in terms of number of gates.
Thus, the implementation will be expensive.

To reduce the cost of the implementation, we propose to
model the application using fuzzy logic [3]. The
implementation of a fuzzy logic controller requests
undeniably some abstraction efforts. This is not the only
difficulty of the development of fuzzy logic into the
control system. In fact, unlike models based on classic
control algorithms, there is not an analytical method of
evaluating the stability of the fuzzy logic controlled
system. This is due to the non linearity in the fuzzy
algorithm [4].

Fuzzy logic will not give a significant improvement
when a process is modelled using classic methods.
However, if the process is difficult to model, the question
is to know if it is possible to have mathematical model. In
this case, fuzzy logic may give quickly a simple solution.
So, to control a complex process, the resort to fuzzy logic
is in most cases justified. Another benefit of fuzzy control
is that this kind of algorithm can be easily handled by
high-level synthesis tools, called also a behavioural
compiler [5]. In fact the algorithmic nature of fuzzy
computations makes it easy to specify and synthesise the
controller. The main contribution of this paper is the
combination of these two advanced technologies - High-
Level Synthesis and fuzzy control - in order to improve the
design quality and productivity.

This paper is organised as follow. The next section
illustrates the AMSC application. Section 3 deals with the
fuzzy logic algorithm implemented. In the last section we
discuss the architectural synthesis and FPGA prototyping
of the AMSC.

2. The Adaptive Motors Speed Controller

The robot arm controller acts between a "host machine"
and a robot arm that makes use of 18 stepper motors. The
host fixes the trajectory of the arm. It sends the commands
to the robot arm. The controller makes use of an adaptive
speed algorithm to smooth the motion of the arm.

The principle of adaptative control and detailed
discution of several system architectural solutions are
given in a companion paper [6]. This paper focus on the
hardware design of the AMSC for one spécific system
architectural solution.

2.1. Functional description of the Adaptive
Motor Speed Controller (AMSC)

The AMSC is embedded in an on-board system. It
interacts both with the robot's host machine and a group
of motors. It adjusts the speed of each of the motors
according to the distance to cover. As shown in fig.1, the
system is composed of many subsystems: a main
computer, a dual-port memory, the AMSC and local send-

EURO-DAC '96 with EURO-VHDL '96
0-89791-848-7/96 $4.00 1996 IEEE

receive modules. The main computer computes the global
motion of the robot and transforms it into specific
elementary motions for each motor in the robot's
coordinates. These elementary motions as well as some
other motor characteristics are stored in the dual-port
memory. For each motor, the AMSC loads from the dual
port memory, the remaining distance to cover. Then,
using a fuzzy logic based algorithm, the AMSC computes
the corresponding speed and transmits it to the send
module. The send module is a sort of timer that
transforms the speed value into a pulse-width-modulated
signal to supply the motor. The receive module
memorises the distance done by the motor in order to
subtract it from the remaining motions in the memory.

M1

M2

Mn

..

 6ms/18 Motors
S1

S2

SnDual-Port
Memory

B
U

S

Pul.1

Pul.2

Pul.n

Send.1

Send.2

Send.n

Motor.1

Motor.2

Motor.n

..

.

Address

A
M

SC
sy

st
em

R/W

Speeds

Motors
States

PO
R

T
PO

R
TPO

R
T

.

Receiv.1

Receiv.2

Receiv.n

I/O

O
ut

 L
in

e
(P

.C
.)

H
W

SW

Figure 1. The global environment of
the AMSC system

2.2. Real-time constraints

With this architecture, the AMSC will compute
concurrently all the motor speeds. The total execution time
is obtained by multiplying one motor execution time by
the number of motors. In this case we assume that we have
18 motors to control at a reaction time less then 6 ms.

Using the classic solution based on a PID, the system
modelling is complex due to parameter variation and the
system has a little information on the task to do. For
example to follow a curve, the travelling speed must be
limited in order to avoid excessive speed increase and a
brusque stop. In fact, for mechanical reasons, the change in
speed should follow a smooth curve for acceleration and
deceleration. All these constraints must be taken into
account. When the computation time is short, the system
can react at the correct moment.

2.3. Architectural analysis of the AMSC

Several architecture solutions are possible. In this case,
the selected architecture must comply with the real-time
constraints and a cost optimisation will be made. In
addition, and because of integration constraints, the
solution has to be fully digital. In the classic solution a
digital PID structure would be used. Such a solution has
been performed in [2]. It resulted in a 10.000 gates-chip
with a computation time of 1 ms/motor. In order to
control the 18 motors within the 6 ms, we would need 3
PID modules.

The other solution investigated in this paper is based on
fuzzy control. In fact the function of the AMSC may be
modelled as a set of rules depending on a set of input data.

3. The fuzzy logic controller

In this section we provide the details of the solution
based on fuzzy Logic. The AMSC will be modelled and
discussed using the specification of the fuzzy controller.

3.1. Basic principles

The basic idea in fuzzy logic [7] is that a value such as
"speed is 100 laps/min" can be expressed as having a
membership value (µ) in a fuzzy set. For example "speed
is .8 slow" and "speed is .2 fast", where slow and fast are
fuzzy sets and the values .8 and .2 represent the degree of
membership in the respective sets [8].

Speed_Max

µs

Speed_Min

Slow Fast

Speed

Init_Pulse

µp

Empty Full

Pulse

Figure 2. Frontend fuzzy sets

In addition to above fuzzy sets, each fuzzy logic
controller incorporates:

*Sets of membership functions to which the
input facts belong in varying degrees. Typically, a set has
one name such as Slow (Sl), Fast (Fa), Empty (Em) and
Full (Fu). Each variable has its own set of membership
functions. In the case of the AMSC, we need two
variables: speed and pulse. The set of membership
functions of speed are slow and fast. The variable pulse
corresponds to the number of pulses that still have to be
performed by the motor. The set of membership functions
of pulse are full and empty . Fig.2 shows the sets of
membership functions for the two variables, Speed and
Pulse in a sample fuzzy logic application.

Speed_MaxSpeed_Min

Speed
control

Speed_n-1

(A) Ctrl_MaxCtrl_Min Ctrl_n-1

(B)
(1) if Full and Slow then Speed_max
(2) if Empty and Fast then Speed_min

(3) if Full and Fast then Same_Speed

µs/p

Figure 3. (A) Backend fuzzy sets.
(B) Rules.

µs

Speed

FullPulse

µp

Input values

µs

µp

Fuzzification Rule (1)
Speed_Max

Speed
control

Ctrl_Max

Min

Merge

From Rule (2)

From Rule (3)

Centroid

Defuzzification

Ctrl_MaxCtrl_Min Ctrl_n-1
Slow

Vn
µ1

µ3

µ2

µ

V

µ

Figure 4. Fuzzy controller principles

*A rule base which governs the behaviour of the
fuzzy controller. Typically, these rules are in the form of
"if ... then" statements such as "if Full and Slow
thenSpeed_max", where Full and Slow represent the
degree of membership in the membership functions. In the
case of our example, the control is specified using the three
rules of fig.3 (B).

3.2. Application to the adaptive AMSC.

The operations of the fuzzy controller are shown in
fig.4. The fuzzy controller performs the three following
functions:
(1) Fuzzification converts the input values for the
variables into a fuzzy value. The operation includes a lot of
searching in lookup tables and comparisons.
(2) Rule Application applies all the rules and produces
a fuzzy output value. The operations include truncation and
convolution of the membership functions.
(3) Defuzzification converts the fuzzy output value
produced by the rules. The operations here include
computing the centroid of the backend membership
functions. Fig.5 shows the Defuzzification formula used to
compute the output speed "Vn". This is the last step, an
optimisation can be obtained by reducing unnecessary
parameter, using normalising function to limit variation
interval and by using a simple defuzzification function.

In the next section, we will illustrate architectural
synthesis of the design.

µ1 µ2 µ 3+ +* Vmax * Vmin
µ1 µ 2 µ 3++

Vn = * Vn-1

Figure 5. Defuzzification Formula

4. High level synthesis

Once the speed computation algorithm is elaborated, we
proceed with simulations [9]. Firstly, the algorithms are
described in Behavioural VHDL [10] and compiled in order
to verify the behaviour in critical situations and to resolve
same convergence problem. When correct functionality is
assured, we begin the design synthesis. The architecture
synthesis tool (AMICAL) and Logic synthesis tool
(SYNOPSYS) are used for this purpose.

entity core is
port (...);
end core ;
architecture core_arch of core is
begin
 core1 : process
Variable N , Adr_Ram,U1,U2,U3 : Bu_8bits;
Variable V1,V2,V3,Tempo : Bu_8bits;
constant Z : Bu_8bits := "00000000";
Begin
Adr_ram := z ;
ReadRam(Adr_Ram,N);
 While (N /= Z) Loop
 Adr_ram := Mult10(N);
 ReadRam(Adr_Ram,U1);
 tempo := Z;
 Adr_ram := plus1(Adr_ram);

 ReceivePls(N,V1);
 moinw(U3,V3,tempo,V1,U3,V3);
 tempo := Diviw(U3,V3,U2,V2);
 tempo := shiftw2(tempo);
 writeram(Adr_ram,U3);
 Adr_ram := plus1(Adr_ram);
 --VN=(U1*V1+U2*V2+U3*VN)/(U1+U2+U3);
 writeram(Adr_ram,tempo);
 sendspeed(N,tempo);
 N := moin1(N);
 end loop;
end process core1;
end core_arch;

Figure 6. Incomplete VHDL description

4.1. Design flow

 The architecture synthesis is realised using AMICAL,
an architectural synthesis tool [11]. It starts with two kinds
of information: a behavioural specification given in VHDL
and an external functional unit library. During the different
steps in the high level synthesis, the functional units are
used as black boxes. The different steps involved in the
synthesis process are: scheduling, allocation and
architecture generation.

The library used by AMICAL can include complex
functional units. The behavioural description accesses these
function blocks through VHDL functions and procedure
calls. For each procedure or function used, the library must
include at least one functional unit able to execute the
corresponding operation. As shown in fig.7, to synthesise
the fuzzy logic algorithm, we need a library of functional
units holding multiplication, division and ALU (+, -,
shift, etc.). So, we specify and simulate separately these
functional units in VHDL at the register transfer level

High-level Design
Scheduling

Allocation

Architecture Generation

Behavior Description (VHDL) Functional Unit Library

I/O RAM

Read

Write

I/O Motor

Receive

Send

ALU

+
-

Shift

Cmp

Div

Div_8

Div_16
Bus, Mux, Register ...

... I/0
RAMDIV ALUCntrl

Controller + Data-Path

Mult

Mult

Mult10

entity core is
port (RST,CLK : in bit;
 Adr_M : out Bu_8bits;
 SEND, recv : out bit;
 DATA : inout Bu_8bits;
 Ad_R : out Bu_8bits;
 R_W , OE : out bit);
end core ;
architecture core_arch of core is
begin
 core1 : process
Begin
Adr_ram := C0 ;
ReadRam(Adr_Ram,N); -- Number of Motors
While (N /= C0) Loop

..........

end loop;
end process core1;
end core_arch;

Figure 7. Architecture synthesis flow

(RTL). Next, according to their characteristics we specify
them in the conceptual, implementation and high-level
synthesis view. These specifications are used by AMICAL
for the architectural synthesis.

The design is explicitly described by the VHDL code at
the behaviour level. A brief VHDL description is given in
fig.6. The simulation at the behaviour level has shown
that 8-bit computation are sufficient to have an accurately
result. In addition to the AMSC, the full VHDL
description includes the SEND and RECEIVE modules in
charge of communication with the motors. These are
described in VHDL at Register-Transfer-Level and
synthesised using the "Synopsys" design compiler.

As it can be seen in fig.1, the AMSC has an interface to
the shared memory at the left hand and an interface to the
motor current drive at the right hand. So, the AMSC
system communicate in real time with these interface
using an appropriate protocol. To allow this
communication, we use two communication units, one for
the RAM and the second for the motor interface. These are
used as functional units (FU) executing communication
operations. These FUs execute specific protocols
synchronised by static clock cycles. The I/O Ram FU
executes two operations: Read_ram and Write_ram. Each
operation needs two clock cycles. The I/O motor FU

consists of two operations: Send_speed and Receive_pulse

4.2. Architectural synthesis results

The architectural synthesis of the AMSC, using the I/O
interfaces, generates an architecture with a controller of 39-
states and an FSM with 108 transitions. It controls the
data-path through 49 command lines. The data-path
obtained after some interactive architectural transformations
is made of:
- 5 functional units: ALU, Multiplier (8x8), Divisor
(16/16), I/O RAM and I/O MOTOR.
- 9 Registers of 8-bits.
- 3 Mux(2), 5 Mux(3) and 8 Mux(4). Mux(i) is a
multiplexer with "i" inputs.

Fig.8 shows the architecture of the AMSC produced by
AMICAL. It is composed of a top controller, a set of
functional units and a communication network. These last
two form the data path. The communication network is
composed of buses, multiplexes and registers. The network
is build in order to allow the communication between
registers, functional unit and the controller. The top
controller sequences the operations executed by the
functional units and the communication network

TOP
 CONTROLLER

N_motor Adress

ALU X
. .

I/O RAM

Read_Ram

Write_Ram

I/O Motor

Se
l

Control
signals

Send_Speed(N)

Read achieved
Pulse (N)

Read

Write

Procedure
call

Block

I/O RAM

I/O RAM

Send I/O SEND

Receive I/O Motor

Incr

ALU
Add
...

C
lk

R
es

et

C
om 8

D
A

T
A

R
/W

C
E

A
dd

re
ss

8

M
ot

or

88

Sp
ee

d/
Pu

ls
e

Se
nd

Reports

R
ec

v

8 16

O
E

Tempo U1 U2 U3 V1 V2 V3

Div

Mult X
. .

 Data_Bus & Muxs

16 16 16 8 16 16 8 8 8 8 8 8 8

C
om

Se
l

C
om

Se
l

Se
lC
om

Se
l

C
om

Control
signals

R
/W

R
/W

C
lk

C
lk

C
lk

C
lk

C
lk

C
lk

C
lk

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W C
lk

C
lk

C
lk

C
lk

C
lk

C
lk

C
lk

Figure 8. Architecture of the AMSC design

The controller is generated automatically during the
synthesis process. The architecture includes several
functional units that may run in parallel. The amount of
parallelism is fixed during the synthesis process. The Data
path includes 2 communication units: I/O-Ram and I/O-
Motor. These communication units are not only connected
with the data path, like the other components, but they are
also connected to the external environment and are building
the connection between the internal data path and the
external pins of the circuit. Such components consist of
two parts: the first part contains the interface to the data
path and is synchronous. Only this interface must be
considered by the high level synthesis system. The second
part contains the external interface of the circuit. It
contains all signals for the specific protocol. The interface
component handles the complete protocol without further
interaction with the controller or data path. It may be to
complex that it contain internal registers and a local
controller.

5. System integration

After architectural synthesis, we use a commercial logic
synthesis tool and the Xilinx placing and routing tool to
produce a prototype net-list. The final design is about
10.000 gates. The system is implemented on a platform
supporting all sub-modules (fig.9). This platform is a
standard PC-compatible computer with an extension
FPGAs card. The AMSC is mapped on a Xilinx 4013
running at 4Mhz (FPGA1). The send and receive sub-
modules with a motor models are mapped on a Xilinx
4005 (FPGA2) [12]. A 4K x 8-bit dual-port RAM is used
as an interface between the out-line (P.C.) and the AMSC .

Dual-Port
RAM

...

Mn

M2

M1
Send/Recv

FPGA2

AMSC
FPGA1

Extention Card

Figure 9. Implementation of all the system

The AMSC needs 120 clock cycles to run the fuzzy
logic algorithm for one motors. Since the FPGA runs at 4
Mhz, the AMSC allocates 0,03 ms of computation time to
each motor. The computation loop for 18 motors will be
about 2160 cycles and takes 0.54 ms, which satisfies the
real-time constrain. However the AMSC control up to 200
motors within the 6 ms initial reaction loop constraint.

The fig.10 illustrates the important improvement and
the cost reduction using fuzzy logic compared to the PID
algorithm. In fact, in this case fuzzy control solution
allows to obtain a much fasten and smaller design than
classic control solutions.

Fuzzy AlgorithmPID

N° Cycle /motor

Reaction Delay/motor

N° of Motors/6ms

N° of gates 10.00010.000

6

1203000

200

0,03 ms1 ms

Figure 10. Synthesis results

6. Conclusion

This paper discussed and illustrated the implementation
of the AMSC using a fuzzy logic algorithm. This design
shows the advantages of fuzzy logic to model a complex
controller system. In fact, it ease the design since we avoid
the complexity of a mathematical model. Since the system
uses few rules, the implementation was very fast.

In this project the combination of two advanced
technologies High-level synthesis and Fuzzy logic, allowed
the implementation of a new efficient solution. The new
design is much faster and smaller then classic solution
based on PID.

References

[1] G. L. LOU and G. N. SARIDIS, "L-Q Design of PID
Controllers for Robot Arms", IEEE Journal of Robotics
and Automation, Vol. RA-1, N° 3, 152-159, September
1985.

[2] P.Kission, H.Ding, A.A.Jerraya "Structured Design
Methodology for High-level Design" 31st ACM/IEEE
Design Automation Conference, 1994.

[3] L.A.Zadeh, "Fuzzy Set," Information and Control. ,
(1965).

[4] M.C.Fritsch, E.Wendling, "Commande de processus: Les
atouts de la logique floue" Technologies Internationales,
pp 27-32, April 1994.

[5] Daniel Gajski, Nikil Dutt, Allen Wu and Steve Lin, High
Level Synthesis. Kluwar Academic Publishers, 1992.

[6] M.Abid, A.Changuel, A.A.Jerraya, "Exploration of
Hardware/Software Design Space through a Codesign of
Robot Arm Controller" EURODAC, Genève 1996.

[7] G.C.Lee, "Fuzzy Logic in Control Systems: Fuzzy Logic
Controller - Part I and II" IEEE Transaction on systems,
Man and Cybernetics, pp. 404-435, March/April 1990.

[8] D.D.Gajski, "Towards achieving an 100-hour Design
Cycle: A test Case" Technical Report #94-08 February 14,
1994.

[9] C.A.Valderrama, A.Changuel, P.V. Raghavan, M. Abid, T.
Ben Ismail, A.A.Jerraya "A Unified Model for Co-
simulation and Co-synthesis of Mixed Hardware/Software
Systems" Proc. European Design & Test Conference
(ED&TC), Paris, France, IEEE CS Press, March 1995.

[10] IEEE Standard VHDL Language Reference Manuel, 1988.
[11] A. A. Jerraya, H. Ding, P. Kission, M. Rahmouni,

"Behavioral synthesis & Design Re-use with VHDL".
Kluwer Academic Publishers, To appear 1996.

[12] Xilinx, The Programmable Gate Array Data Book, 1994.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

