
A Design and Validation System for Asynchronous Circuits

Peter Vanbekbergen, Albert Wang and Kurt Keutzer
Synopsys, Inc.

Mountain View, CA, 94043

Abstract—
In this paper we present a complete methodology for the design

and validation of asynchronous circuits starting from a formal
specification model that roughly corresponds to a timing diagram.
The methodology is presented in such a way that it is easy to
embed in the current methodology for synchronous circuits. The
different steps of the synthesis process will just be briefly touched
upon. The main part of the paper concentrates on the simulation
and validation of asynchronous circuits. It discusses where the
designer needs validation and how it can be done. It also explains
how this process can be automated and embedded in the complete
methodology.

I. INTRODUCTION

Design technology to support the system-level design of
application-specific microelectronics systems is rapidly becoming an
important area. Today, a designer has an extensive set of tools at his
disposal for the design of synchronous circuits, where a single clock
controls and synchronizes all collective activity. These tools do not
only support synthesis of these circuits at different abstraction levels
but also support the verification and simulation. These tools fit to-
gether to offer the designer a complete methodology for the design
and verification of synchronous designs.

As we rapidly move to system-level solutions, it becomes clear
that the paradigm of one central clock ruling the activity of the com-
plete system is not valid any more. The system becomes partitioned
into different synchronous islands, each with their own clock. While
the synchronous paradigm still applies to these “islands”, it does not
apply any more to the circuits that control the communication between
the different “islands”. These interface circuits are inherently “asyn-
chronous”, because they do not use a clock, or because not all signals
in the interface follow the same clocking methodology.

Even when the use of asynchronous circuits is not necessary, they
offer particular advantages, important in many applications. Asyn-
chronous circuits can have a much lower latency than their syn-
chronous counterparts, because they can respond to an input change
without waiting for the clock. This is a desirable property in many in-
terface applications. Asynchronous circuits also play an important role
for low power circuits. Systems are being designed today, completely
based on the asynchronous paradigm [10], although that mixed-mode
solutions, where only small part of the chip is asynchronous, are cur-
rently more common [3] in industrial designs.

The lack of a complete asynchronousdesign methodology not only
represents a serious problem when an asynchronous design cannot be

avoided, but also has as a consequence that designers are reluctant
to design asynchronous circuits which often results in suboptimal
solutions. Due to the lack of a formal specification method for asyn-
chronous circuits, designers often make hidden assumptions, that are
not indicated in the specification. This makes it hard to use consistent
synthesis and verification methods. Moreover communicating spec-
ifications between designers becomes tricky as each designer tends
to have his own assumptions. Although the latest research addresses
a lot of isolated problems in the design of asynchronous circuits, no
complete methodology has been presented. It is exactly this gap that
this paper tries to bridge.

In this paper we present a complete methodology for the design
and validation of asynchronous circuits starting from a formal spec-
ification model that roughly corresponds to a timing diagram. The
methodology is presented in such a way that it is easy to embed in the
current methodology for synchronous circuits. The different steps of
the synthesis process will just be briefly touched upon. The main part
of the paper concentrates on the simulation and validation of asyn-
chronous circuits. It discusses where the designer needs validation
and how it can be done. It also explains how this process can be
automated and embedded in the complete methodology.

II. METHODOLOGY

The following aspects are key to embedding a new methodology
for the design of asynchronous circuits in the current methodologies.

� Specification: A formal specification methodology is essential
for any design methodology and it may not be obscure to design-
ers. Therefore it is necessary to support different specification
methodologies, including the ones designers are more familiar
with, even if these methodologies are not the most general ones.

� Simulation & validation: Simulation plays a central role in the
design of any circuit and asynchronouscircuits are no exception.
Even if a formal verification tool is available the methodology
still needs to support simulation.

� Synthesis: The synthesis procedure needs to guarantee circuit
correctness. Correctness also includes analyzing and verifiy-
ing the exact conditions under which the circuit will work. For
instance, in a synchronous environment this corresponds to de-
termining the maximum clock speed that is allowed. In an asyn-
chronous circuit this corresponds to determining when a new
input may be applied to the circuit. Having implicit conditions
under which the circuit works is unacceptable.
The model for synthesis and verification of the asynchronouscir-
cuits needs to be consistent with the model used for synchronous
circuits. The delay-insensitive model is very popular for asyn-
chronous designs [5]. It assumes no delays in the wires and
unbounded delays in the gates. This is not consistent with the
synchronous model that assumes bounded delays in the wires
and gates.

� Library: The methodology needs to support standard libraries.
The synthesisprocedures may not solely rely on special elements
(like c-elements or specially designed flip-flops) that are not
supported in standard libraries.

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

An overview of the proposed methodology is presented in Figure 1.
The shaded boxes represent the information that has to be provided by
the designer. First of all there is the specification itself which may be
a Signal Transition Graph (STG) [2] or an asynchronous finite state
machine model (AFSM) [6], [11]. The compiler translates an AFSM
into an STG. The STG-model is informally introduced in Section III.
Second, there is the library of gates the circuit is going to be mapped
to. This library may just be a standard library. The designer must
ensure that the cells that are used in the mapping process are hazard-
free. The classical and- and or-gates are usually hazard-free, but
many other cells, like multiplexers, may contain internal hazards. The
designer must disable such cells for use during the mapping process.
Finally, the designer must provide a tolerance factor that indicates
how much the delay of a gate may vary around the normal value. In
this way the designer can take into account variations of the process
parameters. He can also take into account delay variations that are
introduced by routing in the layout. It is obvious that low tolerance
factors result in efficient but less robust circuits, while high tolerance
factors result in less efficient but more robust circuits. The initial STG
specification, library information and tolerance factor are the only data
that have to be provided by the designer. All other data are generated
automatically by the compiler.

The finite state machine model is a clear, easy-to-analyze model
that designers are familiar with. The signal transition graph model
however is more general in handling concurrency, conditional behav-
ior and timing. Although designersare used to timing diagrams, which
the STG-model is close to, they are not willing to immediately adopt
this new model. Thus both models are supported in this compiler. Ac-
tually any specification model that can be translated into a state graph
can be handled by the compiler because all the synthesis algorithms
work at state graph level (only the simulation-environment needs the
STG-model).

Another advantage of these formal specification models is that
they also specify the allowed behavior of the environment. It gives
the synthesis algorithms the opportunity to come up with better im-
plementations and gives the simulation environment the opportunity
to verify whether circuit and environment are behaving as specified.

From the initial STG VHDL-code is generated that can be sim-
ulated in different ways. Simulations validate that the initial spec-
ification corresponds to what the designer has in mind and that the
environment of the asynchronous circuit is correctly modeled in the
STG. This will be discussed in Section IV.

The STG is transformed into a state graph internally in the compiler.
The state graph represents all the possible states of the circuit It is
therefore much more elaborate than the STG-model or FSM-model.

This state graph may still contain state assignment conflicts. So
state signals are added to the state graph to eliminate all state assign-
ment conflicts, resulting in a new state graph. This is an adaptation of
the technique proposed in [9].

Once a state graph is obtained logic equations may be derived,
based on the technique presented in [4].

Based on the information in the state graph and in the technology
independent equations, all potential hazards can be identified. This
includes static-0 static-1 and dynamic hazards [4]. The technique for
the analysis of static hazards and dynamic hazards is an adaptation
from [4]. Our simulations have shown that dynamic hazards do play
an important role.

The technology independent equations are then mapped to the
library. Based on the timing information in the library and the tolerance
factor, a timing analysis step determines the exact timing relations that

new state graph

satisfy state encoding

generate implementation

map

timing analysis

layout generation

hazard-analysis

state graph

Tech. independent equations

tech. depenedent implementation

hazard-list with timing

hazard-list

final layout
backannotation

simulation

VHDL

simulation
results

VHDL

simulation

simulation
results

AFSM STG

LIBRARY

TOLERANCE

hazard-elimination

Hazard-free implementation

Fig. 1. An overview of the methodology.

eliminate all the hazards in the hazard-list. The technique will not only
delay the circuit by adding delay-elements, but it will also produce the
exact timing relations for the environment (input signals) for the circuit
to operate correctly. In a synchronous circuit this would correspond
to determining the maximum clock speed.

Finally the layout is generated. The layout information can be
backannotated on the circuit. Timing analysis can then verify if all
hazards remain eliminated. If not, new delays may be added by the
hazard-elimination procedure and a new layout may be generated. If
this process fails to converge or converges slowly, the designer can
also increase the tolerance factor to account for the routing delays. The
complete circuit can then be simulated in different ways as discussed
in Section IV.

III. THE SPECIFICATION MODEL

An STG corresponds to a Petri net [8], [2]. A Petri net is a directed
graph with two different types of vertices: places (open circles) and

sending+

sending- reqrcv+

rjsend+

sending- acksend+

rejsend-

acksend-

enwoq+

reqrcv-

enwoq-

reqrcv-

enwoq+

reqrcv-

enwoq-

p4

p1

p5

p6 p7

p9 p8

p10

p11

p12

p13

p0

p2

p3

Fig. 2. The STG for rcv-setup.

transitions. Places determine the (causal) relationships between the
transitions. Transitions correspond to the signal transitions of the
input and output signals of the circuit. Transitions of input signals are
underlined.

Execution of a Petri net is controlled by the position and movement
of markers (called tokens) in the Petri net. Tokens, indicated by black
dots, reside in the circles representing the places of the net. Tokens are
moved by the firing of the transitions of the net. A transition is enabled
when all its input places carry a token. An enabled transition may fire.
This is done by removing the enabling tokens from their input places
and generating new tokens which are deposited in the output places of
the transition. In Figure 2, sending+ is enabled since it has a token in
its input place p4. If sending+ fires, the token in p4 will be removed
and a new token will be placed in place p1. The distribution of tokens
in a Petri net defines the state of the net at each moment in time and is
called its marking.

The STG can model conditional behavior as well as concurrent
behavior. A choice is modeled by place p4. In this case sending+

can fire or reqrcv+ can fire, but not both. They determine a choice

SYSTEM USER

VHDL
SIMULATION

TESTBENCH
VHDL

ASSERTION
VHDL

BEHAVIORAL
VHDL

GATE-LEVEL
VHDL

STG

RESULTS
ASSERTION
VIOLATIONS

OR

OR

Fig. 3. An overview of the simulation environment.

made by the environment. The transitions sending� and acksend+

can fire concurrently after rjsend+ has been fired.
The result of the synthesis process is shown in Figure 6. Note

that delay lines have been added to slow down parts of the circuit to
eliminate hazards. Not that it is also indicated how much the input
signals (and thus the environment) should be slowed for the circuit to
operate correctly.

IV. SIMULATION

Simulation serves two purposes. First, simulating the behavioral
specification is necessary to convince the designer that his specifica-
tion corresponds to what he/she has in mind. But in this case, the
designer also needs to validate that the assumptions he made about the
environment in which this circuit is going to be embedded correspond
to the real environment.

Second, the simulation at the gate-level after synthesis convinces
the designer that his own implementation or synthesized implementa-
tion is correct.

With all this in mind a designer needs to juggle around with four
different types of VHDL (Figure 3). Behavioral VHDL that models
the behavior of the specification. Testbench VHDL that generates
the input vectors for simulation. Assertion VHDL that checks if the
circuit and environment are responding as specified. An finally, Gate-
level VHDL derived from the designed circuit. Usually the gate-level
VHDL is the only VHDL available to the designer. Due to a lack of
a consistent specification model writing down the other VHDL types
is impossible or too time-consuming. In this methodogy all these
VHDL-files can be generated directly from the STG and synthesis
results, without designer intervention. This means that before and after
synthesis simulation can occur automatically and any violations of the
initial specification during the simulation are immediately reported to
the designer.

The architecture is shown in Figure 4. The behavioral VHDL takes
its inputs from the testbench and produces the outputs. The testbench
VHDL produces the inputs for the behavioral VHDL, but it also has
as its inputs the outputs of the behavioral VHDL. Note that also the
environment can be reactive, waiting for the asynchronous circuit to
respond. The assertion VHDL has as its inputs the inputs as well as
the outputs of the behavioral VHDL. The assertion VHDL monitors
the behavior of these signals and produces error messages if the initial

BEHAVIORAL
VHDL OR
GATE-LEVEL
VHDL

ASSERTION
VHDL

TEST
BENCH

inputs outputs

state
signals

Error
messages

Fig. 4. The simulation architecture.

specification is violated.
It might be interesting to note that simulation is also an important

tool for debugging the compiler. Many software and theoretical bugs
were discovered this way during development of the compiler.

For the coming subsections describing the different VHDL-styles,
we will refer to the STG presented in Figure 2.

A. Behavioral VHDL.

From the STG VHDL-code can be generated which represents the
behavior of the STG. The main characteristic of an STG (or Petri net)
is that each place can be considered a state. This corresponds to a
machine with more than one active state [7].

rejsend_down: BLOCK ((places(8) = ’1’ AND
places(9) = ’1’))

BEGIN
rejsend_int <= GUARDED ’0’;
places(8) <= GUARDED ’0’ ;
places(9) <= GUARDED ’0’ ;
places(10) <= GUARDED ’1’ ;

END block rejsend_down;

The dynamic behavior of the places is represented by a vector of
booleans. If a token arrives in placep (with p an integer) then places(p)
is set to one. If a token is removed from the place places(p) is set to
zero. This can easily be extended for multiple tokens.

Because transitions can potentially be concurrent with any other
transition in the STG, each transition is modeled by a different
(guarded) block. The guard-expression corresponds to the enabling
condition of the transition. It indicates that the transition can fire if
places 8 and 9 contain a token.

The transition firing and the token-flow are modeled inside the
block. It indicates that rejsend is set to zero, that the tokens in places
8 and 9 are removed and that a token is placed in place 10.

sending_down_3: BLOCK ((places(1) = ’1’ AND
sending = ’0’))

BEGIN
places(1) <= GUARDED ’0’ ;
places(4) <= GUARDED ’1’ ;

END block sending_down_3;

The model is somewhat different for input signals. In this case we
are not generating a signal transition, but waiting for a signal transition
to take place. So in this case, it is indicated in the guard that not only
place 1 needs to contain a token, but the input-signal sending needs
to go low before we can execute the block command.

In these specifications there is more than one guarded assignment
to the same variable. That is why a resolution function is needed

here. An example is shown below. Although that there are multiple
assignments, the guard expressions should make sure that this never
happens. If more than one assignment is active simultaneously, it
means a high and low transition is being enforced on the same signal at
the same time. This corresponds to an inconsistent initial specification.
An assert statement was added to check for this.

TYPE std_vector IS
ARRAY (NATURAL RANGE <>) OF std_logic;

FUNCTION oring_std (drivers : std_vector)
RETURN std_logic;

SUBTYPE ored_std IS
oring_std std_logic;

TYPE ored_std_vector IS
ARRAY (NATURAL RANGE <>) OF ored_std;

FUNCTION oring_std (drivers : std_vector)
RETURN std_logic IS
VARIABLE accumulate : std_logic := ’0’;
BEGIN
FOR i IN drivers’RANGE LOOP

accumulate := accumulate OR drivers(i);
ASSERT (i < 2);
END LOOP;

RETURN accumulate;
END oring_std;

B. Testbench VHDL.

For the testbench VHDL there are many alternatives. The user may
decide to write it himself, to test the circuit for situations he considers
to be critical. The compiler could generate special testbenches to
activate all possible hazards, for example.

In our current implementation we have chosen to test the circuit in
such a way that new transitions are generated from the moment that
they are allowed to fire according to the specification. This simulation
tries to operate the circuit at the maximal possible speed.

This can be accomplished by switching input and output signals
and generating the behavioral VHDL code the same way as in the
previous section. However in this case our assumption that a place
that has multiple output transitions, only has output transitions of input
signals is not valid any more. This leads to VHDL-code that does not
behave according to the STG specification.

reqrcv_up_0: BLOCK ((places(4) = ’1’))
BEGIN

places(4) <= GUARDED ’0’ ;
places(0) <= GUARDED ’1’ ;

END block reqrcv_up_0;
sending_up_2: BLOCK ((places(4) = ’1’))
BEGIN

places(4) <= GUARDED ’0’ ;
places(1) <= GUARDED ’1’ ;

END block sending_up_2;

Both sending+ and reqrcv+ are enabled but only one of them is
supposed to fire. In the above VHDL code, both will fire at the same
time. Here we need an additional mechanism to control conditional
behavior.

reqrcv_up_0: BLOCK (places(4) = ’1’ AND
place_0_int = 0)

BEGIN

acksend

enwoq

sending

reqrcv

rejsend

r

16000 32000

U

X

Fig. 5. The simulation of rcv-setup.

place_0_int <= GUARDED 1 ;
reqrcv_int <= GUARDED ’1’ ;
places(4) <= GUARDED ’0’ ;
places(0) <= GUARDED ’1’ ;

END block reqrcv_up_0;

sending_up_2: BLOCK (places(4) = ’1’ AND
place_0_int = 1)

BEGIN
place_0_int <= GUARDED 0 ;
sending_int <= GUARDED ’1’ ;
places(4) <= GUARDED ’0’ ;
places(1) <= GUARDED ’1’ ;

END block sending_up_2;

For each place that has more than one output transition an additional
variable is declared (place 0 int). This variable selects only one of
the output transitions. After one of the transitions has been fired this
variable is set such that is selects the other transition. In this way
none of the transitions is favored. However more complex schemes
may be required to guarantee that every conditional path in the STG
is activated. This is the subject of current research.

In many cases it is necessary to slow down the environment to make
sure that the circuit operates correctly. This information is the output
of the hazard-elimination process (Figure 6). So in many cases some
of the signals have be slowed down using the “AFTER” statement.
This is only necessary for those testbenches that are going to be used
for testing the final circuit implementation.

rejsend_down: BLOCK ((places(8) = ’1’ AND
places(9) = ’1’))

BEGIN
rejsend_int <= GUARDED ’0’ AFTER 3100 PS;
places(8) <= GUARDED ’0’ AFTER 3100 PS;
places(9) <= GUARDED ’0’ AFTER 3100 PS;
places(10) <= GUARDED ’1’ AFTER 3100 PS;

END block rejsend_down;

C. Gate-level VHDL.

After the synthesis has been done and a gate-level desription has
been generated, this can be translated into gate-level VHDL. This can
be plugged in the architecture presented in Figure 4 instead of the
behavioral VHDL-code.

D. Assertion VHDL.

A block is also needed that checks if everything that occurred
during simulation does not violate the initial specification. This means
not only checking if the outputs of the circuit behave according to the
specification but also the input signals, generated by the testbench.
This is important if the testbench contains user-defined vectors or
when the testbench corresponds to the complete system in which the
asynchronous circuits will plug into. In this way the designer can not
only find out if something is going wrong but can also determine what
the cause of the problem is. He can immediately identify whether there
is an error in the asynchronous circuit or whether the environment is
not behaving as specified in the STG.

ASSERT (enwoq’STABLE=TRUE OR
(places(0) = ’1’ AND enwoq = ’1’) OR
(places(3) = ’1’ AND enwoq = ’0’) OR
(places(11) = ’1’ AND enwoq = ’1’) OR
(places(13) = ’1’ AND enwoq = ’0’))

REPORT
"output enwoq not according to spec"
SEVERITY NOTE;

This assertion module also contains all the statements that describe
the token-flow as indicated in section 5. But it also contains assertion
statements that indicate that the signal is supposed to be stable except
if one of its transitions is enabled, and it makes the right transition. So
if place 0 contains a token enwoq is allowed to go high.

E. The speed of an asynchronous circuit.

Until now no successful measure of the speed of an asynchronous
circuit was given. Measures presented in for instance [1], [9] were
only valid for marked graphs. Therefore we propose the following
practical measure. Just count the transitions that the complete system
makes during simulation for a fixed time interval. This is a valid
measure, because the architecture as set up in Figure 4 and way the
testbench is set up make sure that new input transitions are generated
as fast as possible.

F. Experimental Results.

The experimental results are presented in Table I. The second
column represents the number of lines of STG code. The third column
contains the number of lines of VHDL code, only containing the
testbench and assertion module. The third row represents the number
of signal transitions for a simulation of 200ns if the tolerance factor is
set to 0.2. This means that the minimum delay of a gate corresponds
to 80% of its mean value, while the maximum delay of gate becomes
120% of its mean value. The fourth row represents the number of
toggles for a simulation of 200ns if the tolerance factor is set to 0.5.
The following conclusions can be drawn from this experiment.

� Although the VHDL-code is necessaryfor simulation, it becomes
painful to write down for a designer. So it pays to automate the
process of deriving VHDL code from the initial STG specifica-
tion. The size of the VHDL-code is about a factor 5 bigger than
the STG-code.

� The simulation can be used as an overall measure for the speed.
It becomes clear that by setting the tolerance factor high, the
circuit becomes more robust. However the overall speed of the
circuit goes down drastically.

rejsend

reqrcv

sending

r

acksend

sending

reqrcv

enwoq

reqrcv 3.1ns, acksend 1.06ns, sending 2.3ns

Fig. 6. The synthesized circuit rcv-setup.

Spec. STG VHDL t(0.2) t(0.5)
alloc-outbound 22 312 176 132
atod 21 153 192 147
dff 60 207 107 48
ebergen 21 145 104 50
fifo 15 103 134 84
full 15 113 212 93
isend 79 387 122 84
it-control 30 446 127 89
mp-fwd-pkt 38 161 195 147
nak-pa 47 177 215 173
nousc-ser 13 89 215 129
nowick 23 163 235 184
pe-rcv-ifc 110 391 124 86
pe-rcv-ifc-prs 117 413 134 86
pe-send-ifc 116 406 117 100
qr42 21 161 102 49
ram-read-sbuf 51 195 254 192
rcv-setup 48 149 154 120
rf-control 30 317 127 107
rlm 23 142 352 265
rpdft 29 187 146 123
sbuf-ram-write 48 201 193 167
sbuf-read-ctl 42 576 212 158
sbuf-send-ctl 60 216 214 147
sbuf-send-pkt2 68 237 86 58
sendr-done 25 87 223 119
trimos-send 25 199 116 54
vbe10b 29 223 166 102
vbe4a 19 137 248 194

TABLE I
EXPERIMENTAL RESULTS.

V. CONCLUSIONS

In this paper we have introduced a complete methodology for the
design and validation of asynchronous circuits. The methodology
is easy to embed in current design methodologies for synchronous
circuits.

The emphasis in this paper was on the validation of the initial
specification and the final circuit. It is shown how all the VHDL-code,
necessary for the automatic simulation and validation, can be derived
from the STG. It was also emphasized that this code not only checks
the behavior of the final circuit, but also checks if the environment
behaves as specified in the initial STG. This is crucial when the circuit
is plugged into its final environment. Finally, it is argued that this
validation environment can be used for general speed measurements
of the asynchronous circuit.

A lot of research remains to be done. The VHDL code needs to
be extended so that more complex timing and conditional constructs
can be taken into account. The VHDL code for the testbench needs to
be extended in such a way that all possible hazards can be activated
during simulation.

VI. ACKNOWLEDGEMENTS

The authors wish to thank Prof. Lavagno for his insights and many
stimulating discussions.

REFERENCES

[1] S. M. Burns. Sizing asynchronous circuits produced by martin
synthesis. In ACM International Workshop on Timing Issues in
the Specification and Synthesis of Digital Systems, August 1990.

[2] T. A. Chu. Synthesis of Self-timed VLSI Circuits from Graph-
theoretic Specifications. PhD thesis, MIT, June 1987.

[3] Carl Larson. Making desktop computers energy stars. In EDN
Products Edition, November 1993.

[4] Luciano Lavagno. “Algorithms for Synthesis and Testing of
Asynchronous Circuits”. Kluwer Academic Publisher, 1993.

[5] A. Martin. Synthesis of asynchronous VLSI circuits. In
J. Staunstrup, editor, Formal Methods for VLSI Design. North-
Holland, 1990.

[6] S. M. Nowick and D. L. Dill. Automatic synthesis of locally-
clocked asynchronous state machines. In Proceedings of the In-
ternational Conference on Computer-Aided Design, pages 318–
321, November 1991.

[7] Douglas E. Perry. VHDL. McGraw-Hill, 1991.
[8] James L. Peterson. “Petri Net Theory and the Modeling of

Systems”. Prentice-Hall, 1981.
[9] P. Vanbekbergen. Synthesis of Asynchronous Control Circuits

from Graph-Theoretic specifications. PhD thesis, Catholic Uni-
versity of Leuven, ESAT, September 1993.

[10] K. Vanberkel. Handshake Circuits: an Intermediary between
communicating processes and VLSI. PhD thesis, Technical Uni-
versity Eindhoven, 1992.

[11] K.Y. Yun and D. L. Dill. Unifying synchronous/asynchronous
state machine synthesis. In Proceedings of the International
Workshop on Logic Synthesis, May 1993.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

