Embedded Architecture Co-Synthesis and System Integration

Bill Lin Steven Vercauteren Hugo De Man
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

Abstract — Embedded system architectures com-
prising of software programmable components (e.g.
DSP, ASIP, and micro-controller cores) and cus-
tomized hardware co-processors, integrated into a sin-
gle cost-efficient VLSI chip, are emerging as a key
solution to today’s microelectronics design problems.
This trend is being driven by new emerging appli-
cations in the areas of wireless communication, high-
speed optical networking, and multimedia computing.
A key problem confronted by embedded system de-
signers today is the rapid prototyping of application-
specific embedded system architectures where differ-
ent combinations of programmable processors and
hardware components must be integrated together,
while ensuring that the hardware and software parts
communicate correctly. In this paper, we present a
solution to this embedded architecture co-synthesis
and system integration problem based on an orches-
trated combination of architectural strategies, param-
eterized libraries, and software CAD tools.

1 Introduction

Telecommunication and multimedia computing are
among the fastest growing segments of the microelectron-
ics market today. These market sectors are being fueled
by new emerging business and consumer applications that
are now possible with recent advances in wireless com-
munication, videoprocessing, and integrated networking
technologies. The design of VLSI chips in these applica-
tions are often subject to stringent requirements in terms
of processing performance and power dissipation.

To facilitate flexible low-cost designs in short design
time, emerging designs are based on heterogeneous em-
bedded system architectures, as depicted in Figure 1,
that integrate software programmable components, e.g.
DSP and microprocessor cores, together with customized
and “pre-designed” hardware processing components on
a custom IC. Programmability is introduced in these
system-on-silicon architectures, while maintaining most
of the advantages of customized VLSI architectures, such
as the potential to optimize the processing performance
and power dissipation.

To enable the rapid design of embedded systems, sig-
nificant advances are required on a number of key sys-
tem design problems. These problems include system
modeling, co-simulation, performance estimation, parti-
tioning, retargetable code generation, and embedded ar-
chitecture co-synthesis and system integration. Each of
these problems is being investigated by several ongoing
efforts world-wide [3, 5, 6, 7, 2, 10, 1, 4, 9, 15).

In this paper, we aim to address the latter problem of
supporting the designer in constructing an application-
specific embedded system architecture from a high-level
and in integrating the different system components to-
gether. We refer to this problem as embedded architecture
co-synthesis and system integration. Depending on the
application requirements, different application-specific
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Figure 1: Heterogeneous embedded system architectures.

multiprocessor architectures utilizing different combina-
tions of software and hardware components may be re-
quired (e.g. driven by programmability, performance, and
power dissipation requirements).

Surprisingly, there is remarkably little CAD support
today to assist the designer in this architecture co-
synthesis and integration task. The key problem is in
interfacing the system components together, while ensur-
ing correct hardware/software communication. Designers
spend an enormous amount of time on this task, partly in
understanding how to interface to the different processors
being used, how to get the hardware and software parts
to communicate, and how to synchronize between differ-
ent components operating on different clocks. This is a
highly error proned task, often responsible for many low-
level implementation mismatches, leading to a lengthy
test phase after implementation.

We believe that a “solution” to this problem requires
an orchestrated combination of architectural strategies,
parameterized libraries, and CAD tools for automating
low-level design tasks that are error proned and time con-
suming. Our approach is based on a simple communi-
cation model, as described in Section 2. The channels
are automatically refined to a low level circuit protocol,
considering synchronization between different clocked,
or unclocked, regions, as described in Section 3. Sec-
tion 4 describes our strategy for integrating software pro-
grammable components. Section 5 describes our strategy
for integrating hardware components. We illustrate our
approach on a demonstrator in Section 6.

2 Component Architecture Model

To enable the construction of an application-specific em-
bedded system architecture from a high-level, an inter-
mediate abstraction model is needed. In this work, we
propose a Channel based Component Architecture Model
as an intermediate abstraction model. In this model, the
component architecture is abstracted as an interconnec-
tion of Processor Component Units (PCUs) and point-to-
point unidirectional channels, as depicted in Figure 2(a).

Communication between processor component units is
based on sending and receiving data to each other via
communication channels. The channel communication
semantics that we use is exactly that of Hoare’s CSP
rendezvous [9]. In this channel model, communication is
via explicit send and receive operations on a specified



Figure 2: a Channel based Component Architecture

Model.

channel. The sender must block until the receiver is ready
to receive, and vice versa. This rendezvous semantics en-
sures that both parties are synchronised with each other
before the data transfer takes place. We have chosen
the CSP communication model because it has a rigor-
ously defined semantics along with a well defined algebra
to reason about the communication behavior, supported
by existing formal verification methods.To support other
communication models, such as buffered communication,
we have chosen to mimic these models by using intermedi-
ate component units that implement that communication
behavior.

A processor component unit can either be a hardware
component or a software programmable component (e.g.
DSP, ASIP, or micro-controller core). In the case of
hardware, the processor component unit can either be a
“pre-designed” library component, including parameter-
ized communication components like buffers, or a hard-
ware processor that has still to be implemented. The
hardware component may consist of internal storage. In
the case of a software programmable component, the pro-
cessor component unit consists of the processor core itself,
an internal memory structure for storing the program in-
structions and run-time data, and a hardware I/O unit
that implements the communication interface to its ex-
ternal environment, as depicted in Figure 2(b). The I/O
unit acts as a “hardware wrapper” that effectively encap-
sulates a software programmable component into a hard-
ware component. The I/O unit is driven by the processor
core via the software program that executes on it.

3 Implementation of Channels

To ensure different processor components can be inte-
grated together at the “implementation” level, they must
communicate with each other in a well-known and con-
sistent manner at the “circuit” level. Our strategy to this
problem is to define a common circuit level protocol that
will be used by all components to implement the control
mechanism for synchronizing the channel transfers.

In choosing this protocol scheme, several important
factors must be considered. We start from the simple
observation that most of today’s digital hardware op-
erates synchronously. This is not surprising since syn-
chronous circuits are far easier to design and imple-
ment when compared to their asynchronous counterparts.
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Figure 3: Channel implemented using a synchronous wait
protocol.

In synchronous edge-triggered designs, the clock signal
plays an essential role in synchronizing data transfers.
The protocol scheme chosen should take advantage of
this property to ensure a high sustainable transfer speed
between communicating components and simple control
logic. Also, when the communicating components oper-
ate on the same clock, which is often the case, then the
protocol scheme chosen should not hinder existing syn-
chronous hardware synthesis techniques from optimizing
across component boundaries.

For performance and power considerations, the differ-
ent components in an embedded architecture often oper-
ate at different clock frequencies. However, still in most
cases today, the different clocks are derived from the same
system clock ¢¢. This property should also be taken into
consideration when designing the protocol scheme, again
to ensure high transfer speed and simple control circuitry.

Considering the increasing difficulties with clock dis-
tribution, we must also consider the integration of syn-
chronous components that are clocked by an unrelated
clock (i.e. derived from a different crysl;al%1 or asychronous
components. The integration of asynchronous compo-
nents is often necessary when communicating with exter-
nal backplane system buses (e.g. VME bus) and other
“off-chip” components.

The rest of this section is organized as follows. We first
consider fully synchronous embedded architectures where
all components are clocked by clocks that are derived
(e.g. via clock division) from the same global system
clock ¢¢, assuming negligible skew. Under this scenario,
components may operate at different clock frequencies,
tuned for performance and power, but with the restriction
that all clocks are derived from the same clock. This is
the most common situation today. We then next consider
a more general setting where components may operate
under unrelated clocks or asynchronously.

3.1 Synchronous wait transfer mode

In this section, we will consider the first scenario where
the communicating components are synchronous and the
clocking discipline used is a set of derived clocks that
have an exact phase relationship with each other. We
will further assume that the designs are positive edge-
triggered and the components have registered outputs,
which are common assumptions with today’s commercial
hardware synthesis tools (e.g. [11]).

Base on these assumptions, a CSP rendezvous style
communication channel can be implemented in hardware
using a simple synchronous transfer protocol called a syn-
chronous wait protocol. We will first explain the proto-
col further assuming that both partners are operating on
the same clock. We defer to sections 3.2 and 3.3 to de-
scribe how synchronization is automatically handled for
coupling components that operate on different derived
clock frequencies, unrelated clocks, or in unclocked asyn-
chronous modes.
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Figure 5: Receiver’s abstraction.

In this protocol, the sender and receiver partners syn-
chronize the communication by a pair of sendRdy and
recvRdy signals, as shown in Figure 3. The sender part-
ner implements a send operation by setting its sendRdy
signal high and placing valid data on the data lines. This
is shown in Figure 4. If the receiver is not yet ready, as
indicated by the input recvRdy signal being low, then
the sender enters into a “wait state” until the receiver is
ready. This ensures synchronization. When the receiver
is ready, as indicated by the input recvRdy signal being
high, then the transfer is assumed to be completed in that
clock cycle; thus the completion of of the data transfer is
left implicit.

Similarly, the receiver partner implements a receive
operation by setting its recvRdy signal high. This is
shown in Figure 5. If the sender is not yet ready, as
indicated by the input sendRdy signal being low, then
the receiver enters into a wait state until the sender is
ready. When the sender is ready, as indicated by the in-
put sendRdy signal being high, then the receiver latches
the data and moves to the next state.

The timing diagramsin Figure 6 further illustrates this
protocol. In Figure 6(a), both partners are ready in the
same state. In Figure 6(b), the receiver partner is ready,
but it has to wait until the sender is also ready before
the communication occurs. In Figure 6(c), the sender
partner is ready first, but it has to wait until the receiver
is ready before the communication occurs. While in a
wait state, the sender ensures that the data remain valid
on the data lines. This simple transfer protocol ensures
that communication occurs only when both partners are
ready. Note that in this protocol, there is no real distinc-
tion between which partner is the “master” and which
is the “slave”. Both the sender and receiver are in fact
initiating the transfer by indicating to the other that it
is “ready” for the transfer.

Despite its simplicity, the synchronous wait protocol
offers several important advantages. One advantage is
that the completion of communication is implicit. This
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Figure 6: Timing diagrams illustrating the synchronous
wait protocol. (a) sender and receiver both ready; (b)
receiver ready first; (c) sender partner ready first.

means that when both partners are “ready”, the com-
munication behaves like a single cycle register transfer
operation between the two components. “Burst” trans-
fer modes, where the sender transfers consecutively a se-
quence of data to the receiver, can be implemented very
efficiently. In fact, a new data can be transferred at a
sustained rate of one item per cycle. This is in contrast
to for example a handshaking protocol like the four-phase
request-acknowledge scheme where the completion of the
transfer has to be ezplicitly acknowledged. This protocol
is widely used in asynchronous circuit implementations
[14, 13] to synchronize communication in the absence of
a clock. But when employed in a synchronous positive
edge-trigged design, this request-acknowledge scheme re-
quires at least two clock cycles for each transfer to ac-
count for the explicit acknowledgment. This problem
can be partly circumvented if the channel control logic is
clocked at twice the clock frequency by using both phases
of the clock to trigger the logic. However, this will make
the circuit more difficult to test and less amendable to
conventional resynthesis by existing synchronous hard-
ware synthesis techniques.

3.2 Synchronization between derived clocked
components

When the communicating components are clocked by
different clock frequencies, but the clocks used are de-
rived from the same global system clock ¢¢, then the
above synchronous wait protocol can still be used. In
our approach, we automatically synthesize a small chan-
nel adapter to handle the frequency conversion. This
is shown in Figure 7. Using this adapter approach, we
can integrate “pre-designed” reusable library components
into a new custom embedded system architecture with-
out the need to modify the description or the behavior of
the reusable component itself, if the component has been
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Figure 7: Channel adapter for frequency conversion.

designed in compliance with our component architecture
model using the synchronous wait protocol. This issue is
addressed in more details in Section 5.

For adapting between different derived clock regions,
we need to consider three cases:

e Case 1. The sender’s clock ¢s is N times faster
than the receiver’s clock ¢r (e.g. ¢s = 60Mhz, ¢
= 20Mhz).

e Case 2. The sender’s clock ¢g5 is N times slower
than the receiver’s clock ¢g (e.g. s = 20Mhz, ¢r
= 60Mhz).

e Case 3. The sender’s and receiver’s clock are not
common multiples of each other, but are common
multiples of the system clock ¢¢ (e.g. 5 = 20Mhz,
¢r = 30Mhz, ¢c = 60Mhz).

Each of these three cases are enumerated below.

Case 1. In this case, we suppose that the sender’s
clock ¢s is N times faster than the receiver’s clock ¢pg.
For example, if ¢s = 60Mhz and ¢g = 20Mhz, then the
sender’s clock is 3 times faster. Intuitively, when both the
sender and receiver partners are ready, the data transfer
can take place. However, since the receiver is slower, the
sender cannot immediately send another data item until
the receiver completes its current clock cycle. We can
solve this problem by preventing the “sender” from send-
ing another data item until at least N — 1 of its ¢s clock
cycles later. However, we need a strategy that avoids
the requirement to modify the component itself since the
component may be a pre-designed library component that
cannot be modified. Further, we need to avoid having to
modify the component for every combination of clock fre-
quencies.

Our approach is to maintain the sender’s view of the
communication, as depicted in Figure 4, by adding a
channel adapter that handles the frequency conversion
and the alignment of the data transfer. This way, the
sender still assumes the synchronous wait protocol and
has the illusion that the receiver is operating under the
“same” clock. The channel adapter effectively inserts
N — 1 wait cycles on the sender side by keeping the
recvRdy signal to the sender low during this period. On
the other hand, if the sender does not need to send an-
other data item, it can proceed with other operations
without having to busy wait. This way, the speed of the
sender is adapted to that of the receiver only when nec-
essary. The receiver’s view, as depicted in Figure 5, also
remains unchanged.

Using this scheme, the channel adapter is in fact a fi-
nite state machine that operates at the sender’s clock fre-
quency (the higher of the two clock frequencies between

the sender and the receiver) and manages the alignment
of transfer on both sides. In our approach, this chan-
nel adapter is automatically generated for interconnect-
ing different processor component units together with-
out modifying the components themselves. This way,
the components can be designed independent from its
environment, hence enhancing reusability and modular-
ity. Since the channel adapter operates under same clock-
ing scheme as the sender, existing synchronous hardware
synthesis techniques can be used to further optimize the
logic of the channel adapter with that of the component,
if desired.

In a burst transfer mode, a sequence of data can be
consecutively transferred between the sender and the re-
ceiver at a sustained rate of one item per cycle of the
receiver’s clock ¢g since it is the slower of the two clocks.

Case 2. In this case, we suppose that the sender’s
clock ¢s is N times slower than the receiver’s clock ¢g.
For example, if ¢ = 20Mhz and ¢g = 60Mhz, then the
sender’s clock is 3 times slower. Again intuitively, when
both the sender and receiver partners are ready, the data
transfer can take place. However, this time it is the sender
who is slower. In this case, we must effectively make the
“receiver” wait at least another N — 1 of its ¢ clock
cycles before “reading” another item. Again, there is no
“busy wait” if the receiver has other operations to per-
form. Our strategy again is to add a channel adapter that
handles the frequency conversion and the alignment of the
data transfer so that both the sender and receiver main-
tain their abstraction of the environment, as depicted in
figures 4 and 5, respectively. In a burst transfer mode,
a sequence of data can be consecutively transferred be-
tween the sender and the receiver at a sustained rate of
the sender’s clock ¢g since it is now the slower of the two
clocks.

Case 3. In this case, we suppose that both the
sender’s and receiver’s clock are derived form the same
system clock, but they are not common integer multi-
ples of each other. For example, ¢s = 20Mhz and ¢g =
30Mhz. In this case, the two clock frequencies are not
integer multiples of each other.

For handling this situation, we can use two strategies.
In the first strategy, we use a higher clock frequency than
the two clocks that is a common multiple of the two clock
frequencies. Following on the ¢s = 20Mhz and ¢p =
30Mhz example, a common multiple clock frequency is a
60Mhz clock. This happens to be the system clock ¢¢c.
We are guarantee to be able to find a common multiple
clock frequency because we assumed in the first place that
all component clocks are derived from the system clock
¢c by clock division. However, there may be another
derived clock available in the system that has a lower
common multiple clock frequency. In this case, the user
can choose either clock to use for the adapter.

Let us refer to the chosen common multiple clock as
¢ar- This clock is an integer multiple P times faster than
the sender’s clock ¢s, and an integer multiple @ times
faster than the receiver’s clock ¢g. In this scenario, the
problem degenerates to a “Case 2” channel adapter for
converting ¢s to ¢ and a “Case 1” channel adapter for
converting ¢as to ¢r. Both channel adapters are clocked
at ¢ps. They are then composed together to form a single
channel adapter.

In a second strategy, we use instead a lower clock fre-



quency than the two clocks that is a common divisor of
the two clock frequencies. Following again on the ¢g
= 20Mhz and ¢ = 30Mhz example, a common divisor
clock frequency can be a 10Mhz clock. If there is already
another derived clock available in the system that can be
used as a common divisor clock, then that clock can be
chosen. Otherwise, one can be derived by dividing either
the ¢s or ¢p clock.

Let us refer to the chosen common divisor clock as ¢p.
Similar to the first strategy, the problem degenerates to a
“Case 1” channel adapter for converting ¢s to ¢p and a
“Case 2” channel adapter for converting ¢p to ¢g. In this
case, the sender’s channel adapter is clocked at ¢s and
the receiver’s channel adapter is clocked at ¢g. They are
then composed together to form a single channel adapter.

3.3 Synchronization with unrelated clocked and
unclocked components

In this section, we describe how we implement a chan-
nel adapter for interconnecting two communicating com-
ponents that are operating on clocks that are unrelated
(i.e. derived from a different crystal) or when one of the
two components is an asynchronus self-timed component.
Here we need to consider two cases that we will refer to
as “Case 4” and “Case 5”.

e Case 4. The sender and the receiver operate on
unrelated clocks that have no known deterministic
phase relationship with each other.

e Case 5. Either the sender of the receiver com-
ponent is an unclocked “self-timed” asynchronous

component.

These two cases are enumerated below.

Case 4. In this case, simply “stretching” a send or
receive operation into a N-cycle operation is not suffi-
cient. We need an explicit request-acknowledge scheme
to indicate the initiation and completion of the commu-
nication. For this purpose, we use a four-phase request-
acknowledge scheme as the intermediate handshake pro-
tocol. However, the components are still implemented,
possibly stored in a library, using the synchronous wait
protocol, and we can use them without modifying them.
Instead, we implement a channel adapter that converts
the synchronous wait protocol to a four-phase handshake
protocol. This is depicted in Figure 8.

In a four-phase handshake protocol, channel communi-
cation is controlled by a pair of request and acknowledge
signals, one for signaling a request, the other for signaling
an acknowledge to that request [14, 13]. Here, we use a
push version of the protocol where the sender assumes the
responsibility for initiating the transfer. This protocol is
shown in Figure 9.

As shown in Figure 8(a), the channel adapter for the
sender is a finite state machine that is clocked with the
sender’s clock, which can be further optimized together
with the sender. Similarly, the channel adapter for the
receiver is a finite state machine this is clocked with the
receiver’s clock, which also can be further optimized to-
gether with the receiver. Because the clocks are unre-
lated, synchronizers are required to synchronize the req
signal from the sender to the receiver, and the ack signal
from the receiver to the sender. We assume that a robust
synchronizer is available as a library element that can
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Figure 8: Channel adapter to a handshake protocol.
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accept an asynchronous input signal and produce an out-
put signal that is synchronous to the input clock. We can
avoid inserting synchronizers for the data lines because
the adapter ensures that the data is held stable during
the entire four-phase period. The channel adapters for
converting to a four-phase protocol is automatically syn-
thesized in our approach. The two synthesized channel
adapters can then be composed together to form an over-
all channel adapter, as shown in Figure §(c).

Case 5. In the case that we need to communicate
with an asynchronous component, we assume that com-
ponent communicates using the four-phase handshake
protocol. If not, a wrapper can be placed around the
communication channel to convert the internal protocol
to a four-phase protocol, using for example the techniques
described in [13]. To interconnect a synchronous compo-
nent that uses the synchronous wait protocol to an asyn-
chronous component that uses the four-phase protocol,
we use the method in “Case 4” to synthesize a channel
adapter on the synchronous side to a four-phase protocol.
Then we can connect it to the asynchronous component.

4 Software Component Architecture
4.1 Processor Template

A processor component unit may be a software pro-
grammable processor core (e.g. DSP or micro-controller
cores). Our approach to incorporating software pro-
cessors into a custom target embedded architecture is
based on building a parameterized “architecture tem-
plate” around the processor core. This architecture tem-
plate is shown in Figure 10. There are three main com-
ponents to this architecture template: the processor core
itself, an internal memory structure for storing the pro-
gram instructions and run-time data, and a hardware I/O
unit that implements the hardware communication inter-
face to the external environment. These components are
interconnected via the “processor bus”, which consists of
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Figure 10: An architecture template approach to model-
ing a software processor component unit.

the data bus, the address bus, and the control bus.

Using an architecture template to model a software
processor, a software component is seen to other compo-
nents in our component architecture model simply as an-
other hardware processor component that communicates
via dedicated channels, and the channels are implemented
using a common circuit-level channel protocol, i.e. the
synchronous wait protocol. From the user’s perspective,
the architecture template can be customized to provide
a specified number of “physical” channels that support
user-defined directions and data widths. In fact, it is
the hardware I/O unit in the architecture template that
actually implements these physical channels for intercon-
nection with other components. Based on this processor
architecture model, a software processor component unit
can be integrated into a custom target embedded archi-
tecture in the same way as another hardware processor
component.

4.2 Details of the Processor Template

In our architecture template, the I/O unit implements
the communication protocol between the processor core
and the external environment. Communication with the
external environment is accomplished through one or
more input or output ports attached to the I/O unit.
These input or output ports are connected to commu-
nication channels that are connected to other processor
components. These ports implement channel control us-
ing the implementation protocol described in Section 3.1.
A more detailed architecture template using the ARM
processor is shown in Figure 11. The input and output
of data to and from the processor core is accomplished
through one of two different methods: memory-mapped
I/0 or instruction-programmed 1/0.

Memory-Mapped I/O. Memory-mapped I/O pro-
vides a data-transfer mechanism that is convenient be-
cause it does not require the use of special processor in-
structions, and can implement practically as many in-
put or output ports as desired. In memory-mapped 1/0,
portions of the address space are assigned to input and
output ports. Reads and writes to those addresses are
interpreted as commands to the I/O ports. “Sending” to
a memory-mapped location involves effectively execut-
ing a “Store” instruction on a pseudo-memory location
connected to an output port, and “Receiving” from a
a memory-mapped location involves effectively executing
a “Load” instruction on a pseudo-memory location con-
nected to an input port. When these memory operations
are executed on the portions of address space assigned to
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Figure 11: Architecture template with hardware I1/O unit
expanded.

memory-mapped I/O, the memory system ignores the op-
eration. The I/O unit, however, sees the operation and
performs the corresponding operation to the connected
I/0 ports.

For custom embedded architecture synthesis, the num-
ber of memory locations assigned for memory-mapped
I/O will depend on the number of “channels” that a
software processor component has to “physically” imple-
ment. Here, the assignment of address locations to chan-
nels can be user-defined. However, it is usually preferred
that the address locations assigned for memory-mapped
I/O be a “contiguous” memory region. This greatly sim-
plifies the address decoding logic for the I/O unit. In
this case, address location assignment is automatically
performed by off-setting from a user defined base address
location.

Instruction-Programmed I/0O. Some processors
also provide special instructions for accessing special 1/O
ports provided with the processor itself. Using this
scheme, these special communication ports of the pro-
cessor are connected the external channels via the 1/O
unit. We use a simple greedy algorithm (like in [3]) that
uses these programmed I/O ports first if they are less
expensive than using memory-mapped /0. If communi-
cation via special programmed I/O instructions is more
expensive, or not available, then only memory-mapped
I/O will be used.

Interrupt Control. In addition to providing
hardware support for memory-mapped and instruction-
programmed I/O, the I/O unit also provides support for
hardware interrupt control. Interrupts are used for dif-
ferent purposes, including the coordination of interrupt-
driven I/O transfers, as described in Section 4.4. Differ-
ent processors provide different degree of hardware inter-
rupt support. Some processors provide direct access to
a number of dedicated interrupt signals. Our I/O unit
architecture makes use of these signals when available. If
more interrupt “channels” are required, as for example re-
quired to support a number of interrupt-driven communi-
cation channels, we use the strategy of interrupt vectors.
Interrupt vectors are pointers or addresses that tell the
processor core where to jump to for the interrupt service
routine.

Direct Memory Access Support. Optional to our




I/O unit architecture template is the addition of a di-
rect memory access (DMA) controller. This DMA con-
troller can access directly the data memory of the soft-
ware processor component unit via the processor bus. It
can be used to support high-speed data exchange directly
between the (external) communication channels and the
processor data memory without intervention of the pro-
cessor. The processor initiates the DMA transfer by indi-
cating to the DMA controller the start address of mem-
ory, the number of items to be transferred, the Sexter-
nal) communication channel where the transfer will take
place, and the direction of transfer (i.e. reads or writes).
Once initiated, the DMA transfers are accomplished be-
tween the specified communication channel and the mem-
ory. Upon completion, the DMA controller will interrupt
the processor to indicate completion. If the DMA con-
troller option is used, we will also produce automatically
the necessary bus arbitration logic to manage the bus
contention on the processor bus and the control logic to
enable the processor to control the DMA controller.

4.3 Generation of I/O Unit

The I/O unit must be connected to the processor bus
of the processor core. Different processors use differ-
ent processor bus protocols, usually described as timing
diagrams in data books, for implementing their mem-
ory “read” or “write” operations, or their special pro-
grammed I/O operations. Our interface synthesis tools
can also automate the design of the necessary protocol
matching hardware for communication with a specific
processor bus protocol [13].

4.4 Software Communication Synthesis

On the software side, the processor can be programmed
using the C or C++ language. To facilitate external com-
munication, we automatically generate a custom library
of C/C++ “call-able” functions with send and receive
operations. This library is automatically generated de-
pending on the number of channels that the software
component must support, their directions, and their data
width. The library can be thought of as a “customized”
communication kernel. From the programmer’s perspec-
tive, the application communicates with the external
world by using the appropriate send and receive op-
erations. This abstraction isolates the programmer from
the low-level details of how the processor actually inter-
acts with the environment. The send and receive routines
are implemented using the memory “read” and “write”
instructions if memory-mapped I/O is used for the spe-
cific channel, or the corresponding special programmed
I/0 instructions if instruction-programmed I/O is used.

Because we use rendezvous semantics to implement the
channels in our component architecture model, a com-
munication operation to another processor component
unit may take an arbitrary amount of time since both
the “sender” and the “receiver” must be “ready”. To
avoid unnecessary “idling”, we use an interrupi-driven
I/0 scheme. In this scheme, the “send” and “receive”
routines in software are each split into two operations:
the initiation and continuation operations. The initia-
tor routine is responsible for getting an I/O operation
started. In the case of a “send” operation, the processor
transfers the data to the I/O unit. Once the data has
been transferred to the I/O unit, the processor can pro-
ceed with other tasks if it is using a multi-tasking kernel,

or a compiler can insert instructions at compiled time
after the initiator operation that don’t depend on the
completion of the send operation. When the actual send
operation to the external environment is completed, the
I/O unit interrupts the processor. The continuator rou-
tine is then responsible for notifying the calling routine
that the send operation has completed. Similar, in the
case of a “receive” operation, the processor initiates the
operation by notifying the I/O unit. The I/O unit then
coordinates the receive operation via the I/O ports along
the specified channel. When the actual receive operation
from the external environment is completed, the I/O unit
interrupts the processor. The continuator routine is then
responsible for transferring the data to the processor. To
support the above I/O operations, the necessary inter-
rupt controller functionalities are also synthesized into
the I/O unit hardware. If DMA support is desired, then
the necessary software routines for coordinating “burst”
DMA transfers are also automatically generated. In ad-
dition to interrupt-driven I1/O, polling and processor dis-
abling are also supported.

5 Hardware Component Architecture

Hardware Communication Synthesis. In our tar-
get architecture model, a hardware processor component
in an application-specific embedded system architecture
may still need to be implemented. In this case, we au-
tomatically generate for the user a “container” that es-
sentially implements a “communication wrapper” around
the hardware that the user will later provide. From
a user’s perspective, the designer only needs to declare
the number of communication channels required for the
hardware processor component, their directions, and the
data width that they must support. We then automat-
ically generate a customized VHDL package that imple-
ments the communication channels, according to the syn-
chronous wait protocol described in Section 3.1. This
VHDL package provides a set of send and receive op-
erations that can be “called” by an application program
in VHDL, which provides an abstraction of the exter-
nal communication. The designer can then “program”
this “container” by writing a VHDL program that uses
the send and receive operations provided by the VHDL
package for external communication. If the designer
chooses to use another programming language to program
the hardware, e.g. Silage [8], then VHDL and the VHDL
packages generated can be used as an intermediate inter-
face to a lower level hardware implementation trajectory.
Parameterized Libarires. Reusable library compo-
nents can be modeled and integrated into a custom em-
bedded architecture. The library component can be in
the form of synthesizable VHDL or already at the circuit
level. The main requirement is that all external com-
munication with the outside world must be implemented
using the CSP channel concept (cf. Section 2), and the
implementation protocol is the synchronous wait protocol
described in Section 3.1. The components may operate
under different clocks. Such components can be auto-
matically integrated into a custom architecture, without
the need to modify the description or the behavior of
the reusable component itself, by synthesizing channel
adapters using the techniques described in Section 3.2
and Section 3.3. To represent parameterizable compo-
nents, we use the parameterization features of VHDL.
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Figure 13: The system architecture schematic.

Communication Components. An important class
of parameterized library hardware components is the
class of communication components. For example, we
keep in the library a parameterized synthesizable VHDL
model of a FIFO communication buffer. This model is
parameterized by depth and data width. It is designed
to communicate using the CSP channel model and the
synchronous wait protocol. This hardware “component”
can be instantiated and integrated like any other hard-
ware component. This way, we can mimic different com-
munication models.

6 Application Experience

Our approach to the embedded architecture co-synthesis
and system integration problems is embodied in a sys-
tem called Symphony. It provides designers with tools
to implement application-specific heterogeneous archi-
tectures and hardware/software communication layers.
This system is part of a larger heterogeneous system co-
design environment called CoWare under construction at
IMEC [4]. In this section, we discuss the application of
the proposed techniques to a simple error corrector for
the Compact Disc player [12]. The error decoding al-
gorithm consists of two phases. In the first phase, syn-
chrome computation, a sequence of 28 or 32 symbols are
read, depending on whether the sequence has been en-
coded once or twice. Then four 8-bit wide syndrome val-
ues are computed that contain the necessary information
for error location and detection in the second phase. The
reader can refer to [12] for more details.

We considered a partitioning, as is depicted in Fig-
ure 12, where the syndrome calculator and the error lo-
cator are implemented as two separate hardware com-

ponents, while the error correction algorithm is imple-
mented in software on an ARM core [16]. The software
running on the ARM sends a sequence of symbols to
the syndrome calculator along a 32-bit wide channel. In
turn, the syndrome calculator sends its four syndrome
values along four 8-bit wide channels to the error locator,
both implemented in hardware. The latter then sends the
necessary error location information along a 14-bit wide
channel back to the ARM. Using our proposed method,
we produced the design shown in schematic form in Fig-
ure 13. In this design, the ARM processor operates at the
system clock frequency of 40Mhz. The error correction
algorithm was implemented in C on the ARM using the
generated library of C call-able send and receive func-
tions for communication. Both hardware components,
the syndrome calculator and the error locator, operate at
a 20Mhz clock, which is derived from the system clock.
These hardware components were programmed in VHDL
using the send and receive operations from the VADL
communication packages synthesized.

Aeknowledmts. We thank our colleagues K. Van Rompaey,
I. Bolsens, G. ns, F. Catthoor, D. Verkest, B. Gyselinckx
K. Croes, T. Kolks, J. Silva, and C. Ykman for numerous insightful
discussions on the system integration problem.

References

[1] J. T. Buck et al. Ptolemy: A framework for simulating and pro-
totyplr? heterogeneous systems. International Journal on Com-
puter Symulation, January 1994,

[2] M. Chiodo et al. A formal methodol for hardware/software
codesign of embedded systems. JEEE Micro, August 1994,

[3] P. H. Chou, R. B. Ortega, G. Borriello. The Chinook Hard-
ware /Software Co-Synthesis System, International Symposium
on System Synthesis, September 1995.

[4] H. De Man, 1. Bolsens, B. Lin, K. Van Rompaey, S. Vercauteren,
and D. Verkest. Co-design of DSP systems. NATO ASI Hard.
ware/Software Co-Design, Tremezzo, June 1995,

[5] R. Ernst, J. Henkel, and T. Benner. Hardware-software cosynthe-
sis for microcontrollers. IEEE Design and Test of Computers,
10(4):64-75, December 1993.

[6] D. Gajski, F. Vahid, S. Narayan, and J. Cong. Specification and
Design o}z Embedded Systems. Prentice-l-la]l,glgsi,

[7] R. Gupta and G. De Micheli. Hardware-software cosynthesis for
digital systems. Computers and Electrical Engineering, 10(3)29-
41, September 1993.

[8] P. .N. Hilfinger et al. DSP specification using the Silage language.
International Conference on Acoustics, Speech and Signal Pro-
cessing, April 1990.

[8] C. A. R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

[10] T. B. Ismail, M. Abid, and A. A. Jerrags. Cosmos: A codesi
aﬁproa.:h for communication systems. Third International Work-
shop on Hardware/Software Codesign, September, 1994,

[11]) D. Knu];]), T. Ly, D. MacMillen, R. Miller. Behavioral synthesis
methodology for HDL-based specification and validation. Design
Automation Conference, 1995,

[12] J. Kessels, K. van Berkel, R. Burgess, M. Roncken, F. Schalij.
A Tangram program for error decoding in compact disc player.
Eum.évnf. on Design Automation, 1992,

[13] B.Lin and S. Vercauteren. Synthesis of concurrent system interface
modules with automatic protocol conversion generation. In IEEE
International Conference on Computer-Aided Design, November

994,

[14] C. L. Seitz. System Timing. In C. .A. Mead and L. A. Conway, ed-
itors, Introduction to VLSI Systems, Chapter 7, Addison-Wesley,
1980.

[15] M. Srivastava, B. Richards, and R. W. Brodersen. System level
hardware moduke ieneration. IEEE Transactions on VLSI Sys-
tems, 3(1), March 1995.

[16] A.van Someren and C. Atack. The ARM RISC Chip, A program-
mer’s Guide. Addison-Wesley Publishing Company, 1994.



	Main Page
	CODES96
	Front Matter
	Table of Contents
	Author Index




