
Specification and Design of Electronic Control Units

Jürgen Bortolazzi, Thomas Hirth, Thomas Raith
Daimler-Benz AG F1M/E

D-70546 Stuttgart
e-mail: bortolazzi@str.daimlerbenz.com

Abstract

Electronic control units (ECU) play a more and more
important role in the development of road vehicles.
Forecasts lead up to 25% of the total vehicle value in
2000. The increasing complexity and stringent quality
and cost requirements mandate tremendous
improvements in the specification and design process.
This paper presents the cooperative activities at Daimler-
Benz research and Mercedes-Benz development
departments to install an optimized design process.

1 Introduction

In order to improve safety, to reduce emmission and
fuel consumption or to improve comfort and driver
information, a rapidly increasing number of vehicle
components are controlled by open-loop and closed-loop
systems, which consist of sensors, actuators and
electronic control units (ECU). Typical examples are
powertrain control systems such as engine and
transmission management, active suspension and braking
systems such as ABS (Anti Blocking System) and ABC
(Active Body Control) or navigation systems. The
development process of such systems is illustrated in
figure 1, where three major levels can be identified:
1. the mechatronic vehicle system, such as an engine

management consisting of the engine, sensors and
actuators as well as the ECU

2. the ECU typically consisting of a standard
microcontroller (e.g. Siemens 80C167), specific
signal processing and controller IC’s as well as the
necessary packaging, power supply and power
electronics components

3. the control software, consisting of open-loop and
closed-loop control algorithms, communication and
management functions as well as onboard diagnostics.

The requirements on the performance of ECUs have
increased dramatically over the last ten years: From
isolated control units simply controlling specific vehicle
components in the 80’s to autonomous communicating
systems in the 90’s and finally fully integrated, higly
interconnected systems executing distributed control
algorithms for the next vehicle generation. In order to
intelligently manage this evolution, the Mercedes-Benz
(MB) strategy for electronic vehicle system design
consists of four major aspects:
1. minimization of cost
2. ability to manage complexity
3. maximization of reliability
4. optimization of functionality.

This strategy mandates a systematic design process
which takes into account the workshare between
manufacurer and supplier. From the point of view of the
car manufacturer, system design is the essential key to an
intelligent management of a design process which is
heavily restricted by time-to-market, quality and cost
aspects as well as the recognition of competitive
advantages. Therefore, a car manufacurer has to have as
much information about a vehicle system as is necessary
to intelligently decide about system architecture and
development depth of the components. Last but not least,
system integration test as well as the preparation of
diagnostics and service information has to be done under
the responsibility of the car manufacturer.

Traditional design cycles are characterized by a
number of aspects:
• nonformal descriptions of requirements and design

results
• heterogeneous and inconsistent design data
• long iteration cycles, typically mandating vehicle

validation tests and supplier involvement.
Currently, new design methodologies provide the basis

for the optimized execution of existing and future vehicle
development projects. Major components are:

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

System
Specification

System
Simulation

Development of
HW /SW

Specification

Prototype
Development

Calibration
Vehicle

Validation

Release to
Manufacturing Manufacturing

Functional
Test Service

HW
Design

HW
Simulation

Prototype
Assembly

Design
Verification

Release to
Manufacturing Manufacturing

Functional
Test

Autocode
Prototyping

SW
Coding

Static and
Dynamic Test

Development of
Control Algorithms

and Onboard
Diagnostics

Car program
requirements

Emmission laws
Strategic

requirements

10s + 10
s+5+

-
+

Specification and Design Manufacturing Service

Mechatronic
Vehicle
System

Electronic
Control
Unit (HW)

Embedded
Realtime
Software

void main()
{...}
void initialization()
{...}
static void control (input, states, output)
{...}

Figure 1. Concurrent development processes for mechatronic vehicle systems

• Process reengineering and measurement based quality
improvement methods

• Sophisticated design data and documentation
management

• Increasing formalization of specification and design
descriptions

• Multi-level, mixed-mode system simulation under
real-time constraints including mechanical,
hydraulical, pneumatical, electrical and electronical
parts

• Continuous support for specification, design, rapid
prototyping, test, manufacturing and service.

For automotive development processes, it is very
important to take into consideration the interaction
between manufacturer and supplier. As described by
Clark and Fujimoto in [1], three major scenarios have to
be distinguished (figure 2):
• Detailed development of the ECUs is performed by

the supplier companies. The manufacturer selects
components based on his overal car concept and due
to cost, performance or strategic aspects. The know-
how is mainly avalaible at the supplier’s organization.

Detailed Development
Supplier

Car
Concept

Car
Manufacturing

Component
Concept

Component

Prototype
Implementation

Production

Component
Selection

Specification
Design

Black-Box
Components

Car
Concept

Car
Manufacturing

Component

Prototype
Implementation

Production

Specification
Design

Specification
Design

Car Test

Detailed Development
Manufacturer

Car
Concept

Car
Manufacturing

Component

Prototypes
Supplier

Production

Specification
Design

Car Test

Implementation

Manufacturer Supplier Manufacturer Supplier Manufacturer Supplier

Figure 2. Scenarios of manufacturer/supplier interaction

• In the case of black-box components, the
manufacturer performs a detailed specification and a
validation (through simulation and test) of the
components, whereas the supplier implements the
ECU based on these specifications. Details about the
implementation are not available at the
manufacturer’s organization.

• Detailed development is performed by the
manufacturer. The suppplier implements the
prototypes based on the detailed specs or supplies a
basic hardware/software level where the manufacturer
implements his algorithms.

Among the numerous ECUs integrated in modern
vehicles, each of these development scenarios can be
found. In every case, the level of detail of the information
that is exchanged has to be clearly defined. In the MSR
project [2], several levels of information and product
exchange are identified:
1. requirements documentation, e.g. based on SGML

(Standard Generalized Markup Language)
2. specifications on different levels, FMEA (Failure

Modes and Effects Analysis) /FTA (Fault Tree
Analysis) data

3. prototypes (HW and SW) and functional test patterns
4. source code
5. object code
6. ECUs and related test patterns.

Regarding the hardware and software components of
an ECU, one could distinguish between the scenarios
illustrated in table 1. Black-box scenarios will be used for
standard functions like ignition control. The grey-box and
white-box scenarios are the favorite strategies for future
electronic vehicle system design in the case of functions
related to competitive advantages.

Black-Box Grey-Box White-Box
Functional
SW Modules

Supplier Manu-
facturer

Manu-
facturer &
SW suppliers

Operating
System & I/O

Supplier Supplier SW supplier

Hardware Supplier Supplier HW Supplier

Table 1: HW/SW interfaces for different
cooperation scenarios

The following chapters will describe the development
and installation of the specification and design process in
more detail. Chapter 2 will describe reengineering
activities as the basis for a systematic optimization of the
design process. Chapter 3 will describe methods and tools
used in already optimized processes. Chapter 4 will
describe status and trends in electronic vehicle system
architectures and Chapter 5 will provide future directions
and a conclusion.

2 Process Reengineering

To avoid local optimization of design processes
without taking into account the real problems in the
design cycle, the introduction of new methods and tools
in the MB development departments is based on a
systematic reengineering and quality improvement
approach. Design processes are analyzed and modelled
with respect to relevant activities, related parties as well
as necessary information, manpower and technology
resources. Dedicated metrics and questionnaires provide
support for the identification and realization of necessary
process improvement. Due to the lack of reference
processes for automotive system design, much effort is
spend to develop a specific approach, particularily based
on approaches found in [3]-[7].

The first reengineering analysis obviously showed
significant potential for improvement through the
introduction of system design methodologies and tools
such as
1. requirements capture and guided editing as well as

standard formats for requirements and design
documentation

2. usage of formal, executable models as well as system
simulation to detect problems early in the design cycle

3. establishing rapid prototyping the development of
powerful prototyping platforms as well as code
generation from executable specification models

4. systematic validation and verification activities for
integration and module test as well as vehicle
validation.

The introduction of formal, executable specification
models showed to be the backbone of the new
development process. However, the underlying methods
were not established in the development departments and
the tools significantly lack integration in the existing
method and tool environment. The lack of an appropriate
system design methodology for distributed realtime
systems lead to unsatisfying results. Furthermore,
introducing these approaches into the complex concurrent
engineering process performed by MB and its suppliers
showed to be the major problem. Due to this situation, an
extended strategy is now established:
1. A major effort concentrates on adapting the methods

and tools to vehicle specific aspects. This includes a
model schema representing the functional and
architectural aspects specific to distributed electronic
vehicle systems. Furthermore, vehicle specific model
libraries as well as interfaces for integrating existing
functionality are developed.

2. Significant effort is spent to adapt the modelization
and description languages to vehicle specific needs. A
style guide is under development that includes

− a specific methodology for developing vehicle
control functionality and to distribute it among an
optimized architecture of electronic control units

− readability and layout rules for modelization to
take into account that models are still
documentation in the first place („readability
before executability“)

− strictly formal semantics for language subsets used
for safety critical applications such as steer-by-
wire

− integration into the infomation technology process,
e.g. integration with SGML-based requirements
documentation including requirements traceability
or integration with CAN (Controller Area
Network)-specific development tools, especially
bus simulation, communication matrix as well as
specific estimation and optimization tools

− integration of code generation into a general
realtime platform based on an scalable realtime
operating system including autocode from other
tools, realtime execution and communication as
well as test pattern databases and data recording
capabilities

− integration with diagnostics tools
− integration with man-machine interface

development tools.
3. The adaption of code generation from executable

models showed to be too much restricted by
traditional vehicle system architectures. Therefore,
new architectures including a standard realtime
operating system and client/server approaches are
under development.

3 Methods and Tools

Based on proprietary activities in different vehicle
manufacturer and supplier companies, a joint cooperative
action, the MSR project, was established to define a
specification, design and test methodology that provides
definition of external actuators and sensors, interfaces of
the system to be designed, the internal functional
structure of the system as well as the realtime behavior of
the single functions. This approach was realized using an
integrated environment including the tools commercial
tools Statemate [8] and MatrixX [9]. Several pilot
projects have been performed:
1. cruise control,
2. transmission control
3. engine management.

Based on these pilot applications, the methods and
tools are currently used in several development projects:
• interconnected car body systems
• CAN gateway

• central locking systems
• active gearbox systems
• transmission control
• active suspension systems
• active braking systems.

These applications mandate the consideration of open
loop and closed loop control behaviour as well as system
communication. It is worth noting that analog modelling
is used to represent both the internal controller behaviour
and the engine and vehicle environment. In the MSR
project, a prototype coupling of Statemate and MatrixX
was developed to be able to simulate complex systems
containing open-loop and closed-lop aspects as well as a
model of the vehicle, the engine or the transmission. The
integration of tools is performed at several levels:
1. Method integration: the combination of different tools

mandates a disciplined approach to modelling and
interfacing. In the MSR project, functional
decomposition using data flow diagrams is separated
from behavioral modeling using state machines,
differential or difference equations, lookup tables or
algebraic equations or any combination of these.

2. Tool integration: The combined simulation of
different models mandates a coupling of the executing
simulation engines. In the MSR project, direct
coupling or the usage of simulation backplanes (like
software busses) were considered. Coupling of
simulators requires open interfaces as well as
synchronization mechanisms.

3. Code integration: Tools providing code generation
(AutoCode) can be used to integrate models on code
level. Code generated from one tool can be integrated
into another tool and code generated from different
tools can be linked and executed on a PC, workstation
or a prototype realtime platform.

The specification and design methodology is based on
the following aspects:
1. continuous requirements tracing
2. integrated approaches to model-based specification of

closed-loop and open-loop aspects (figure 3)
3. a systematic approach for function- vs. component

oriented design
4. rapid prototyping
5. hardware-in-the-loop test.

The model based specification of the embedded
realtime control functions is based on a specific
methodology consisting of
• functional specification of control aspects

independently from architectural aspects including
usage of reusable function models

• distribution of control and datapath based on the
selected architecture including generation of related
communication prototcols based on the CAN
standard.

INIT IDLE

ERROR

PROCESS

IDLE

ON

REQUEST

SUSPEND

ERR/OFF

OFF

DIAGPROC

C/ERR RES

PROC

OFF

IR

OPEN LOOP
CONTROL

ONBOARD
DIAGNOSTICS

COMMUNICATION

10s + 10
s+5+

-
+

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A

ENVIRONMENT
VEHICLE
DRIVER

CLOSED LOOP
CONTROL

SIGNAL
PROCESSING

Figure 3. Integrated specification and test environment

4 System Architectures

The design of an optimized system architecture for
electronic vehicle systems is influenced by function, cost,
weight, packaging and placement and power
consumption.

Motor CAN

Car Body CANGateway

Figure 4. Current network architecture for
distributed vehicle control functions

Traditional ECU development was very much
influenced by the mechanical units. As a result, numerous
standalone ECUs such as ignition control, injection
control, or transmission control evolved. The next
generation, introduced in recent car models such as the
new E-class, system integration into major functional
units such as complete transmission control units
integrated into the packaging of the mechanical
transmission component are realized. Several bus systems
including high speed CAN for realtime functions like
engine and transmission control and low speed CAN for
car body and comfort functions are installed (fig. 4). The
next generation will introduce integrated powertrain
management systems followed by autonomous driving
and brake-by-wire or steer-by-wire systems. A standard

realtime operating system will also be part of future
ECUs.

A major improvement will be based on client/server
architectures (fig. 5), which allow an optimized usage of
the resources available in the car. This approach enables
the flexible implementation of a specified functionality on
alternative constellations of processing power in the car.
It is important to notice that safety critical applications
like ABS and closed loop control applications mandate
specific strategies in this scenario.

...

Server

Cl ient 1
e.g., engine

management

Cl ient 2
e.g., transmission

management

N

Figure 5. Client-/Server architectures for future
electronic vehicle systems

Rapid prototyping is a very important aspect in the
vehicle development process. Although vehicle
simulation coupled with executable models of ECU
specifications provide significant improvement in the
early design phases, vehicle validation is absolutely
necessary due to two major facts:
• the complex nonlinearities found in vehicles and its

environments, e.g. combustion engines or varying
road characteristics

• The feeling of the driver that can only roughly be
represented by driver models.

To be able to provide a multi-level prototyping
environment, powerful realtime systems consisting of
PowerPC processors, realtime operating system, VME
based interconnection to sensors and actuators, an
existing ECU for existing functionality as well as online

simulation, calibration and measurement functionality is
essential for vehicle prototyping (figure 6). It is important
to notice that especially the transfer of calibration data
from specification to design and implementation is a
major risk factor in the ECU development process.

Calibration System

Development Platform
SUN Solaris
PC WindowsNT
MatrixX
STATEMATE
AutoCode
GNU C Compiler/Linker
Hardware Connection Editor
Data Acquisition Editor

VME-Bus

Ethernet-Controller

MS-DOS PC
TAG System Monitor
Kleinknecht
...

PCMCIA Shared Memory

PowerPC 604
Microprocessor

PowerPC
Program Memory

LynxOS /OSEK
Scheduling
AutoCode
I/O Tasks

I/O Cards

ECU
Prototypes
Production
Systems

Figure 6. Integrated Rapid Prototyping environment for ECU development

5 Conclusions and Future Work

This paper gives an overview over the current
activities in the area of electronic vehicle system design.
The dynamic evolution of these systems with respect to
growing functionality and an increased number of safety
critical functions mandates new methods and tools for the
development as well appropriate system architectures for
prototyping and productions systems. Future applications
heavily demand the following improvements:
• Library based reuse of functionality and software.
• A systematic process for design and test of safety

critical applications including clear formal semantics
and certification for components used in safety critical
processes.

• Open interfaces for model exchange and data access
for specific optimization and processing.

• Production code generation and interaction with
target system instrumentation and debugging.

• Sophisticated metrics and optimization strategies for
online project control.

References

[1] Clark, Fujimoto. Product Development Performance,
Harvard Business School Press, Boston, 1991

[2] K.G. Besel , T Hirth. Werkzeuge im MSR Projekt, VDI
Berichte Nr. 1009, 1992, pp. 503-516

[3] ISO 9000-3: Guidelines for the Application of ISO 9001 to
the Development, Supply, and Maintenance of Software,
Int’l Org. for Standardization, Geneva, 1991

[4] ISO 9001:Quality Systems - Model for Quality Assurance in
Design/Development, Production, Installation, and
Servicing, Int’l Org. for Standardization, Geneva, 1994

[5] M. Paulk e.a. Capability Maturity Model for Software,
Version 1.1, Tech. Report CMU/SEI-93-TR-24, Software
Eng. Inst., Pittsburgh 1993

[6] M. Paulk e.a. Key Practices of the Capability Maturity
Model, Version 1.1, Tech. Report CMU/SEI-93-TR-25,
Software Eng. Inst., Pittsburgh 1993

[7] Development Guidelines For Vehicle Based Software,
MISRA Consortium, November 1994.

[8] Statemate, Product of I-Logix Inc., Boston, Massachussetts
[9] MatrixX, Product of Integrated Systems Inc., Santa Clara,

California

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

