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Abstract - This paper introduces a novel technique to determine
the transition probabilities of internal signals for sequential circuits.
We account for temporal correlations of primary inputs and internal
signals, sequential correlations, and spatial correlations of inter-
nal signals. For this purpose, we exploit and combine concepts of
unrolling, reconvergence analysis, decomposing packets of tempo-
rally correlated variables, and Markov chains. Experimental results
demonstrate the high accuracy and efficiency of our technique.

1. Introduction
1.1. Power Consumption

For CMOS circuits, power consumption is dominated by charg-
ing and discharging capacitances when a transition occurs on a sig-
nal [7]. The average power consumption in such a circuit is given
by
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whereC(i) is the sum of all capacitances of the transistors that are
driven by signali. The supply voltage is denoted byVdd and the
clock frequency byf . E(i) is thetransition probabilityat signali,
i.e., the probability that there is a1 ! 0 or a0 ! 1 transition on
signali from one clock cycle to the next.
1.2. Logic Synthesis for Low Power Needs Proper Power Analy-

sis
Logic synthesis transforms a circuit step by step, and each step

optimizes with respect to the cost function. One transformation step
(e.g., decomposition) changes only a small part of a circuit. The
general power minimization strategy at logic level is to decreaseP

C(i)E(i). Therefore, the transition probabilities are parame-
ters of the cost function, and after each optimization step, transi-
tion probabilities must be re-estimated. Thus, an estimation of the
transition probabilities must be accurate and fast. Accurate estima-
tion is necessary to guide the optimization process. Fast estimation
allows to apply a large number of optimization steps and thus also
contributes to the design quality.
1.3. Correlations

Estimation accuracy severely depends on whether temporal, spa-
tial, and sequential correlations are taken into account.
- Temporal correlations:Signals may be temporally correlated, i.e.,
the next value of a signal depends on its current value. The example
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Figure 1. Temporal correlation

in Fig. 1 illustrates temporal correlations. Both, the signal “data1”
and the signal “data2” havesignal probabilityp equal to 0.5, i.e.,
both signals take on value 1 with probabilityp(data1) = p(data2) =
0:5. Let the signal “data1” be temporally uncorrelated in this ex-
ample. Then, it switches every second cycle on average, which
yields transition probabilityE(data1) = 0:5. Estimation methods
that do not consider temporal dependence will assume that the sig-
nal “data2” also switches on every second cycle on average. How-
ever, the signal “data2” actually switches on every fourth cycle only.
Thus, its transition probability is one fourth (E(data2) = 0:25).
Neglecting temporal correlations causes major inaccuracies in this
example.

- Spatial correlations:Fanout signals induce spatial correlations of
internal signals even if primary inputs are spatially uncorrelated.
The necessity of considering these spatial correlations of internal
signals will be shown by experimental results. Furthermore, pri-
mary inputs can be spatially correlated for some applications. We
assume primary inputs to be spatially uncorrelated.
- Sequential correlations:Even if primary inputs are uncorrelated,
states and state lines can be temporally correlated. A binary counter
with the reset signal as the only input is an example. The reset
signal may be uncorrelated and has a very low signal probability.
Nevertheless, the state lines are higher order temporally and spa-
tially correlated. All these correlation, which are introduced by the
sequential circuit structure, are called sequential correlations.

1.4. State of the Art

To determine transition probabilities in sequential circuits, sev-
eral techniques have been presented so far. They can be divided into
two categories. The first category consists of techniques based on
simulation. Simulation based techniques yield high accuracy if a
large number of input patterns is applied. Recently published ap-
proaches [11, 4] employ the Monte Carlo technique to give confi-
dence measurements on the accuracy of state line probabilities. The
disadvantage of simulation is that the complete circuit or at least
the transitive fanin must be simulated. As explained in Section 1.2,
logic synthesis typically transforms only a small part of a circuit in
each optimization step. Reanalysis of the small part is sufficient.

The second category consists of approaches that compute tran-
sition probabilities based on probabilistic techniques. Most ap-
proaches for sequential circuits assume temporally and spatially un-
correlated primary inputs. Under this assumption, exact methods
are presented in [17, 8]. These methods assume an FSM model
of a sequential circuit and are based on the Chapman-Kolmogorov
equations. This exact technique has problems. First, these linear
equations assume that the present state is uncorrelated to the present
primary input vector. This does not hold for temporally correlated
inputs. In case of temporally correlated inputs, the present input
vector and the present state are correlated since both depend on the
previous input vector. Thus, for temporally correlated primary in-
puts, the techniques based on the Chapman-Kolmogorov equations
yield inaccurate results. This is illustrated in the appendix. Fur-
thermore, the circuit size that can be handled is limited since the
Chapman-Kolmogorov equations are built in terms of state proba-
bilities. This is too expensive for large circuits.

In order to overcome the limitation on circuit size, approxima-
tion techniques were suggested in [17]. Contrary to the Chapman-
Kolmogorov based techniques, the approximation techniques con-
sider state lines. Two different techniques are suggested to deal
with sequential correlations. Both obtain a system of non-linear
equations that approximately accounts for correlations of the state
lines. The Picard-Peano method or the Newton-Raphson method is
applied to solve the system of equations.

After preliminary results of our work had been presented in [15],
two techniques to account for temporal correlations at primary in-
puts have been suggested in [3]. Firstly, the Chapman-Kolmogorov
based technique has been extended, but no results have been given.
Secondly, the approximation technique presented in [17] has been
combined with Markov Chains. Results have been given only for
small circuits with less than 20 flipflops. CPU times are 10 - 100
times higher than with our technique.



1.5. Our Approach

In this paper, a novel probabilistic approach for sequential cir-
cuits is presented that accounts for temporal correlations of primary
inputs. To deal with sequential correlations, we think of a circuit
to be unrolled as suggested in [6, 17]. Thus, sequential correla-
tions are transformed into temporal and spatial correlations. To deal
with temporal and spatial correlations, we extend concepts which
have successfully been used for transition probability analysis of
combinational circuits. To cope with temporal correlations, Markov
chains are applied. Markov chains have originally been proposed
for estimation of combinational circuits in [14, 10, 13]. Spatial cor-
relations of internal signals are captured based on reconvergence
analysis. Reconvergence analysis has been used to analyse power in
combinational circuits in [2, 13]. Our technique combines the con-
cepts of unrolling, Markov Chains, and reconvergence regions such
that for a sequential circuit a new system of equations results. The
Picard-Peano method is applied similar to [17] to solve this system
of equations.

The paper is organized as follows. Section 2 briefly reviews the
concept of unrolling to transform sequential correlations into tempo-
ral and spatial correlations. Section 3 introduces suitable functions
for signal and transition probability computation. In Section 4, we
show how to cope with spatial correlations. Temporal correlations
are regarded in Section 5. Section 6 is concerned with solving the
obtained system of non-linear equations. In Section 7 detailed ex-
perimental results show the importance of accounting for spatial and
temporal correlations and the high accuracy and efficiency of our
new approach.

2. Unrolling Sequential Circuits

Sequential circuits can be cyclic as shown in Fig. 2. This cyclic
structure introduces sequential correlations. To transform these se-
quential correlations into temporal and spatial correlations, we use
the idea of unrolling similar to [6, 17].
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Figure 2. Cyclic structure of a sequential circuit
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Figure 3. Example: a) circuit C1 and b) graph G1

The example of Fig. 3 is used for illustration. Circuit C1 in
Fig. 3a) is represented by the graph G1 in Fig. 3b). For ease of
notation, each node of G1 is labeled with the name of the output
signal of the corresponding gate. A variable that corresponds to sig-
nal xi at an arbitrary timet0 is denoted byx0i . The variablexTi
corresponds to signalxi at timet0 � T , whereT is the duration of
one clock cycle. Circuit C1 is determined by:

y01 = i01 + s01 + s02 s01 = aT1

a01 = i
0

1s
0
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0
1s

0
2 s02 = aT2

(1)

To obtain an acyclic circuit, the next state logic is unrolled as
shown in Fig. 4a). Unrolling the next state logic of circuit C1 yields
circuit C1ur in Fig. 4b). Contrary to [6], each flipflop is substituted
by a buffer. Note that the behavior of the circuit is preserved by
substituting each variablex0i in the transitive fanin of a flipflop by
the corresponding variable of the previous clock cycle,xTi .
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Figure 4. Unrolled circuit

3. Signal and Transition Probabilities
Our goal is to compute signal and transition probabilities. Lety

correspond to an internal or an output signal. The Boolean function
at y is denoted byy = f(x), wherex = (x1; x2; : : : ; xn) is a
vector of internal or primary input variables. How to find the most
suitable functionf(x) will be discussed in the next section. The
signal probability ofy is computed on the functionf(x), i.e.:

p(y) = p(f(x)) = p(f) (2)
If a transition on signaly occurs theny differs at two consecutive

points in time, i.e.,yT � y0 is true. The transition probability is
determined by:

E(y) = p
�
y
T � y

0
�

Thus, we think an XOR gate is inserted for each signal. For ex-
ample for signals1 in Fig. 4b), an extra XOR-gate has been inserted
to illustrate the transition probability computation of signals1. Thus
we obtain

E(s1) = p(sT1 � s
0
1) = p(e01)

wherep(e01) can be computed in the same fashion as Eqn. (2).
This maps the problem of finding signal and transition probabilities
to the problem of finding probabilities of the corresponding Boolean
functions.
4. Spatial Correlations

In this section, we show how to find Boolean functions that
are suitable to compute signal and transition probabilities. Such
functions must have the following properties. Firstly, the variables
of each function must correspond to spatially uncorrelated signals.
This property is required by the technique given in Sections 5 and 6
to compute the probability of each function accurately. Secondly,
the functions must be found such that the representation size of each
function is as small as possible to achieve low CPU times. We use
BDDs [1] for representation.

For each signal under estimation, we individually determine a
circuit partition that has spatially uncorrelated partition inputs. The
function and thus the BDD for this partition depends on spatially un-
correlated variables, only. Furthermore, the BDD size is correlated
with the partition size and with the number of variables the BDD
depends on. Therefore, we determine the partition with spatially
uncorrelated inputs such that it has minimum number of internal
signals and minimum number of inputs.
4.1. Reconvergence Regions

We now introduce maximal combined reconvergence regions
and show that they are the partition that meet the above introduced
requirements.



For ease of explanation, we use a Boolean network to give some
basic definitions necessary to understand the analysis of reconver-
gence regions. The graph representation of an unrolled sequential
circuit as shown in the example in Fig. 4c) becomes a Boolean
network if the next state logic is unrolled onlyk instead of infi-
nite times. For the definition of a Boolean network, please see [5].
Fig. 5a) gives an example.

The analysis of reconvergent fanouts originated in the area of
fault simulation [9]. The key concepts introduced below have been
derived from that work. We show how to use reconvergence analysis
to obtain functions with mutually independent inputs.

Nodep is aprimary reconvergent fanout stemfor the reconver-
gence nodev, PRFS(v), if two disjoint paths fromp to v exist:

9
Pi(p; v)

9
Pj(p; v) 6= Pi(p; v)

( set(Pi(p; v)) \ set(Pj(p; v)) = fp; vg)
A subgraph of the Boolean network calledprimary reconver-

gence region, PRRv, is the collection of all paths from all PRFS(v)
to v. A PRFS(v) y is not included in PRRv, unless there exists a
PRFS(v) x such thaty is on a path fromx to v. In graph G2 in
Fig. 5a) nodesp and i are primary reconvergence fanout stems of
v. Hence, the primary reconvergence region ofv consists of nodes
fo; p; t; u; vg. Note:i is not included in PRRv.

The subgraph of a Boolean network that is constructed by the
following rules is called amaximal combined reconvergence region
of nodev MCRRv.

MCRRv
(0) = PRRv

MCRRv
(n+1) = MCRRv

(n) [
S

x 2 MCRRv(n)
PRRx

MCRRv = MCRRv
1

A PRFS(x) is calledsecondary reconvergent fanout stemsof
nodev, SRFS(v), if x is included in MCRRv.
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Figure 5. Graph G2

In graph G2 in Fig. 5a), nodej is a SRFS(v) and nodesq; r; u
are included in MCRRv(1) becauseu is in PRRv. Node g is a
SRFS(v) and nodesk; l; r are included in MCRRv(2) becauser is
in MCRRv

(1). After step two, all nodes of MCRRv are determined.
MCRRv consists of nodesk; l; o; p; q; r; t; u; v.

Inputsto a maximal combined reconvergence region MCRR are
the nodes that have no fanin and at least one fanout node in the
MCRR. In graph G2 the inputs to MCRRv are nodesfg; i; j; sg.
4.2. Exact Analysis

We look for internal signals that are spatially uncorrelated. If
primary inputs are assumed to be spatially uncorrelated, spatial cor-
relations between two internal signals are due to common ancestors.
Since inputs to an MCRR cannot have any common ancestor, the
presented technique guarantees spatially uncorrelated inputs to an
MCRR.

For every partition with fewer nodes than the MCRR, some in-
puts have a common ancestor. These inputs are spatially correlated.

We can therefore conclude that the MCRR of a signal is the smallest
subgraph with spatially uncorrelated inputs.

Furthermore, it can be shown that no subgraph with spatially un-
correlated but fewer inputs than the MCRR exists. We will give
an idea of how to prove this. A subgraph with spatially uncorre-
lated inputs must include the MCRR. Therefore, each input to the
subgraph must be an input to the MCRR or an ancestor of an in-
put to the MCRR. Thus, if such a subgraph with less inputs than the
MCRR exists, then at least two inputs of the MCRR have a common
ancestor, which contradicts the definition of the MCRR.
4.3. Approximation

For many nodes, no reconvergent fanout stem exists and thus the
MCRR consists of the reconvergence node, only. For some nodes,
however, the MCRR covers almost all ancestor nodes, which can be
an infinite number of nodes for an unrolled sequential circuit. We
therefore suggest an approximation technique to trade off estimation
accuracy for CPU time and memory resources.

For a computationally inexpensive approximation we introduce a
parameter�. Then, we search for those reconvergent fanout stems,
for which the number of nodes on every path from the fanout stem
to the reconvergence nodev is less or equal than�. The sub-
graph induced by these paths is calledcombined reconvergence re-
gion CRR�;v. We have to tolerate that some reconvergence fanout
stems have possibly not been found and therefore some inputs to
a CRR�;v might be spatially correlated. Our experimental results
demonstrate that this approximation causes only small inaccuracies.

Outputy of Circuit C1 is used for illustration. For� = 4, we
determine CRR4;y, which is the subgraph marked by bold lines in
Fig. 4c). Thus, we obtain

p(y) = p(f(i00; i
T
0 ; s

T
1 ; s

T
2 ))

For� = 6, we find CRR6;y, which yields

p(y) = p(f(i00; i
T
0 ; i

2T
0 ; s

2T
1 ; s

2T
2 ))

The parameter� is a user input and allows a trade-off between
estimation accuracy and CPU resources. Increasing the value of�
makes the estimation more accurate, but BDD sizes and thus CPU
times rise. This trade-off is evaluated in the result section.
4.4. Implementation

First, all PRFS and SRFS for a nodeb are computed. As soon
as they are detected, the CRR�;b and its inputs can easily be de-
termined. To find PRFS and SRFS, the implementation technique
suggested in [9] could be used if all edges of our network are in-
verted. This implementation is efficient, only if PRFS and SRFS of
all nodes must be determined. Since logic synthesis changes small
partitions we have to determine the CRR for few or only one node.
Therefore, we propose a new implementation technique.

Our implementation technique detects all primary and secondary
reconvergence fanout stems in the fanin region of one nodev. For
this purpose, the transitive fanin is traversed backwards from the re-
convergence nodev with depth-first search. At each visited nodeg,
the path fromv to g is assigned. If a nodeg has already assigned a
path,g is a PRFS to some reconvergence node. The reconvergence
node is determined by comparing the path already assigned to node
g with the presently discovered path. The PRFS is assigned to its re-
convergence node. CRR�;v can be constructed by starting at node
v and recursively collecting all nodes and their PRFSs on all paths
from any collected PRFS to the reconvergence node.

The traversal and the assigned paths up to nodeg are illustrated
in Fig. 5b). When nodeg is visited for the second time, the two
paths at nodeg are compared. The comparison shows that noder is
the last common node of both paths. Thus, nodeg is determined to
be a PRFS of noder.

5. Temporal Correlations
To compute probabilities, we need mutually statistically inde-

pendent variables, i.e., spatially and temporally uncorrelated vari-
ables. Reconvergence analysis was employed to obtain functions
with spatially uncorrelated variables. But some variables may be
temporally correlated. Therefore, we decompose the functions



in mutually uncorrelated subfunctions. To achieve this, variables
are divided into packets. Each packet contains all variables that
correspond to one signal at different points in time. Thus, each
packet contains temporally correlated variables but each variable
of a packet is uncorrelated to any variable of another packet. Re-
cursively, each packet is decomposed from the considered function.
Finally, the decomposed subfunctions are small and their probability
can efficiently be computed with a technique based on the concept
of Markov Chains.

5.1. Decomposition with Respect to Temporal Correlations
Let us consider a functionf , which depends on the variables

xkTi ; : : : ; x0i and on other variables. Each variablexvTi corresponds
to signalxi at timet0 � vT . Functionf is independent ofxvTi for
v > k. With mj(xi) we denote the conjunction of the variables
xkTi ; : : : ; x0i where the binary representation of valuej determines
the phase of each variable:m0(xi) = xkTi : : : xTi x

0
i ; m1(xi) =

xkTi : : : xTi x
0
i ; . . . ; m2k�1(xi) = xkTi : : : xTi x

0
i . The probability

of xi = 0 is denoted byp(xi) and evaluates top(xi) = 1� p(xi).
Let f jmj(xi) be the cofactor off with respect tomj(xi). Ap-

plying the Shannon decomposition (f = xif jxi + xif jxi ) on the
transition function several times yields:

f =

2k�1X

j=0

mj(xi)f jmj(xi) (3)

Sincemj(xi) contains all variables that correspond toxi, each
cofactored functionf jmj(xi) is independent ofxi.

5.2. Probability of a Boolean Function
To compute the probability of a Boolean function, we start with

Eqn. (3). The probabilityp(f) is thus given by:

p(f) = p(

2k�1X

j=0

mj(xi)f jmj(xi))

For each assignment of values toxkTi ; : : : ; x0i , exactly one
mj(xi) evaluates to one. Thus, all termsmj(xi) are mutually dis-
joint and we can write:

p(f) =

2k�1X

j=0

p(mj(xi)f jmj(xi))

As already mentioned, eachf jmj(xi) is independent ofxi.
Therefore,mj(xi) andf jmj(xi) are mutually independent and we
obtain:

p(f) =

2k�1X

j=0

p(mj(xi)) p(f jmj(xi)) (4)

Such a decomposition of functionf is performed for each variable
xi. Decomposing the last variablexn yields either1 or 0. Thus, we
obtain a sum of products of probabilitiesp(mj(xi)). The remaining
problem is to compute the probabilitiesp(mj(xi)).

Computing Eqn. 4 can efficiently be performed on BDDs. A de-
scription of the implementation if only two points in time are con-
sidered is given in [13]. We extended this technique tok points
in time. The computation complexity for evaluating the transition
probability is linear in terms of BDD nodes.

5.3. Probability of Conjunctions of Temporally Correlated Vari-
ables

We consider each primary input and each internal signal as a dis-
crete, stationary, first order Markov process. Then, the computation
of the probabilitiesp(mj(xi)) can be derived from a Markov chain.
A Markov chain forxi is shown in Fig. 6.

1

�10(xi)

0 �00(xi)�11(xi)
�01(xi)

Figure 6. Markov chain

The probability�10(xi) in Fig. 6 is defined by�10(xi) =

p(xTi x
0
i jx

T
i ), i.e., �10(xi) is the probability that a 1! 0 transi-

tion onxi occurs fromt0 � T to t0, if xi was 1 att0 � T . Let ~xi
be eitherxi or xi. Furthermore,� is 1 or 0 accordingly, so that we
can write��� = p(~xTi ~x

0
i j~x

T
i ). The literature, e.g., [12], provides

useful equations:

p(~xTi ~x
0
i ) = p(~xTi )p(~x

T
i ~x

0
i j~x

T
i ) = p(~xTi )���(xi)

Since the signals’ behavior is assumed to be Markovian, the proba-
bilities p(mj(xi)) can be described by the product of probabilities
���(xi). This is shown for the examplej = 6 andk = 2:

p(m6(xi)) = p(x2Ti xTi x
0
i )

= p(x2Ti ) � p(x2Ti xTi jx
2T
i ) � p(xTi x

0
i jx

T
i )

= p(xi) � �00(xi) � �01(xi)

From [12], several equations can be obtained for a Markov chain:
1 = p(xi) + p(xi)

1 = �11(xi) + �10(xi)

1 = �01(xi) + �00(xi)

p(xi) = p(xi)�11(xi) + p(xi)�01(xi)

p(xi) = p(xi)�00(xi) + p(xi)�10(xi)

(5)

A transition occurs onxi if xi changes its value either from 1 to 0
or from 0 to 1.

E(xi) = p(xTi x
0
i ) + p(xTi x

0
i ) (6)

With Eqns. (5) and (6), the probabilities���(xi) can be ex-
pressed byp(xi) andE(xi):

�11(xi) = 1� E(xi)

2p(xi)
�10(xi) = E(xi)

2p(xi)

�00(xi) = 1� E(xi)

2p(xi)
�01(xi) = E(xi)

2p(xi)

(7)

Obviously, Eqn. (7) are not valid ifp(xi) = 0 or if p(xi) = 0. If
xi always is 0 (p(xi) = 0) or if xi always is 1 (p(xi) = 0) then no
transition will occur at all (E(xi) = 0) and therefore,�11(xi) =
�00(xi) = 1 and�10(xi) = �01 = 0 hold.

6. System of Equations
The combination of the techniques presented in Sections 2 to 5

yields for each internal signal an equation for the signal probabil-
ity and an equation for the transition probability. These equations
depend only on signal probabilities and transition probabilities of
internal signals and primary inputs. Generally, for a circuit with n
internal signalsx1, . . . , xn and m primary inputsi1, . . . , im, we
obtain:
p(x1) = f1(p(x1); : : : ; p(xn); p(i1); : : : ; p(im);

E(x1); : : : ; E(xn); E(i1); : : : ; E(im))...
p(xn) = fn ( . . . )

E(x1) = fn+1 ( . . . )...
E(xn) = f2n ( . . . )

(8)

These equations account for sequential, temporal, and spatial
correlations. Furthermore, according to section 4, small equations
are obtained. The 2n equations build a set of non-linear equations.
Solving this system of non-linear equations yields the required sig-
nal and transition probabilities. As suggested in [17], we use the
Picard-Peano technique to solve the system of equations.

Regarding the system of equations, there are two differences
to [17]. Firstly, we have equations for both signal and transition



probabilities. Therefore, two equations per signal appear. Secondly,
in [17], each function at a state line is computed in terms of primary
inputs and state lines. We obtain equations not only for state lines
but also for signals internal to the next state logic. Therefore, the
system of equation contains a larger number of equations. How-
ever, these equations are significantly smaller and thus the evalu-
ation of such an equation is computationally less expensive. The
overall computation complexity decreases, allowing to quickly eval-
uate large sequential circuits. While for circuits13207 , 338 min-
utes are required in [17] to estimate signal probabilities of state lines
on SUN Sparc 2, our approach computes signal and transition prob-
abilities of all signals in less than 211 seconds on DEC 3000 Model
AXP.

7. Results
Results are computed for a large set of sequential ISCAS

and LGSynth91 benchmark circuits. We mapped them to the
mcnc.genlib library with the SIS [16] technology mapper after
having applied the SIS scriptscript.rugged .
7.1. Impact of Temporal Correlations in Sequential Circuits

Neglecting temporal correlations at primary inputs causes inac-
curate values for signal and transition probabilities at internal sig-
nals. To demonstrate this, we performed four simulations for each
circuit with 105 input vectors. Every input was assigned signal prob-
ability p = 0:5 for all four simulations. The transition probabil-
ity of every primary input was set to 0.5 for the first simulation, to
0.25 for the second, to 0.10 for the third, and to 0.02 for the fourth.
For pseudo-randomly created input vectors,E = 0:5 at primary in-
puts yields temporally uncorrelated primary input vectors. Thus, the
first simulation determines transition probabilities at internal signals
with temporally uncorrelated primary inputs. With decreasing tran-
sition probabilities at primary inputs, the temporal correlations of
primary inputs increase. Techniques that neglect temporal correla-
tions at primary inputs produce the same values for the transition
probability of an internal signal regardless of the actual transition
probabilities at primary inputs, i.e., these techniques yield the result
of the first simulation for any assignment ofE to primary inputs.
Therefore, the simulations withE 6= 0:5 at primary inputs are com-
pared to the simulation withE = 0:5 at primary inputs. In Tab. 1,
the obtained average absolute error is shown. The average absolute
error is the sum of the absolute value of the error for each signal
divided by the number of signals. As Tab. 1 shows, the average
absolute error increases up to more than 0.21 for circuits1196 .

circuit E = 0:25 E = 0:10 E = 0:02
s208 0.080 0.129 0.156
s298 0.059 0.101 0.125
s382 0.042 0.068 0.082
s444 0.041 0.066 0.080
s526 0.037 0.059 0.073
s820 0.073 0.126 0.161
s1196 0.083 0.160 0.216
s1423 0.065 0.112 0.143
s5378 0.052 0.100 0.145
s9234 0.030 0.049 0.063
s13207 0.036 0.058 0.071
mm30 0.075 0.140 0.183
dsip 0.080 0.153 0.203

Table 1. Average absolute error for neglecting temporal corre-
lations at primary inputs.

7.2. Our Analysis Technique
To show the accuracy of the presented analysis technique, our

results are compared to a simulation with 105 patterns. The average
absolute error and the CPU times in seconds are reported in Tables 2
and 3, respectively, for various values of�. First, for each input,
p = 0:5 andE = 0:25 was selected.

Increasing inaccuracies for decreasing� indicate that spatial
correlations must not be neglected. A comparison of the error
due to neglecting temporal correlations at primary inputs (column

E = 0:25 E = 0:02
circuit �= 0 �= 5 � = 10 � = 10
s208 0.210 0.021 0.005 0.008
s298 0.064 0.061 0.058 0.090
s382 0.039 0.031 0.018 0.040
s444 0.074 0.031 0.024 0.049
s526 0.023 0.021 0.022 0.042
s820 0.022 0.019 0.022 0.033
s1196 0.017 0.005 0.004 0.007
s1423 0.054 0.047 0.032 0.070
s5378 0.016 0.011 0.007 0.018
s9234 0.109 0.074 0.067 0.055
s13207 0.128 0.050 0.030 0.039
mm30 0.052 0.034 0.026 0.045
dsip 0.040 0.010 0.017 0.019

Table 2. Average absolute error for our technique.
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Figure 7. Signal probabilities of the signals of circuit s208

“E = 0:25” in Tab. 1) with the error of our technique (column
“� = 10” in Tab. 2) shows that for all circuits with exception of
s9234 , our technique causes the smaller inaccuracies. This demon-
strates that no technique that neglects temporal correlations at pri-
mary inputs can be as accurate as our technique. Of course, the
error of an approximation technique that neglects temporal correla-
tions at primary inputs will be even larger than the error of column
“E = 0:25” in Tab. 1, since approximations cause additional inac-
curacies. Furthermore, the error due to neglecting temporal corre-
lation at primary inputs increases with increasing temporal correla-
tions as Tab. 1 indicates. Our technique, however, is almost insensi-
tive to increasing temporal correlations at primary inputs. The last
column in Tab. 2 shows the average absolute error for strongly tem-
porally correlated primary inputs (E = 0.02). This error is slightly
higher than the error forE = 0.25, but it is by far smaller than the
error in the last column in Tab. 1. When neglecting temporal correla-
tions at primary inputs for circuits1196 , e.g., the average absolute
error is 0.216 whereas our technique yields an error of only 0.007.

The scattered diagrams in Fig. 7 illustrate the results for circuit
s208 . For primary inputs, we assumep = 0:5 andE = 0:25. In
both diagrams, the horizontal axis gives the correct transition prob-
abilities computed with simulation. The vertical axis of the left dia-
gram shows transition probabilities when temporal correlations are
neglected. In the right diagram, transition probabilities are com-
puted by our technique. While the results of our technique closely
meet the correct transition probabilities, the results under neglect of
transition probabilities at primary inputs are far off.

Column “# FFs” in Tab. 3 gives the number of flipflops for each
circuit. Also in Tab. 3, CPU times in seconds on DEC 3000 Model
AXP workstations are presented for� = 0, � = 5, and� = 10.
Comparing the accuracy results in Tab. 2 with the CPU times in
Tab. 3 shows that various assignments to the user parameter� allow
different trade-offs between accuracy and computation costs.

8. Conclusion
Transition probability analysis for sequential circuits is a diffi-

cult task but crucial for low power optimization at logic level. So
far, probabilistic approaches neglected temporal correlations at pri-
mary inputs or could not handle large circuits. We have presented
a novel approach to transition probability analysis, which accounts
for temporal correlations at primary inputs as well as for sequen-



circuit # FFs � = 0 � = 5 �= 10
s208 8 0.6 0.3 1.2
s298 14 0.3 0.9 3.1
s382 21 0.8 1.3 4.9
s444 21 0.5 1.5 5.2
s526 21 0.6 1.5 5.8
s820 5 0.6 5.9 17.5
s1196 18 0.9 4.6 13.7
s1423 74 2.5 6.4 30.8
s5378 162 12.7 129.6 284.2
s9234 135 5.7 231.7 318.6
s13207 474 14.6 88.9 210.5
mm30 90 2.9 69.1 240.8
dsip 224 12.0 37.3 141.2

Table 3. Number of flipflops and CPU times in seconds.

tial correlations and spatial correlations of internal signals. This
is achieved by exploiting and combining the concepts of unrolling,
reconvergence analysis, decomposing packets of temporally corre-
lated variables, and Markov chains. Experimental results demon-
strate the accuracy and efficiency of our novel approach even for
large circuits with several hundreds of flipflops.
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Appendix
Neglecting temporal correlations at primary inputs causes major

inaccuracies. This does not only hold for transition probability anal-
ysis but also for state probability computation. We demonstrate this
for the example in Fig. 8a). To compute the state probabilities, we
employ the technique based on Chapman-Kolmogorov equations.
This technique is known to be exact if primary inputs are uncorre-
lated.
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Figure 8. Sequential circuit and state transition graph
Fig. 8a) shows a sequential circuit. The Boolean functions of the

d-inputs of the two flipflops are given as follows:

d1 = i q2 + i q1q2 + i q1

d2 = i q1q2 + i q1
We assume the four states to be encoded as follows:

S00 : q1q2 S01 : q1q2
S10 : q1q2 S11 : q1q2

From the according state transition graph shown in Fig. 8b), the
Chapman-Kolmogorov equations can easily be derived:
p(S00) = p(i)p(S10)+ p(i)p(S11)
p(S01) = p(i)p(S10)
p(S10) = p(i)p(S00)+ p(i)p(S01)+ p(i)p(S11)
p(S11) = p(i)p(S00)+ p(i)p(S01)

1 = p(S00)+ p(S01)+ p(S10)+ p(S11)
Let us assume the signal probability at the input signali to be one

half, i.e.,p(i) = p(i) = 0.5. Solving the linear system of equations
yields the following state probabilities:

p(S00) = 0:28 p(S01) = 0:17

p(S10) = 0:33 p(S11) = 0:22
(9)

This result is correct if signali is temporally uncorrelated. Let
us now consider the state probabilities in case of a temporally corre-
lated inputi. Transition probabilityE(i) = 1 is used for illustration.
The signal probability of inputi is set to 0.5 again. Thus, techniques
that neglect temporal correlations at primary inputs still yield the re-
sult of Eqns. (9). ForE(i) = 1, signali makes a transition every
clock cycle. Thus, signali takes on values “. . . 0101010101. . . ”.
The state transition graph in Fig. 8b) shows that after at most 3 clock
cycles, the present state is alternately S00 and S10. Thus, forp(i) =
0.5 andE(i) = 1, the state probabilities are:

p(S00) = 0:5 p(S01) = 0:0

p(S10) = 0:5 p(S11) = 0:0

Let us assumeE(i) = 0.0001 now. Thus, on average the signal
i is “1” in 10,000 consecutive clock cycles and then “0” in 10,000
consecutive clock cycles and so on, i.e., signali takes on values
“111. . . 111000. . . 000111. . . ”. The state transition graph in Fig. 8b)
shows that on average, the present state alternates 10,000 times be-
tween S10 and S01 and then 10,000 times between S00 and S11.
Thus, forp(i) = 0.5 andE(i) = 0.0001, the state probabilities are:

p(S00) = 0:25 p(S01) = 0:25
p(S10) = 0:25 p(S11) = 0:25

Obviously, state probabilities in Eqns. (9) differ from the results
with temporally correlated primary inputi. Neglecting transition
probabilities of primary inputs causes major inaccuracies in comput-
ing state probabilities. Deriving state line probabilities from these
state probabilities propagates the inaccuracy. Also, computing tran-
sition probabilities based on inaccurate state line probabilities yields
inaccurate values.
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