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Abstract

This paper deals with exploration of hardware/software
design space. The analysis is illustrated using a design
of robot arm controller. The controller makes use of an
adaptive speed control in real-time. Several architectural
solutions will be discussed with regard to their
performance and cost. The goal is to select the best
solution that satisfies the real-time constraints and
minimizes the cost.

1. Introduction

Real-time systems are specified not only by a set of
tasks but also by constraints dependent on the
application context. System design is a critical
foundation since many systems include performance
constraints as a part of their requirements. It is a
complete system that performs all the functions
properly in such a way that all performances can be met.

In recent years, real-time electronic systems used for
dedicated applications consist of general-purpose
processors or application specific hardware. When
designing such a system, the designers have to decide
among a full software solution, a full hardware solution
and a mixed hardware/software solution. A purely
software implementation reduces the design time and
cost by implementing tasks as programs. This solution
also makes easier the maintainability. Depending on the
specification and system operating environment, a
software solution can range from a simple single
microprocessor to a multiprocessor configuration.
Unfortunately software implementation does not always
satisfy all requirements, in particular, the timing
performance. Hardware implementations produce faster
solutions which are however more expensive moreover
they require a longer to be designed. To optimize the
performance/cost, it is recommended to use a mixed
hardware/software implementation [3].

_____________________
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The renewed interest in such an implementation is
driven by advances in technologies that support hardware
and software parts. These technologies are needed in
order to handle high complexity and to allow mixed
implementations required for codesign. The main
motivation behind this research is to allow the design
and implementation of modern systems including both
hardware and software. Several projects currently in
progress (SpecSyn at Irvine [7], CODES at Siemens [4],
SDW at Italtel [1], Thomas approach at CMU [2],
Gupta and De Micheli approach at Stanford [8], Wolf
approach at Princeton University [13], Chinook at the
university of Washington [6], Ptolemy at Berkeley [10])
are trying to integrate both hardware and software in the
same design process.

The long term objective of this research work is to
develop methods and tools for hardware/software
codesign. The objective of this paper is to explore the
hardware/software design space. An analysis will be
performed using a codesign of a robot arm controller.
The controller makes use of an adaptive speed control in
real-time. Several architectural solutions will be
discussed with regard to their performance and cost. The
aim is to select the optimal hardware/software solution
and illustrate the advantages of mixed hardware-software
implementations.

The next section describes the robot arm controller
system used to illustrate the hardware/software
partitioning. Section 3 gives an outline of the
hardware/software codesign flow and a target architecture
that will be served as a platform onto which a mixed
hardware/software system is mapped. The hardware-
software partitioning of robot arm controller system and
discussions of different solutions will be described in
section 4. Finally, section 5 draws some conclusions
and outlines future directions on hardware/software
partitioning.

2. The Robot Arm Controller

The robot arm controller under discussion acts
between a "Host Machine" and a robot arm that makes
use of 18 stepper motors (figure 1). The host fixes the
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trajectory of the arm. It then sends the commands to the
robot arm. The controller makes use of an adaptive speed
control to smoothen the motion of the arm.

 Robot Arm
 Controller

Robot
   Host
Machine

figure: 1 Control System in Robotics

2.1. Principle of Adaptive Control

The trajectory of the arm is decomposed into short
distance segments to go. In order to realize a given
segment, each motor will have to perform a given
number of steps determined by the host (in the form of
packets of pulses). We assume that all the motors have
to perform the corresponding segment in the same lapse
of time with a constant speed. Then the speed of each
motor has to be adapted according to the number of steps
required by the performed segment.

Besides, in order to avoid the motors from stopping
brutally between two successive segments, an
anticipation is performed. Thus, the speed of a motor
depends not only on the current segment but also on the
precision and on the next neighbour segments. This
anticipation creates an error. The magnitude of this error
is controlled through the amount of anticipation.

The distribution system feeds the adaptive controller
in parallel. The motor controllers send back
continuously informations about the distance they still
have to go. This information is used by the distribution
system in order to decide whether it should send a new
segment to the motors. So, the system performs two
principal tasks: adaptive distribution of pulse packets
and adaptive speed control in real-time.

* Adaptive Distribution

To each motor, is associated a "Tank" which acts as a
"Buffer" memory. The latter is used to stock the received
packets of pulses from the host machine (Ri). We
assume that the maximum number of pulses (Pmax),
which may be used by each speed control, is known.
After the arrival of each pulse packet:

- the "Tank" having the maximum of pulses is
identified (Rmax),

- the number of pulses needed to be sent to each speed
control is:

Pi= (Ri * Pmax)/Rmax
The "Tanks" are, of course, actualized after each

supply in order to determine the one having the highest
number of pulses in order to compute the new
proportions of pulses.

With this approach, the distribution of pulses for
different motors is always proportional to the number of
pulses kept in the "Tank". This ensures the continuous
operation of the motors and a smooth control of their
speed.

* Adaptive speed control in real-time
The actual speeds of the motors are calculated and

adapted according to the number of pulses to be realized
and the number of pulses already achieved. This permits
anticipation.

To each motor, is also associated a "Tank" of pulses
memorising the proportional number of pulses from the
distributor. The speed of the motor should respect a well
defined curve for acceleration and deceleration. The
number of pulses may be consumed before the motor
reaches its minimum speed; this situation introduces an
anticipation (negative number of pulses) to be taken into
account during the next step. The speed of each motor
would then be calculated with respect to:

- the remaining number of pulses  to be executed,
- the current speed of the motor, and
- its acceleration/deceleration curve.
At each step, we have to decide whether to accelerate,

to decelerate or to maintain the speed of each motor.

2.2. Real-time constraints

The response time of each motor is 6 ms.
Consequently, in order to ensure the command in real-
time, the speed variation must be ensured within 6 ms.
The time needed to update the speed must be less than 6
ms.

We will explore a several implementations. The goal
is to determine which parts of the system should be
implemented as hardware and which ones with software.
The solution has to satisfy the real-time constraint.

Before the design space exploration of this example,
let us give a brief description of COSMOS environment
for hardware/software codesign.

3. Hardware/Software Codesign Flow

Figure 2 shows the codesign flow performed in order
to transform a system-level specification of a mixed
hardware-software implementation. The codesign process
is composed of four steps [9]: system-level
specification, system-level partitioning, communication
synthesis and software and hardware synthesis.

The goal of hardware/software codesign is to produce
an efficient implementation that satisfies the
performance and minimizes the cost, starting from the
initial specification. However, there exists a diversity of
technological solutions based on available hardware-
software components. Of course the design process will
include lots of feedback loops in order to redesign parts
of the system or even the full system. Different
solutions are analyzed to choose the optimal solution; it



results from trade-offs between both technologies which
satisfy the required performances. However, at any stage
of the design, the user can cancel one or several design
steps in order to explore new choices.
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Figure 2: co-design flow

The architecture model specified earlies in the
codesign process guides the detailed implementation
choices. In fact, the differents architectural solutions
depend on the input description and the architecture
model. To explore the hardware/software design space,
an example of target architecture onto which a mixed
hardware/software system will be mapped, is performed.
This architecture is based on a PC (for software
implementation) with an FPGAs extension board (for
hardware implementation).

The platform include several standard peripheral
components such as I/O ports (serial, parallel), Direct
Memory Access, Interrupt controllers etc. Their drivers
may be kept either in EPROM or may be down loaded
from an external memory. The system bus is used for
the transfer of data, address and control between different
components.

Hardware parts is composed of a set of FPGAs
(Xilinx). The FPGA's parameters may be read from an
EPROM or an external memory system, in which case a
routine is executed on the microprocessor.

Standard and FPGAs components used in this
platform are designed to cooperate with the
microprocessor. These components work with the
interface driver running on the microprocessor, and
translate reads and writes to and from components into
the proper handshake and data transfers. Many
communication modes (such as synchronous and
asynchronous modes using acknowledgement or not
etc.) may be used. The designer can use the functions
that are achieved by the operating system or perform
others functions to transfer control between the
microprocessor and the components.

The mixed hardware/software system will be mapped
from behavior description. COSMOS uses unified
model for co-simulation and co-synthesis of mixed
hardware/software systems [12]. A modular description
is composed of three parts: a set of hardware
components described in VHDL, a set of software
components as C programs, and a set of communication
component(s) to connect the above two parts. The latter,
namely the communication components, corresponds to
a library of components, which helps to hide the
possibly complex behavior of the platform. This
description will be used for co-synthesis to produce
hardware/software prototypes.

4. Design space Exploration of the
Robot Arm Controller:

The controller will be designed as two parts. The 18
Speed control sub-systems are independent and may
therefore be thought of as concurrent state machines.
Distribution sub-system computes the proportional
pulses for each motor, this is done concurrently with the
Speed control sub-systems. Different hardware/software
implementations may be explored.

In this section, we well present the functional
specification of the application, followed by the
discussion of several architecture solutions.

4.1. Functional specification

As shown in figure 3, the distribution sub-system
receives data from the Host Machine and provides the
travelling distance to the Speed Control sub-system.
This sub-system computes the number of pulses for
speed control and translates them into motor control
signals. The motor returns the pulses already realized.
Thus the speed control sub-system controls the motors
step by step in real-time.
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Figure 3: Specification of Robot Arm
Controller

The distributor sub-system fulfil's the three following
tasks:



i) it receives the command or data (the packets of
pulses) from the host machine through the HM/DSS
channel,

ii) it computes the proportional number of pulses for
each motor,

iii) it supplies to the speed control sub-systems the
corresponding pulses when they are ready through the
DSS/SCSS channel.

For each motor, the speed control sub-system receives
the corresponding number of pulses in the form of a
packet, computes the new speed and translates them into
control signals (Sequence of Modulated Pulse) while the
motor returns the realised impulses.

The speed control sub-system includes four tasks:
i) the receipt of the command or data (proportional

number of pulses) from the distributor sub-system
through the DSS/SCSS channel,

ii) After the communication with the distributor sub-
system, the information is decoded. The latter can be
either a command or data. The speed control sub-system
accordingly treats the above in one of the following
ways:

- If there is a Control command (initialization,
starting, etc.), then the sub-system initializes the
corresponding operation,
- If there are new pulse data, they are added to the
remaining pulses. Then the new speed of a motor
will be calculated on the basis of the remaining
number of pulses as well as the present speed. The
above would thus result in either an acceleration or
a deceleration.
- In the case when the received command inquires
the state of the speed control of the motor, the sub-
system returns the answer.

iii)  The sub-system transmits the calculated speed to
the motors through the SCSS/M channel.

iv) Pulses already executed are simultaneously counted
through the SCSS/M channel. This enables the update
of the pulses to be realised for  the  calculation of new
speeds.

For implementation, there are different partitioning
solutions: pure-software, pure-hardware or hardware-
software implementation. In fact, the system is specified
not only by a set of tasks but also by the response time
of the motor. Thus, the functional behaviour of this
system must be logically and temporally correct. In
order to ensure the control in real-time, the speed
variation must be ensured during a lapse of time smaller
than the response time of the motor. In other words, the
time needed to calculate the next speed must be less than
the  maximum response time of the motor (6 ms).

4.2. Exploration of the hradware/software
partitioning space

Starting from the specification given in figure 3
several solutions may implement the Robot Arm
Controller. Each solution will be composed of a set of

hardware components and/or software components and of
communication components.

For the sake of simplicity we will restrict the type of
components used. A software component will be made
of a 80286-based architecture; a hardware component
will be made of a Xilinx 4013 FPGA, while
communication components may be  existing
components or Xilinx 4013 FPGAs.

An additional assumption is that a cost is associated
with each component. For instance, an FPGA will cost
10 units, while software will cost only 5 units. Since
we have fixed the components, we can predict the
performance of each task whether it is implemented in
hardware or in software.

Although, in order to be able to measure the
performance of codesign solution, a metrics of execution
time is used. In fact, the execution time is decomposed
into two components: the computation time and the
communication time. The computation time is defined
as the execution time for the processor to perform all its
internal computations during a single pass through the
behavior. The communication time is defined as the
access time of external data to the processor (during a
single pass through the behavior of the processor too).

In order to determine the total execution time of the
system, the number of executions for each task is
calculated with regard to one packet  of pulse. The
frequency of each task is then deduced according to the
speed. For this, we assume that:

- the speed variation corresponds to 16 pulses at
most,

- the supply from the Host Machine is 150 pulses,
- the maximum number of pulses to be sent to a

speed controller of the motor is 15.
For software, a dynamic simulation [11] is used to

estimate the execution  time. The time is determined by
calculating the maximum execution time of real-time
programs. For Hardware, the execution time is deduced
using SYNOPSYS with  VHDL description.

Table 1 lists the call frequency and the execution time
for each task according to the implementation (software
or hardware). These number corresponds to cycle count
obtained by evaluation.

Call
Frequency

Software
(cycles)

Hardware
(cycles)

Distr ibutor
H.Mach. Interface 0.106 12 2

Computation 1.066 1250 5
Spe.Ctr. Interface 1.066 11 3

Speed
Contro l l er
Dis. Interface 1.066 10 3
Computation 3 1480 6

Timer 16 25 4
Receive 16 30 6

Table 1: Execution time



Software
(cycles)

Hardware
(cycles)

Distributor 1333 .41 8 . 5 6
H.Machine Interface 0.19 0.03

Computation 1321.50 5.33
Spe.Ctr. Interface 11.73 3.20

Speed
Controller

5330 .06 7 0 . 3 3

Dis. Interface 10.06 3.20
Computation 4440.00 18

Timer 400 64
Receive 480 96

table 2: Normalised execution time

By combining the informations those given by table
1 (the frequency of calls and execution time), we deduce
the normalized execution time (number of execution
cycles to calculate the speed) of each task for hardware
and software implementation (table 2).

The discussion about hardware/software solutions
considers 6 ms as being the real-time performance and a
cost constraint of value 80.

4.2.1. Pure Software Implementation Using
One Software Processor

We assume that all the tasks will be executed on the
same processor. This will need an extra scheduling step
that will arrange the execution order of the tasks. Let us
now deduce the execution time for the distributor and the
18 motor controllers. In fact, the total execution time is
about 9.7 ms (thus larger than 6 ms). However, the cost
of this solution is 5 (less than 80). Although, this
solution meets the cost constraint, it does not meet the
real-time requirement.

4.2.2.  Pure Software Implementation Using
Two Software Components

The system can be designed as two asynchronous
parts: the distributor may be done concurrently to the 18
motor Speed Control Sub-Systems. Thus each part can
be run on a separate microprocessor. In this case, the
execution time for each part may reach 6 ms at most.
After the analysis, the execution time of the 18 Speed
Control Sub-Systems is almost 9.5 ms (>6 ms). Thus
this software solution too does not meet the real-time
requirement. Note however that the cost of this solution
is 10 (< 80).

4.2.3. Pure-Software Implementation Using
19 Software Components

 Another solution using a microprocessor for each
speed control sub-system may be considered. We
associate a software component to the distributor sub-

system and a software component for each motor
controller. This solution meets the real-time requirement
(with an execution time almost of 0.95 ms). However it
does not meet the cost constraint (95>80).

4.2.4. A Pure Hardware Solution

All the functions could be realized in hardware with
FPGAs modules. In fact, the 18 Speed Control Sub-
Systems are independent and may therefore be designed
as concurrent state machines. On considering the FPGA
capacity, the number of speed control sub-systems
integrating on one chip is 3. Therefore this
implementation has to use one FPGA for the distributor
and 6 FPGA chips for the 18 Speed Control Sub-
Systems. The cost of this solution is 70 (less than 80).
Thus this solution meet the cost constraint.

However, it can be advantageous to make some parts
of the design in software, while time critical parts are
realized as hardware. Of course, the mixed
implementation has to meet the real-time requirement.
These alternatives will be analyzed in the next
paragraph.

4.2.5. Hardware/Software Solutions

Because external real-time signals are better analyzed
in hardware, we associate hardware components to the 18
Speed Control Sub-Systems. However, if we associate a
microprocessor to the distributor, the execution time is
1.33 ms. Thus, this implementation has to use one
microprocessor for the distributor and 6 FPGA chips for
the 18 Speed Control Sub-Systems (figure 4). The cost
of this solution is 65 (less than 80).
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Figure 4: Hardware/software solution



4.2.6 Summary of the Codesign Exploration

Three solutions met the real time requirements and
four solutions satisfied the cost constraints as illustrated
in Table 3. However only two of them met both cost
and real-time constraints. In this case we select the
optimal solution. In fact, the last solution is cheaper
than the fourth solution. It has a better cost compared to
solution 4.

Solution Normalised
Execution

Time

Real-Tim
eviolatio

n
Cost

Cost
violation

possible
Solution

1 9.7 ms Yes 5 N o KO
2 9.5 ms Yes 1 0 N o KO
3 0.95 ms N o 95 Yes KO
4 0.21 ms N o 7 0 N o OK
5 1.33 ms N o 6 5 N o OK

Table 3: result of analysis

A prototype is performed using an Intel 286-based
platform and a development board that consists of Xilinx
4013 FPGAs. The design of the system based on fuzzy
logic is given in a companion paper [5]. An analysis of
the prototype indicates that this solution correctly
implements the system functionality while meeting real-
time requirements. This prototype has been
experimented with the stepper motors. The result is
satisfactory.

5. Conclusion

This paper discussed a hardware/software codesign of a
Robot Arm Controller with 18 motors. We showed that
several solutions may implement an initial
specification. The use of a cost and performance
measurement model allowed to select a solution that
meet all the requirement of the application. The
advantages of mixed hardware-software implementation
are illustrated.

Of course several other key issues are still needed in
order to explore a large design space. These include the
automatic algorithms for hardware/software. These are
needed in order to allow fast and large exploration of the
design space. The efficiency of such techniques will
depend on the objective function used. This brings us
again to the previous point: the need for good estimation
methods. Research efforts will be currently deployed to
formulate estimation models and objectives functions.
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