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Abstract - This paper introduces a novel technique to determineSpatial correlations:Fanout signals induce spatial correlations of
the transition probabilities of internal signals for sequential circuitsinternal signals even if primary inputs are spatially uncorrelated.
We account for temporal correlations of primary inputs and interndlhe necessity of considering these spatial correlations of internal
signals, sequential correlations, and spatial correlations of intesignals will be shown by experimental results. Furthermore, pri-
nal signals. For this purpose, we exploit and combine conceptsméry inputs can be spatially correlated for some applications. We
unrolling, reconvergence analysis, decomposing packets of temassume primary inputs to be spatially uncorrelated.
rally correlated variables, and Markov chains. Experimental resultsSequential correlationsEven if primary inputs are uncorrelated,
demonstrate the high accuracy and efficiency of our technique. states and state lines can be temporally correlated. A binary counter

1. Introduction with the reset signal as the only input is an example. The reset
) . signal may be uncorrelated and has a very low signal probability.
1.1. Power Consumption Nevertheless, the state lines are higher order temporally and spa-

For CMOS circuits, power consumption is dominated by chartjally correlated. All these correlation, which are introduced by the
ing and discharging capacitances when a transition occurs on a sgfuential circuit structure, are called sequential correlations.
nal [7]. The average power consumption in such a circuit is given
by 7] gep P 9 ?L4. State of the Art

1 2 . .
Peircuir = 2 Vaa f Z C(H) E(9) To determine transition probabilities in sequential circuits, sev-
signali eral techniques have been presented so far. They can be divided into
whereC(z) is the sum of all capacitances of the transistors that &mo categories. The first category consists of techniques based on
driven by signak. The supply voltage is denoted B4 and the simulation. Simulation based techniques yield high accuracy if a
clock frequency byf. E(2) is thetransition probabilityat signak, large number of input patterns is applied. Recently published ap-
i.e., the probability that there isla— 0 or a0 — 1 transition on proaches [11, 4] employ the Monte Carlo technique to give confi-

signalz from one clock cycle to the next. dence measurements on the accuracy of state line probabilities. The
1.2. Logic Synthesis for Low Power Needs Proper Power Analy- disadvantage of simulation is that the complete circuit or at least
sis the transitive fanin must be simulated. As explained in Section 1.2,

; ; P ic synthesis typically transforms only a small part of a circuit in
Logic synthesis transforms a circuit step by step, and each S‘@h optimization step. Reanalysis of the small part is sufficient.

optimizes with respect to the cost function. One transformation s .
(e.g., decomposition) changes only a small part of a circuit. The 1€ Second category consists of approaches that compute tran-
general power minimization strategy at logic level is to decrea3éon probabilities based on probabilistic techniques. Most ap-

S C(i)E(i). Therefore, the transition probabilities are param@ 0aches for sequential circuits assume temporally and spatially un-
fefs of the cost function, and after each optimization step, trangp/related prlén_aryllgpléts. Tlqunder th|shazsumpt|on, exaclzztsr&ethogsl
tion probabilities must be re-estimated. Thus, an estimation of E presente Im' [17, ]'d ege m((jat 0 rs] acsziume anK I mode
transition probabilities must be accurate and fast. Accurate estiffad sequengll_%_ circuit an r‘;"r? asﬁ on tb(Ie ap'r:‘r]an- rc])moglg_orov
tion is necessary to guide the optimization process. Fast estimaﬁ@aﬂons' I exact technique has problems. First, these linear

ot ations assume that the present state is uncorrelated to the present
gg(r)]\é\;isi)h?e?s%%bt/hae Igégstiegglanagﬁtryof optimization steps and thus a% imary input vector. This does not hold for temporally correlated

) inputs. In case of temporally correlated inputs, the present input
1.3. Correlations vector and the present state are correlated since both depend on the
Estimation accuracy severely depends on whether temporal, ggavious input vector. Thus, for temporally correlated primary in-
tial, and sequential correlations are taken into account. puts, the techniques based on the Chapman-Kolmogorov equations
- Temporal correlationsSignals may be temporally correlated, i.eyield inaccurate results. This is illustrated in the appendix. Fur-
the next value of a signal depends on its current value. The exantplermore, the circuit size that can be handled is limited since the

ok U UL Chapman-Kolmogorov equations are built in terms of state proba-
bilities. This is too expensive for large circuits.
da@l [ [ [ p=05 E=05 In order to overcome the limitation on circuit size, approxima-
date2 [ ] p=05 E=0.25 tion techniques were suggested in [17]. Contrary to the Chapman-
) i Kolmogorov based techniques, the approximation techniques con-
Figure 1. Temporal correlation sider state lines. Two different techniques are suggested to deal

in Fig. 1 illustrates temporal correlations. Both, the signal “data¥ith sequential correlations. Both obtain a system of non-linear
and the signal “data2” havsignal probabilityp equal to 0.5, i.e., equations that approximately accounts for correlations of the state
both signals take on value 1 with probabilitidata) = p(dataj = lines. The Picard-Peano method or the Newton-Raphson method is
0.5. Let the signal “datal” be temporally uncorrelated in this ex@pplied to solve the system of equations.

ample. Then, it switches every second cycle on average, whichAfter preliminary results of our work had been presented in [15],
yieldstransition probabilityE(data) = 0.5. Estimation methods two techniques to account for temporal correlations at primary in-
that do not consider temporal dependence will assume that the pigts have been suggested in [3]. Firstly, the Chapman-Kolmogorov
nal “data2” also switches on every second cycle on average. Haased technique has been extended, but no results have been given.
ever, the signal “data2” actually switches on every fourth cycle onlyecondly, the approximation technique presented in [17] has been
Thus, its transition probability is one fourtt(datad = 0.25). combined with Markov Chains. Results have been given only for
Neglecting temporal correlations causes major inaccuracies in snsall circuits with less than 20 flipflops. CPU times are 10 - 100
example. times higher than with our technique.
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with temporal and spatial correlations, we extend concepts which
have successfully been used for transition probability analysis of
combinational circuits. To cope with temporal correlations, Markov
chains are applied. Markov chains have originally been proposedd)
for estimation of combinational circuits in [14, 10, 13]. Spatial cor-
relations of internal signals are captured based on reconvergence
analysis. Reconvergence analysis has been used to analyse power in
combinational circuits in [2, 13]. Our technique combines the con-
cepts of unrolling, Markov Chains, and reconvergence regions such
that for a sequential circuit a new system of equations results. The
Picard-Peano method is applied similar to [17] to solve this system
of equations. c
The paper is organized as follows. Section 2 briefly reviews the
concept of unrolling to transform sequential correlations into tempo-
ral and spatial correlations. Section 3 introduces suitable functions
for signal and transition probability computation. In Section 4, we
show how to cope with spatial correlations. Temporal correlations
are regarded in Section 5. Section 6 is concerned with solving the

buffers

1.5. Our Approach a) time t-3T 3 . time t-2T 3 .timet-T 3 t-imet
, primary , primary \ primary
In this paper, a novel probabilistic approach for sequential cir- | inputs(t2T) | inputs(t-T) | inputs(t
cuits is presented that accounts for temporal correlations of primary | | | L) _
inputs. To deal with sequential correlations, we think of a circuit g[j{;‘)ﬁ{g(l)
to be unrolled as suggested in [6, 17]. Thus, sequential correla- ! next | L next !
tions are transformed into temporal and spatial correlations. To deal ﬁﬁ ! logic ! logic

Figure 4. Unrolled circuit

obtained system of non-linear equations. In Section 7 detailed 8-Signal and Transition Probabilities

perimental results show the importance of accounting for spatial andoyr goal is to compute signal and transition probabilities. et
temporal correlations and the high accuracy and efficiency of Qirespond to an internal or an output signal. The Boolean function
new approach. aty is denoted byy = f(z), wherez = (z1,22,...,2,) is a

vector of internal or primary input variables. How to find the most
suitable functionf (z) will be discussed in the next section. The
Sequential circuits can be cyclic as shown in Fig. 2. This cyclignal probability ofy is computed on the functiofi(z), i.e.:
structure introduces sequential correlations. To transform these se- p(y) = p(f(2)) = p(f) )
quential correlations into temporal and spatial correlations, we use =
the idea of unrolling similar to [6, 17].

2. Unrolling Sequential Circuits

If a transition on signay occurs thery differs at two consecutive
points in time, i.e.yT @ y° is true. The transition probability is

primary ouput |, _ primary determined by: o
next | logic outputs E(y)=p (y Dy )
| state +E_/. present Thus, we think an XOR gate is inserted for each signal. For ex-
| logic state ample for signak, in Fig. 4b), an extra XOR-gate has been inserted
flipflops to illustrate the transition probability computation of siggal Thus
we obtain
Figure 2. Cyclic structure of a sequential circuit E(s1) = p(sf @ 8(1)) = P(Cg)

wherep(e) can be computed in the same fashion as Eqn. (2).
This maps the problem of finding signal and transition probabilities
to the problem of finding probabilities of the corresponding Boolean
functions.

4. Spatial Correlations

In this section, we show how to find Boolean functions that
are suitable to compute signal and transition probabilities. Such
Figure 3. Example: a) circuit C1 and b) graph G1 functions must have the following properties. Firstly, the variables
of each function must correspond to spatially uncorrelated signals.
The example of Fig. 3 is used for illustration. Circuit C1 ifThis property is required by the technique given in Sections 5 and 6
Fig. 3a) is represented by the graph G1 in Fig. 3b). For easet@fcompute the probability of each function accurately. Secondly,
notation, each node of G1 is labeled with the name of the outghie functions must be found such that the representation size of each
signal of the corresponding gate. A variable that corresponds to digaction is as small as possible to achieve low CPU times. We use
nal z; at an arbitrary time?® is denoted by?. The variablezY BDDs [1] for representation. o _
corresponds to signak at time¢® — T, whereT is the duration of __FOr €ach S'gﬂal h’nder es_tllrlnatlon, W? individually d_etermlneha
one clock cycle. Circuit C1 is determined by circuit partition that has spatially uncorrelated partition inputs. The
o 0 o o o T function and thus the BDD for this partition depends on spatially un-
Y1 =11 + 81+ 82 $1=ai 1) correlated variables, only. Furthermore, the BDD size is correlated
ad =718° ad = 1935959 sy =af with the partition size and with the number of variables the BDD
i L . depends on. Therefore, we determine the partition with spatially
To obtain an acyclic circuit, the next state logic is unrolled asncorrelated inputs such that it has minimum number of internal
shown in Fig. 4a). Unrolling the next state logic of circuit C1 yieldgjgnals and minimum number of inputs.
circuit C14" in Fig. 4b). Contrary to [6], each flipflop is substituteds 1. Reconvergence Regions
by a buffer. Note that thg behavior of the circuit is preserved by \ve now introduce maximal combined reconvergence regions
substituting each variable; in the transitive fanin of a flipflop by and show that they are the partition that meet the above introduced
the corresponding variable of the previous clock cyefe, requirements.

a)

i1




For ease of explanation, we use a Boolean network to give sowide can therefore conclude that the MCRR of a signal is the smallest
basic definitions necessary to understand the analysis of reconsabgraph with spatially uncorrelated inputs.
gence regions. The graph representation of an unrolled sequentialFurthermore, it can be shown that no subgraph with spatially un-
circuit as shown in the example in Fig. 4c) becomes a Booleeorrelated but fewer inputs than the MCRR exists. We will give
network if the next state logic is unrolled onkyinstead of infi- an idea of how to prove this. A subgraph with spatially uncorre-
nite times. For the definition of a Boolean network, please see [Bited inputs must include the MCRR. Therefore, each input to the
Fig. 5a) gives an example. subgraph must be an input to the MCRR or an ancestor of an in-

The analysis of reconvergent fanouts originated in the areapaft to the MCRR. Thus, if such a subgraph with less inputs than the
fault simulation [9]. The key concepts introduced below have beRfCRR exists, then at least two inputs of the MCRR have a common
derived from that work. We show how to use reconvergence analyaigestor, which contradicts the definition of the MCRR.
to obtain functions with mutually independent inputs. 4.3. Approximation

Nodep is aprimary reconvergent fanout stefior the reconver-

gence node, PRFS(v), if two disjoint paths fronp to v exist: For many nodes, no reconvergent fanout stem exists and thus the

MCRR consists of the reconvergence node, only. For some nodes,
however, the MCRR covers almost all ancestor nodes, which can be

P;(p,v) Pj(p,v) # Pi(p,v) an infinite number of nodes for an unrolled sequential circuit. We
) ) _ therefore suggest an approximation technique to trade off estimation
(set(Pi(p,v)) N set(P;(p,v)) = {p,v}) accuracy for CPU time and memory resources.
A subgraph of the Boolean network callpdmary reconver- For a computationally inexpensive approximation we introduce a

gence regionPRR,, is the collection of all paths from all PRES parameteA. Then, we search for those reconvergent fanout stems,
tov. A PRFSv) y is not included in PRR unless there exists afor which the number of nodes on every path from the fanout stem
PRFSw) z such thaty is on a path frome to ». In graph G2 in to the reconvergence nodeis less or equal thad. The sub-
Fig. 5a) nodegp and: are primary reconvergence fanout stems @fraph induced by these paths is calesnbined reconvergence re-

v. Hence, the primary reconvergence regiom abnsists of nodes gion CRRa . We have to tolerate that some reconvergence fanout
{o,p,t,u,v}. Note:iis notincluded in PRR stems have possibly not been found and therefore some inputs to
The subgraph of a Boolean network that is constructed by theCRRa, might be spatially correlated. Our experimental results
following rules is called anaximal combined reconvergence regiodemonstrate that this approximation causes only small inaccuracies.

of nodev MCRR,. Outputy of Circuit C1 is used for illustration. FoA = 4, we
MCRR,® = PRR, determine CRR,, which is the subgraph marked by bold lines in

Fig. 4c). Thus, we obtain
MCRR,™*! = MCRR,™ U U PRR, 9-4¢) o7

@ € MCRR,(™ p(y) = p(f(io, i3 51 ,52))
MCRR, = MCRR,™ For A = 6, we find CRR,, which yields

A PRFYz) is calledsecondary reconvergent fanout steafs p(y) = p(£(i3, 48 ,ia", 537, 537))

nodev, SRF{v), if z is included in MCRR. The parameteA is a user input and allows a trade-off between
a) .0 - b) WO o estimation accuracy and CPU resources. Increasing the valive of
A_a po1: PRES() makes the estimation more accurate, but BDD sizes and thus CPU
times rise. This trade-off is evaluated in the result section.
t u

b RN 4.4. Implementation

AN
First, all PRFS and SRFS for a notl@re computed. As soon
as they are detected, the CRg and its inputs can easily be de-
©, mO a0 60 p0 qQ (O (un termined. To find PRFS and SRFS, the implementation technique
9FRESO =~ suggested in [9] could be used if all edges of our network are in-
\ verted. This implementation is efficient, only if PRFS and SRFS of
k0 . i _ [ O (uurh i all nodes must be determined. Since logic synthesis changes small
"IN . partitions we have to determine the CRR for few or only one node.
\ ! Therefore, we propose a new implementation technique.
Moy wurl gy Our implementation technique detects all primary and secondary
f a0 b0 O O O(vurk )} H H H
g W reconvergence fanout stems in the fanin region of one modeor
O PRFSp) i SRFSP) O PRRy @ MCRRy this purpose, the transitive fanin is traversed backwards from the re-
Figure 5. Graph G2 convergence nodewith depth-first search. At each visited nagle
- - the path fronmw to g is assigned. If a nodeg has already assigned a
In graph G2 in Fig. 5a), nodgis a SRF$v) and nodes;, ,u  path,g is a PRFS to some reconvergence node. The reconvergence
are included in MCRRY) becauseu is in PRR,. Nodeg is a node’is determined by comparing the path already assigned to node

SRFS’U) and node*’ l’ r are included in MCRR(Z) because is 9 with the pl’esently discovered path The PRFSis aSSigned toitsre-

; (1) ; convergence node. CRR, can be constructed by starting at node
méﬂgéi“onéiggiﬁtgggg?'3”pnf;drest (Lf 'Y}'CRRNG determined. v and recursively collecting all nodes and their PRFSs on all paths

: ; : m any collected PRFS to the reconvergence node.
Inputsto a maximal combined reconvergence region MCRR avé) The traversal and the assigned paths up to goaie illustrated

the nodes that have no fanin and at least one fanout node in -Hw%- g ;
. o in"Fig. 5b). When nodg is visited for the second time, the two
MCRR. In graph G2 the inputs to MCRFare nodedg, ¢, j, s} paths at nodg are compared. The comparison shows that ndde
4.2. Exact Analysis the last common node of both paths. Thus, ngiedetermined to
We look for internal signals that are spatially uncorrelated. e a PRFS of node
primary inputs are assumed to be spatially uncorrelated, spatial ¢or- .
relations between two internal signals are due to common ancesg’sjl.—emporal Correlations
Since inputs to an MCRR cannot have any common ancestor, theTo compute probabilities, we need mutually statistically inde-
presented technique guarantees spatially uncorrelated inputs tpemdent variables, i.e., spatially and temporally uncorrelated vari-
MCRR. ables. Reconvergence analysis was employed to obtain functions
For every partition with fewer nodes than the MCRR, some imvith spatially uncorrelated variables. But some variables may be
puts have a common ancestor. These inputs are spatially correladporally correlated. Therefore, we decompose the functions




in mutually uncorrelated subfunctions. To achieve this, variables m10(2:)
are divided into packets. Each packet contains all variables that

correspond to one signal at different points in time. Thus, each w11 () o
packet contains temporally correlated variables but each variable
of a packet is uncorrelated to any variable of another packet. Re-
cursively, each packet is decomposed from the considered function.
Finally, the decomposed subfunctions are small and their probability
can efficiently be computed with a technique based on the conceptrhe probability 1o (z:) in Fig. 6 is defined byrio(z:) =

of Markov Chains. p(zF Z2|T), i.e., mo(x;) is the probability that a 1+ 0 transi-

5.1. Decomposition with Respect to Temporal Correlations tion onz; occurs from® — T to 2, if z; was 1 att® — T'. Let#;

Let us consider a functiorf, which depends on the variablese eitherz; or z;. Furthermorer is 1 or 0 accordingly, so that we
«¥T ..., 2 and on other variables. Each variabl corresponds can writer.. = p(#] #7|%; ). The literature, e.g., [12], provides
to signalz; at timeto — vT. Functionf is independent of?” for useful equations:
v > k. With m;(z:) we denote the conjunction of the variables  ;(37z%) = pEF)paT2%\27) = pET)mon(zi)
kT 0 H . . .
;" ,...,z; where the binary representkaTtlon og‘v%wdetermlnes Since the signals’ behavior is assumed to be Markovian, the proba-
the phase of each variableno(z:) = =i~ ...2; z3; mi(2z:i) = bilities p(m;(z;)) can be described by the product of probabilities
T aTE L mae_y(z:) = T ... ZFZ]. The probability .. (). This is shown for the example= 6 andk = 2:
of z; = 0 is denoted by(z;) and evall_Jates tp(z:) = 1 — p(z:). p(me(z:)) = p(@TzFe?)
Let f|m,(z;) b€ the cofactor of with respect tan;(z:). Ap- o ar T T 1—aT T ol—T
plying the Shannon decompositiofi & «; f|.; + Z:f|z,) on the = p(@) - p(@ T () - p(@iesE)

(0) ) moo(a:)

Figure 6. Markov chain

mo1 ()

transition function several times yields: = p(@) - mo(zi) - moi(zi)
ok _q From [12], several equations can be obtained for a Markov chain:
F=)" mi(@) flm;eo €) 1 = p(@:)+p@)
j=0 1 = m(zs) + mo(zi)
Sincem; (z;) contains all variables that correspondztg each 1= mou(:) + moo(2:) ®)
cofactored functiorf | m, (z,) is independent af;. p(zi) = p(zi)mi(z:) + p(@i)mor(2:)
5.2. Probability of a Boolean Function p(zi) = p(@i)moo(2:) + p(zi)mio(2:)

A transition occurs om; if z; changes its value either from 1 to 0

To compute the probability of a Boolean function, we start wi D om0 to 1.

Eqgn. (3). The probability( f) is thus given by:

L E(xs) = p(a7 77) + p(%i 27) (6)
. With Eqgns. (5) and (6), the probabilities...(z;) can be ex-
P = (Y M o) pressed by(s.) ahdB (o), =
=0 ma(z) = 1-— E(z;) mo(z:) = E(z;)
For each assignment of values #47,...,z2, exactly one ’ 2p(es) ‘ (=) gy
m;(z;) evaluates to one. Thus, all terms; (x;) are mutually dis- moo(zi) = 1 2z mor(zs) = 2izd
joint and we can write: ) wE) (=)
. Obviously, Eqn. (7) are not valid §(z;) = 0 or if p(z;) = 0. If
21 z; always is 0 p(z;) = 0) or if z; always is 1 p(z;) = 0) then no
p(f) = Z p(m; (i) flm;(z:)) transition will occur at all E(z;) = 0) and thereforeri1 (z;) =
j=0 7l'00(a7i) =1 andﬂ-m(xi) =71 =0 hold.

As already mentioned, eacfim, ;) is independent ofe;. 6. System of Equations

Thereforem;(z;) and f|,.. (z;) are mutually independent and we ~The combination of the techniques presented in Sections 2 to 5
g yields for each internal signal an equation for the signal probabil-

obtain: . ity and an equation for the transition probability. These equations
ok 1 4 o Y R by
depend only on signal probabilities and transition probabilities of
p(f) = Z p(m;(2:)) p(flm; (1)) (4) internal signals and primary inputs. Generally, for a circuit with n
internal signalsey, ..., z, and m primary inputsgy, ..., im, we

j=0 :
obtain:
Such a decomposition of functighis performed for each variable _ . .
z;. Decomposing the last variahig yields eitherl or 0. Thus, we p(z1) = filp(@1),...,p(2n), p(i2), s ’p(lm)’,
obtain a sum of products of probabilitiggm,; (z;)). The remaining : E(z1),...,E(zn), E(i1), ..., E(im))
problem is to compute the probabilitipém;; (z;)). p(xn) = ful ... ) @)
Computing Eqgn. 4 can efficiently be performed on BDDs. A deE(m ) = faia( )
scription of the implementation if only two points in time are con-~*~ '/~ /mftL -
sidered is given in [13]. We extended this techniquek tpoints (zn) = fon( )
in time. The computation complexity for evaluating the transitiorp A i S ) )
probability is linear in terms of BDD nodes. These equations account for sequential, temporal, and spatial
5.3. Probability of Conjunctions of Temporally Correlated Vari- correlations. Furthermore, according 1o section 4, small equations
bl y | porally are obtained. The 2n equations build a set of non-linear equations.
ables Solving this system of non-linear equations yields the required sig-
We consider each primary input and each internal signal as a diat and transition probabilities. As suggested in [17], we use the
crete, stationary, first order Markov process. Then, the computatficard-Peano technique to solve the system of equations.
of the probabilitiep(m;(z;)) can be derived from a Markov chain.  Regarding the system of equations, there are two differences
A Markov chain forz; is shown in Fig. 6. to [17]. Firstly, we have equations for both signal and transition



probabilities. Therefore, two equations per signal appear. Secondly,
in [17], each function at a state line is computed in terms of primary

inputs and state lines. We obtain equations not only for state lines

but also for signals internal to the next state logic. Therefore, the
system of equation contains a larger number of equations. How-
ever, these equations are significantly smaller and thus the evalu-
ation of such an equation is computationally less expensive. The
overall computation complexity decreases, allowing to quickly eval-
uate large sequential circuits. While for circait3207 , 338 min-

utes are required in [17] to estimate signal probabilities of state lines
on SUN Sparc 2, our approach computes signal and transition prob-
abilities of all signals in less than 211 seconds on DEC 3000 Model
AXP.

7. Results

E=10.25 E =10.02
circut [A=0[A=5]A=10 A =10
s208 0.210] 0.021 0.005 0.008
5298 0.064 | 0.061 0.058 0.090
s382 0.039| 0.031 0.018 0.040
s444 0.074| 0.031 0.024 0.049
s526 0.023| 0.021 0.022 0.042
s820 0.022 | 0.019 0.022 0.033
s1196 0.017| 0.005 0.004 0.007
51423 0.054 | 0.047 0.032 0.070
s5378 0.016 | 0.011 0.007 0.018
s9234 0.109| 0.074 0.067 0.055
s13207|| 0.128 | 0.050 0.030 0.039
mm30 0.052| 0.034 0.026 0.045
dsip 0.040| 0.010 0.017 0.019

Results are computed for a large set of sequential ISCAS
and LGSynth91 benchmark circuits. We mapped them to the
mcnc.genlib  library with the SIS [16] technology mapper aftefs 2 5
having applied the SIS scriptript.rugged . g

7.1. Impact of Temporal Correlations in Sequential Circuits

curate values for signal and transition probabilities at internal sig2

nals. To demonstrate this, we performed four simulations for eag#® o.|

circuit with 1 input vectors. Every input was assigned signal prolg

ability p = 0.5 for all four simulations. The transition probabil-5 °%

ity of every primary input was set to 0.5 for the first simulation, te

Table 2. Average absolute error for our technique.
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Neglecting temporal correlations at primary inputs causes ina?:%m,

E computed with
our technique

o

B

o
F

0.25 for the second, to 0.10 for the third, and to 0.02 for the fourth. °
For pseudo-randomly created input vectd@s= 0.5 at primary in-

first simulation determines transition probabilities at internal signal
with temporally uncorrelated primary inputs. With decreasing tray

0

0.1 0.2 0.3 0.4 0.5
E computed with simulation
puts yields temporally uncorrelated primary input vectors. Thus, the  Figure 7. Signal probabilities of the signals of circuit s208

o
w

o
N

<

0.1

0z 03 04 05
E computed with simulation

= 0.25" in Tab. 1) with the error of our technique (column

sition probabilities at primary inputs, the temporal correlations ofs. = 10" in Tab. 2) shows that for all circuits with exception of
primary inputs increase. Techniques that neglect temporal corréigé34 , our technique causes the smaller inaccuracies. This demon-

tions at primary inputs produce the same values for the transit

gffates that no technique that neglects temporal correlations at pri-

probability of an internal signal regardless of the actual transitigfely inputs can be as accurate as our technique. Of course, the
probabilities at primary inputs, i.€., these techniques yield the resgfifor of an approximation technique that neglects temporal correla-

of the first simulation for any assignment Bfto primary inputs.

tions at primary inputs will be even larger than the error of column

Therefore, the simulations with # 0.5 at primary inputs are com- £ = 0.25” in Tab. 1, since approximations cause additional inac-

pared to the simulation witld = 0.5 at primary inputs. In Tab. 1,

curacies. Furthermore, the error due to neglecting temporal corre-

the obtained average absolute error is shown. The average absdi@ at primary inputs increases with increasing temporal correla-

error is the sum of the absolute value of the error for each sig@ns as Tab. 1 indicates. Our technique, however, is almost insensi-

divided by the number of signals. As Tab. 1 shows, the avera[éj(f to increasing temporal correlations at primary inputs. The last
olu

absolute error increases up to more than 0.21 for cisduiif6 .

mn in Tab. 2 shows the average absolute error for strongly tem-
porally correlated primary inputd = 0.02). This error is slightly

circuit E=025] E=0.10 | E=0.02
s208 0.080 0.129 0.156
s298 0.059 0.101 0.125
s382 0.042 0.068 0.082
s444 0.041 0.066 0.080
s526 0.037 0.059 0.073
s820 0.073 0.126 0.161
s1196 0.083 0.160 0.216
s1423 0.065 0.112 0.143
s5378 0.052 0.100 0.145
s9234 0.030 0.049 0.063
s13207 0.036 0.058 0.071
mm30 0.075 0.140 0.183
dsip 0.080 0.153 0.203

Table 1. Average absolute error for neglecting temporal corre-

lations at primary inputs.
7.2. Our Analysis Technique

To show the accuracy of the presented analysis technique, g

higher than the error faE = 0.25, but it is by far smaller than the
error in the last column in Tab. 1. When neglecting temporal correla-
tions at primary inputs for circug1196 , e.g., the average absolute
error is 0.216 whereas our technique yields an error of only 0.007.

The scattered diagrams in Fig. 7 illustrate the results for circuit
s208 . For primary inputs, we assumpe= 0.5 andE = 0.25. In
both diagrams, the horizontal axis gives the correct transition prob-
abilities computed with simulation. The vertical axis of the left dia-
gram shows transition probabilities when temporal correlations are
neglected. In the right diagram, transition probabilities are com-
puted by our technique. While the results of our technique closely
meet the correct transition probabilities, the results under neglect of
transition probabilities at primary inputs are far off.

Column “# FFs” in Tab. 3 gives the number of flipflops for each
circuit. Also in Tab. 3, CPU times in seconds on DEC 3000 Model
AXP workstations are presented f&r= 0, A = 5, andA = 10.
Comparing the accuracy results in Tab. 2 with the CPU times in
Tab. 3 shows that various assignments to the user parathetéow
illjfrerent trade-offs between accuracy and computation costs.

results are compared to a simulation withf Hatterns. The average8- Conclusion

absolute error and the CPU times in seconds are reported in Tables dransition probability analysis for sequential circuits is a diffi-

and 3, respectively, for various values Af First, for each input, cult task but crucial for low power optimization at logic level. So

p=0.5andE = 0.25 was selected.
Increasing inaccuracies for decreasif\gindicate that spatial mary inputs or could not handle large circuits. We have presented

correlations must not be neglected. A comparison of the er@novel approach to transition probability analysis, which accounts

due to neglecting temporal correlations at primary inputs (colurfor temporal correlations at primary inputs as well as for sequen-

far, probabilistic approaches neglected temporal correlations at pri-



[circuit [#FFSTA=0]A=5]A=10| Appendix
s208 8 0.6 0.3 1.2 Neglecting temporal correlations at primary inputs causes major
s298 14 0.3 0.9 3.1 inaccuracies. This does not only hold for transition probability anal-
s382 21 0.8 13 4.9 ysis but also for state probability computation. We demonstrate this
s444 21 0.5 15 5.2 for the example in Fig. 8a). To compute the state probabilities, we
s526 21 0.6 15 5.8 employ the technique based on Chapman-Kolmogorov equations.
s820 5 0.6 5.9 17.5 This technique is known to be exact if primary inputs are uncorre-
s1196 18 0.9 4.6 13.7 lated.
51423 74 25 6.4 30.8 a)
s5378 162 12.7 | 129.6 284.2
s9234 135 57| 231.7 318.6 i
513207 474 14.6 88.9 210.5
mm30 90 2.9 69.1 240.8
dsip 224 12.0 37.3 141.2 ! do g v
Table 3. Number of flipflops and CPU times in seconds. = )
tial correlations and spatial correlations of internal signals. This Figure 8. Sequential circuit and state transition graph

is achieved by exploiting and combining the concepts of unrolling, Fig. 8a) shows a sequential circuit. The Boolean functions of the

reconvergence analysis, decomposing packets of temporally coggnputs of the two flipflops are given as follows:
lated variables, and Markov chains. Experimental results demon-

strate the accuracy and efficiency of our novel approach even for di = 1@+ 1q:9;+i7q,
large circuits with several hundreds of flipflops. d = iqg,+iq,
‘ We assume the four states to be encoded as follows:
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