
Externally Hazard-Free Implementations of Asynchronous Circuits�

Milton Sawasaki Chantal Ykman-Couvreur Bill Lin
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

Abstract — We present a new sum-of-product based asynchronous
architecture, called the N-SHOT architecture, that operates correctly un-
der internal hazardous responses and guarantees hazard-freeness at
the observable non-input signals. We formally prove that within this
architecture a very wide class of semi-modular state graphs with input
choices (either distributive or non-distributive) that satisfy the com-
plete state coding property always admit a correct implementation. As
with synchronous circuits, we permit internal hazards in the combina-
tional logic core, which means we can make use of conventional com-
binational logic minimization methods to produce the sum-of-product
implementation. This represents a significant departure from most ex-
isting methods that require the combinational logic to be hazard-free
and are mainly valid for distributive behaviors.

I INTRODUCTION

The design of asynchronous circuits is a difficult task since cir-
cuit malfunction can occur during execution if the circuit is not
hazard-free. In this paper, we consider the problem of produc-
ing gate-level asynchronous circuits for both distributive and non-
distributive behaviors from state graph specifications, that oper-
ate correctly under internal hazardous responses and guarantee
hazard-freeness at the externally observable non-input signals
(i.e. output and state signals).

We present a new sum-of-product based architecture, called
the N-SHOT architecture, for tackling this problem. We formally
prove that within this architecture a very wide class of semi-
modular state graphs with input choices that satisfy the complete
state coding property always admit a hazard-free implementa-
tion. Our approach can uniformly handle both distributive and
non-distributive specifications. Handling non-distributive spec-
ifications is important because they arise in practical industrial
designs (cf. Section V for examples). The architecture that we
propose for producing a hazard-free implementation for any
non-input signal consists of sum-of-product (SOP) logic imple-
mentations for its set and reset functions, an acknowledgement
scheme with a local delay compensation to ensure correct restor-
ing of transitions of this non-input signal, and a new flip-flop
element for robust electrical operation. In our approach, the logic
implementation for the set and reset functions need not be hazard-free,
which means any existing two-level logic minimization method can
be used to synthesize the SOP logic without restrictions. We believe
this represents a significant contrast to virtually all existing gate-level
synthesis methods that require the combinational logic to be hazard-
free. Our framework is formulated at the state graph level, which
means it is widely applicable to a broad class of high-level for-
malisms [2, 17, 18, 6, 7, 20] that can be semantically defined at
the state graph level (e.g. the widely used Signal Transition
Graph model [2]). Our method only requires the state graph to
satisfy the complete state coding property, which is the mini-
mal requirement necessary to derive unambiguously consistent

�This research was sponsored in part by the European Commission
under the ESPRIT (6143) project “EXACT”.

logic and to satisfy the trigger requirement, which is practically
always satisfied.

Our paper is organized as follows. Section II presents an
overview of related work. Section III defines the state graph
model and the basic concepts that are needed to characterize
our method. Section IV presents the new architecture, called
the N-SHOT architecture, and its properties. We characterize the
class of state graphs that can be implemented with this new ar-
chitecture and present the synthesis procedure. A key point to
our approach is that the logic minimization step is reduced to a
conventional logic minimization problem (as in the synchronous
case). Our method has been automated in the ASSASSIN compiler
[21]. We have carefully simulated a number of synthesized de-
signs at the gate- and transistor- level (using SPICE) to ensure the
circuits produced by our method are both functionally and elec-
trically correct. In Section V, we present experimental results
for both distributive and non-distributive examples and com-
pare our results on the distributive ones with several available
methods.

II RELATED WORK

Several methods exist for producing hazard-free circuits. Some
approaches like those described in [20, 8] rely on a fundamen-
tal mode of operation to simplify the hazard-free implementa-
tion problem, but these methods cannot handle the generality
of models like Signal Transition Graphs that permit concurrent
input-output changes.

One existing approach is based on bounded gate/wire de-
lay assumptions and relies on delay information to eliminate
hazards [5]. The current state of this method is restricted to
distributive behaviors. Other existing approaches aim at pro-
ducing speed-independent circuits, which are circuits that will
work correctly regardless of the individual gate and wire de-
lays, but the skew of all wire delays at a multiple fanout point
is assumed to be negligible. Several methods [2, 7, 17] generate
speed-independent circuits on the assumption that each non-
input signal can be implemented with one single complex gate;
this complex gate is assumed to contain no internal hazards.

One practically useful approach is to use an architecture that
consists of sum-of-product (SOP) logic implementations for the
up- and the down-excitation functions and asynchronous latches
(C-element or RS) for restoring the primary non-input signals of
the specification. Beerel and Meng [1] have developed an ap-
proach using this architecture, based on a basic method origi-
nally developed by Varshakvsky et al. [17], to produce speed-
independent circuits. Their approach is based on the use of
heuristics and rules to eliminate hazards by restricting logic
transformations or inserting additional circuitry. However, their
method cannot guarantee a correct solution in all cases and is
restricted to distributive specifications. Recently, another ap-
proach was proposed in [4], also based on the same architecture,
that formalizes the requirement that a state graph has to satisfy
in order to produce a hazard-free implementation. This require-
ment, called the monotonous cover property, requires additional
state signals to ensure that each up- and down- transition can
be separately implemented by a single monotonous AND-gate.
Ensuring this property can be a hard task. This method is also
restricted to distributive specifications.

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

In [9], another method is presented that makes use of synchro-
nizers and a locally generated clock to solve the hazard problem.
In this method, all external inputs and feedback state signals
must be bounded by a synchronizer called a Q-flop. This can
be very expensive in area since the number inputs is typically
much more than the number of feedback state signals, thus re-
quiring many more memory elements than our solution or other
existing approaches based on the use of C-elements or RS latches
[1, 17, 4]. Moreover, the internal clocking scheme requires a tree
of N C-elements to implement a N -way rendezvous, whereN is
again the number of external inputs plus the number of feedback
state signals. The locally generated clock is produced by insert-
ing a delay line that is at least as long as the longest path through
the combinational circuit, which means the circuit has to operate
in steps that are at least as slow as the worst-case delay through
the combinational logic. The performance is further hampered
by the delay through theN -way rendezvous scheme, which can
be significant if N is large. Also, the implementation area of
the delay lines is significant. Thus, comparing to our approach
and other existing approaches like [1, 17, 4, 5], this approach
can be significantly more expensive in terms of both area and
performance.

III STATE GRAPH MODEL

A State Graphs

A state graph (SG) is a finite automaton given by G =

hX;S; T; �; soi, where the components are defined as follows.
X = XI [XO is the set of signals,XI is the set of input signals,

XO is the set of non-input signals and XI \XO = ;.
T = TI [TO is the set of signal transitions, TI is the set of input

signal transitions andTO is the set of non-input signal transitions.
(Non-input signals refer to both external output signals as well as
internal state signals.) Each transition can be represented as+xjor
�xj for the j-th 0 ! 1 or 1 ! 0 transition of signalx. �xj denotes
either a “+xj” transition or a “�xj” transition. Sometimes index
j can be omitted.
S is the set of states and s0 2 S is the initial state. � : S�T 7! S

is a partial function representing the transition function such that
if �(s; t) = s0 is defined, then t is said to be enabled in state s and
the firing of t takes the system from s to s0. This is denoted as

s
t
! s0 or simply as s[ti. The firing of a sequence of transitions

� = t1t2 : : : tm is denoted as s
�
! s0 or simply as s[�i.

Each state s 2 S is labelled with a binary vec-
tor hs(1); s(2); : : : ; s(n)i according to the signals X =

fx1; x2; : : : ; xng of the system. The labeling is given by a state
assignment function �X : S�X 7! f0; 1g. For a given state s 2 S,
s(i) denotes the value of signal xi in state s. For s; s0 2 S and
t 2 T such that s t

! s0, the state assignment function is defined
as follows: (1) if s(i) = 0 ^ t = +xi then s0(i) = 1; (2) else if
s(i) = 1 ^ t = �xi then s0(i) = 0; (3) otherwise, s0(i) = s(i).
If the states of the SG can be encoded according to the above
rules, then the SG is said to have a consistent state assignment. In
a state s 2 S, if a transition t = �xi is enabled, the corresponding
signal xi is said to be excited (which can be denoted as s(i)� in
the binary code of s) and if it is not excited, it is said to be stable.

A state in the SG captures the state of all signals in a circuit,
while a transition between states is a transition of exactly one
signal. There may be many signals enabled in a state, but exactly
one signal transition is fired at a time. This corresponds to the
interleaved concurrency model.

An example of an SG is shown on Figure 1. Here signals a
and b are the input signals and signal c is the output signal.

10*0* 0*10*

110* 0*1110*1

1*1*1

01*1* 1*01*

01*0 001* 1*00

0*0*0

b+ a+c+

c−

c−c−

b− a−

b+a+

c+c+

(abc)

QR(+c) = quiescent region for +c.

where c = 1, i.e.,
c is stable at 1.

It is the maximal set of connected states

It is the maximal set of connected states
ER(+c) = excitation region for +c.

where c = 0* i.e.,
c is ready to rise.

Output trapping.
The excitation region ER(+c) can only be

left by the firing +c, i.e., with any other
event firing we remain inside

the excitation region.

Figure 1: SG example

B Properties and Objects of SGs

We now formally define some basic properties and objects of SGs
which are needed in the characterization of our method. We first
recall the Complete State Coding (CSC) property [2] which is the
necessary and sufficient condition to the existence of a race-free
implementation for any non-input signal.

Definition 1 (CSC) An SG satisfies CSC if and only if 8s; s0 2 S
either they have different binary codes or the sets of excited non-input
signals in s and s0 are identical.

We now introduce semi-modular SGs with input choices
which are SGs used in asynchronous circuit design.

Definition 2 (Semi-modularity with input choices) An SG is
semi-modular with input choices if and only if (8t1 2 TO) and
(8t2 2 T) and (8s 2 S), we have

s[t1i and s[t2i) 9s
0

2 S : s
t1t2
! s

0 and s
t2t1
! s

0

:

It means that transitions of non-input signals can never be dis-
abled. Only input transitions can be disabled by other input
transitions. This decision is assumed to be correctly managed
by the environment and hence creates no problem since only a
circuit for non-input signals has to be synthesized. The SG of
Figure 1 is such a one.

Semi-modular SGs with input choices can be classified into
either distributive SGs or non-distributive SGs. This classification
is based on the notion of detonant states.

Definition 3 (Detonant) [17] A state w is detonant with respect to
a non-input signal a if and only if there exists a pair of states u and
v that directly follow w (i.e., w ! u;w ! v) such that a is stable in
state w and is excited in states u and v.

Definition 4 (Distributivity) A semi-modular SG with input
choices is distributive with respect to a non-input signal a if and
only if there are no detonant states with respect to a.

The SG of Figure 1 is not distributive because both states 0�0�0
and 1�1�1 are detonant with respect to c. In order to derive a
correspondence between signal transitions and states in the SG,
different regions are defined as follows.

Definition 5 (Excitation region) [17] An excitation region of sig-
nal a in SG is a maximal connected set of states in which a has the
same value and is excited.

The excitation region corresponding to transition �ai is denoted
as ER(�ai). Note that there can be several excitation regions
for a corresponding to multiple transitions of a. An excitation
region corresponding to a “+a” transition is called up-excitation
region. Similarly an excitation region corresponding to a “�a”
transition is called down-excitation region.

Definition 6 (Quiescent region) [1] A quiescent region of signal
a in SG is the maximal connected set of states reachable from some
ER(�a) in which a has the same value and is stable.

The quiescent region corresponding to transition �ai is de-
noted as QR(�ai) and is the set of states between ER(�ai) and
ER(�ai+1), where �ai+1 denotes the next transition of signal a
after �ai .

Figure 1 illustrates excitation regions and quiescent regions of
signal c in the example SG.

Property 1 (Output Trapping) In a semi-modular SG with input
choices, once we enter an excitation region ER(�a) of a non-input
signal a, we can only leave it by firing �a.

The proof follows from the fact that the SG is semi-modular
with input choices, which states that output transitions cannot
be disabled.

Definition 7 (Trigger region) A trigger region TR(�a) is a mini-
mal connected set of states in ER(�a) such that once we enter it, we
can only leave it by firing �a.

A trigger region is illustrated in Figure 2.

s1

s2 s3

s4 s5

s6

*a

*a

*a

ER(*a)

TR(*a)

Figure 2: Trigger region

Property 2 (Trigger region reachability) From any state of an
ER(�a), a trigger region is always reachable.

The proof follows from definitions of excitation and trigger re-
gions and from the output trapping property.

IV N-SHOT ARCHITECTURE

A Overview
In this section, we will first intuitively describe the N-SHOT im-
plementation structure, how it operates, the delay assumptions,
and how an SG is implemented at the circuit-level using this ar-
chitecture. Then in subsequent sections, we will provide in more
details our theory and approach.

In this work, we assume a pure delay model where gates have
pure delays. That is, a pulse of any length that occurs on a gate
input can propagate to the gate output. In Figure 3, the N-SHOT
implementation structure is presented. It can be used to imple-
ment in a hazard-free way almost any semi-modular SG’s with
input choices, including non-distributive ones, that satisfy the
CSC property. Our strategy is to use this implementation struc-
ture to implement each non-input signal in the SG specification.
The architecture consists of the following:

1. a Set sum-of-product (SOP) logic network and a Reset
SOP network for implementing the up-transitions and the
down-transitions of a non-input signal,respectively — these
SOP networks may be minimized using any conventional
multi-output two-level minimizers, without special con-
cern for hazards, including the sharing of product terms
(AND-gates) between different functions;

2. a new asynchronous storage element called a MHS flip-
flop [11] for restoring the primary non-input signals of the
specification1;

3. a “built-in” acknowledgement scheme using two AND-
gates and a negligible local delay compensation.

The MHS flip-flop behaves functionally the same way as a C-
element. However, there are two differences. First, the MHS
flip-flop is dual-rail encoded. Second, it is designed to be elec-
trically robust to small pulses. The latter difference is important
because we permit the SOP logic networks to be hazardous,
which means small pulses due to hazards may be produced (this
will be addressed in details in the subsequent sections).

delay

a
not(a)

A "MHS flip−flop".

It is functionally the same as a
C−element, but is electrically
robust to small pulses.

dual−rail
encoded

"built−in"
acknowledgement
scheme using 2
AND gates.

SET SOP

RESET SOP

Both SET and RESET SOP logic can be produced
by standard two−level logic minimizers without
special concern for hazards. The SOP logic may
contain hazards.

enable−set

enable−reset

set

reset

FF

Figure 3: N-SHOT architecture

The Set logic network for a non-input signal a is derived as
follows:

1. identify all excitation and quiescent regions for a;
2. take the union of all up-excitation regions,

S
ER(+ai), and

regard it as the on-set F of the set function;
3. take the union of all up-quiescent regions,

S
QR(+ai), and

regard it as the don’t-care-setD; add all unreachable states to
the don’t-care-set D;

4. take the union of all down-excitation and down-quiescent re-
gions,

S
ER(�ai) [

S
QR(�ai), and regard it as the

off-set R.
5. use any multi-output conventional two-level minimizer

(e.g. [13]) to produce an optimal sum-of-product imple-
mentation from (F;D;R); the don’t-care-set D may be
used freely.

The Reset logic network for a can be derived analogously. With
the above procedure for deriving the SOP networks, the set and

1M for “M”aster RS latch, H for “H”azard filter and S for “S”lave RS
latch.

s 2 S SET RESET mode
s 2 ER(+a) 1 0 +a
s 2 QR(+a) � 0 a = 1
s 2 ER(�a) 0 1 �a
s 2 QR(�a) 0 � a = 0

unreachable s � � memory

Table 1: Correspondence between SG regions and operation
modes of MHS flip-flop.

reset logic functions of a non-input signal a are in fact character-
ized by its excitation and quiescent regions in the SG. This corre-
spondence is summarized in Table 1, where � denotes the don’t-
care value. In the set mode where +a must be fired, ER(+a) is
traversed. Some set-SOP cubes are excited and may produce a
hazardous response. Then +a is fired and QR(+a) is reached.
In the quiescent mode where a = 1, QR(+a) is traversed. When
QR(+a) is left, ER(�a) is reached. In the reset mode where
�a must be fired, ER(�a) is traversed. Some reset-SOP cubes
are excited and may produce a hazardous response. Then �a is
fired andQR(�a) is reached. In the quiescent mode wherea= 0,
QR(�a) is traversed. When QR(�a) is left, a next ER(+a) is
reached. Thus we close a cycle on the operation of the MHS
flip-flop relative to the SG traversal.

In our logic derivation procedure, the SOP logic produced
requires only AND-gates and OR-gates. Since the flip-flop is
dual-rail encoded, inverters are not needed for inverting non-
input signals. If all input signals are also presented in dual-rail
form, then no inverter at all is needed. Otherwise we assume that
either AND-gates with input inversions are available as basic
gates2. This assumption is also made in the other basic gate
implementation methods such as [1, 4]. Under this assumption,
the SOP logic never produces 0-1-0 static combinational logic
hazards.

In terms of delay assumption, we assume that all gates and
wires inside the architecture, including the SOP networks, can
have arbitrary delays. Internal wire forks are not required to be
isochronic. External I/O wires can also have arbitrary delays.
However, I/O signals that are distributed to multiple destina-
tions must have negligible skews. These delay assumptions are
weaker than those assumed by speed-independent implementa-
tion methods that require all wire forks, both internal and exter-
nal wires, to have negligible skews at multiple-fanout points. In
terms of environment assumption, we assume the environment
can react immediately, or when it likes, as long as it is enabled to
do so in accordance with the SG specification. We do not impose
any delay constraints on the environment such as a fundamental
mode operation [20].

Since we use conventional logic minimization methods to pro-
duce the SOP logic networks, and the gates and wires can have
arbitrary delays, the SOP networks may produce hazards that
are manifested as streams of pulses. (This is depicted in Fig-
ure 3.) As pulse streams are used to excite the flip-flop, two
problems must be solved:

� Any pulse stream while traversing oneER(�a) [QR(�a)
must always be converted into one single �a transition at
the output of the flip-flop. This is proven in Section B.

� No pulse stream used to fire +a (resp. �a) can continue
rippling at the input of the MHS flip-flop after firing of �a

2If AND-gates with input inversions are not available as basic gates,
then we assume the input inversions are implemented with separate
inverters whose delays obey some constraints given (and assumed) in
[4].

(resp. +a). This is ensured by the enable-set (resp. enable-
reset) signal that is set to high only when �a (resp. +a) is
fired and when the set (resp. reset) SOP has completely
settled to 0. This is the purpose of both AND-gates in the
acknowledgement scheme and the local delay compensa-
tion.
Concerning this delay line, the delay compensation re-
quirement is always satisfiable. Moreover, the delay value
is negligible because it is related to the difference of delays
between the set and reset SOPs. If the difference is small
compared to the delay of the flip-flop itself, which is almost
always the case when sum-of-product implementations
are used, then no delay compensation is required. When
delay compensation is required, the delay is inserted in
parallel to the flip-flop and generally does not add to the
critical path of the combinational logic.
This is explained in Section C.

Although the gates and wires used in our architecture can have
arbitrary delays, bounds on the delays must be known in order to
determine what local delay compensation, if any, is required. As
such, our designs in general are neither speed-independent or
delay-insensitive. Again, it is important to remark that usually
no delay compensation is required. For all the examples tested
in Section V, delay compensation was never required.

B Set and Reset Modes
As both modes are symmetric, we analyze only the set mode. In
the set mode, up-excitation regions are traversed. It means that
the set SOP logic responds with a possible stream of pulses that
excites the MHS flip-flop to fire+a. This response is illustrated in
Figure 4,where � is the delay response of the MHS flip-flop, !(! <

�) is the delay of the used RS latches and the threshold time value
of the MHS flip-flop. The MHS flip-flop does not transmit a pulse
shorter than ! and for pulses larger than ! the output transition
is simply translated forward in time by � .

In this section we first describe the MHS flip-flop. Then we
show that it is immune to short pulse misbehavior and finally
we formulate the requirement on the SG in order to guarantee
that the MHS flip-flop can always fire any �a.

The logic diagram of the MHS flip-flop with the acknowledge-
ment scheme and a custom designed transistor level implemen-
tation (without initializations3) are shown in Figure 5. The MHS
flip-flop behaves as a C-element. In a transistor to transistor
count, it is about the same size as a C-element4. However a
C-element is not immune to short pulse misbehavior. The MHS
flip-flop is composed of three distinct parts that provide hazard
filtering in two stages. Its parts and functions are:

1. The master RS latch converts a pulse into an analog volt-
age.

2. The hazard filter produces hazard-free up-transitions on
its output signals (first filtering stage). Some simulation is
given in Figure 6 to illustrate the response of the MHS flip-
flop to hazardous inputs. We observe first a hazard-free
up-transition of signal slave-set and a hazardous down-
transition of signal slave-reset. Then we observe a hazard-
free up-transition of signal slave-reset and a hazardous
down-transition of signal slave-set. The filter is in fact two
degenerated inverters. The master latch and the filter are
the basis of a mutual exclusion element [14, 7]. The latter

3Initialization of the MHS flip-flop is also generally required. This is
addressed in Section F.

4The actual physical layout of the MHS flip-flop is comparable in phys-
ical size to a C-element, even though the transistor counts are not exactly
the same.

is used in the context of arbitration (to solve output non-
persistencies). It is designed in order to avoid the trans-
mission of metastable states. An analysis on metastable
states can be found in [3]. Although we have a differ-
ent context (semi-modular SGs with input choices do not
capture output non-persistencies), we profit from some
characteristics of the mutual exclusion element in order to
build the first filtering stage of the MHS flip-flop.

3. The slave RS latch eliminates the hazardous down-
transitions from the filter (second filtering stage).

A detailed characterizationof the behavior of the MHS flip-flop
at the electrical level can be found in [10] (Section 4.7.1). There
we deeply analyzethe principles behind the design of of this new
flip-flop, we characterize the response through the MHS flip-flop,
when an input pulse of width v (either v >= or v < threshold
value) is applied to the master RS latch and we examine how the
flip-flop is correctly set and reset.

We now formulate a requirement in order to guarantee that
the MHS flip-flop can always fire any �a.

set out
MHS
RS

reset

set v > !
v < !

 !!

out
 � !

Figure 4: MHS flip-flop response

Requirement 1 (Trigger requirement) For every non-input signal
a implemented with the MHS flip-flop and for any transition�a specified
in the SG, a pulse must exist that can cause it to fire �a.

Property 3 (Stream to single transition conversion) If the trig-
ger requirement is satisfied, the MHS flip-flop transforms an SOP pulse
stream into a single transition during the traversalof the corresponding
excitation region.

Definition 8 (Trigger cube) A trigger cube is a cube from either
the set or the reset SOP that completely covers a trigger region.

Theorem 1 (SG trigger requirement) The trigger requirement is
satisfied if and only if for any non-input signal, there corresponds a
trigger cube with each trigger region.

Proof:) By contradiction. Suppose that in the implementation
two cubes are needed to entirely cover some trigger region. Then
inside this trigger region we can move from one cube to another
one and a stream of pulses can be generated. Since we cannot
predict the speed at which those cubes are traversed,those pulses
can all be shorter than ! and none of them can cause the MHS
flip-flop to fire. Then we may enter a deadlock situation and
violate the trigger requirement.
(Suppose that we are traversing ER(+a). Then from the trig-
ger region reachability property, we will always reach some trig-
ger region. Once this trigger region is reached,the corresponding
trigger cube switches ON and can only switch OFF after +a is
fired, because all reachable states inside the trigger region are
covered by the same cube. Thus this trigger cube guarantees
that the trigger requirement is satisfied. 2

VDD

VDD

out

slave latch

hazard
filter

slave−setslave−reset

out

filter−reset filter−set

master latch

enable
set

set

enable
reset

reset

out

1

0

1

0

0

0enable−reset

reset

set

enable−set set’

reset’ filter−set

filter−reset
0

1 1

slave−reset

slave−set

logic diagram

master hazard
filter

slave

out

0

1

(a) Logic diagram of MHS flip−flop (b) Transistor level design of MHS flip−flop

Figure 5: MHS flip-flop

2.50 E−08 5.00 E−08 7.50 E−080.00 E+00
0.00 E+00
2.00 E+00
4.00 E+00

2.50 E−08 5.00 E−08 7.50 E−080.00 E+00
0.00 E+00
4.00 E+00

2.50 E−08 5.00 E−08 7.50 E−08
0.00 E+00
2.00 E+00
4.00 E+00

2.50 E−08 5.00 E−08 7.50 E−080.00 E+00
0.00 E+00
2.00 E+00
4.00 E+00

2.50 E−08 5.00 E−08 7.50 E−080.00 E+00
0.00 E+00
2.00 E+00
4.00 E+00

2.50 E−08 5.00 E−08 7.50 E−080.00 E+00
0.00 E+00
2.00 E+00
4.00 E+00

2.50 E−08 5.00 E−08 7.50 E−080.00 E+00
0.00 E+00
4.00 E+00

MHS response to hazardous inputsset

filter−set

slave−set

outbar
out

slave−reset

filter−reset

reset

0.00 E+00

Figure 6: Response of the MHS flip-flop to hazardous inputs

C Quiescent Mode

We now analyze the quiescent mode. We have to make sure that
all pulses produced during traversal of ER(+a1) [QR(+a1)

do not go across the traversal of ER(�a2). If they go across
ER(�a2) and reach QR(�a2) where �a is already fired, one
of those pulses can cause a to misfire during the traversal of
QR(�a2). This trespassing pulse problem is solved using an
acknowledgement scheme and some local delay compensation.
To derive the delay requirement, let us examine the mechanism
behind this acknowledgement scheme (see again Figure 3):

1. During the traversal of ER(+a1) [QR(+a1), the set SOP
produces a pulse stream.

2. When ER(�a2) is entered, two things happen in parallel:

� The set SOP is either settling or starts to settle to 0.
In the worst case, it takes tset0w which is the worst
case time propagation through the set SOP (2 gates).

� The reset SOP begins to produce a pulse stream. In
the best case �a2 is fired after tres1f + tmhs�, where
tres1f is the fast case time propagation through the
reset SOP and tmhs� is the response time of the MHS
flip-flop to produce a �a.

� After the firing of �a2, signal enable-set becomes 1
again after tdel, the value of the delay line. We have
to guarantee that the set SOP is completely stabilized

to 0 when this occurs. It implies that
tdel � tset0w � tres1f � tmhs�:

3. When ER(+a3) is entered, since the MHS flip-flop is sym-
metric, we also have to guarantee

tdel � tres0w � tset1f � tmhs+:

Hence the delay requirement is:

tdel � MAXftset0w�tres1f�tmhs�; tres0w�tset1f�tmhs+g: (1)

It can always be satisfied and the delay line becomes unnecessary
when MAX � 0. In general tdel will be on the order of a gate or
less.

A complete analysis of overhead times on criticalpaths is done
in [10] (Section 4.9). Since the delay line is placed in parallel with
both set SOP and reset SOP, it is out of their critical paths. Its
overhead effect if any is indirect.

As we are dealing with transmission of signals through delay
lines, it is important to make sure that the signal is really trans-
mitted. Suppose that +a is produced at the output of the MHS
flip-flop. Then a is kept stable to 1 because the enabling of the
MHS flip-flop to fire�a can only occur after the delay line changes
its value from 0 to 1. Hence when �a is produced, it means that
a = 1 has already been safely translated through the delay line.
That is, we have a causal chain of events in the acknowledgement
scheme of the N-SHOT architecture that automatically provides
the required stability of the signal exciting the delay line.

D Summary of Principles

To summarize, the principle idea behind the N-SHOT architecture
is to use the MHS flip-flop as a set-reset element whose set (reset)
input must be driven in those states in which the corresponding
output is 0 (1), but is excited to 1 (0). It may also be driven (don’t
care) in those states in which the corresponding output is already
1 (0) and is not excited to 0 (1). Spikes resulting from hazards in
the combinational circuits that generate the set and reset inputs
are prevented from causing trouble at the output of the MHS by :

1. being input to a master flip-flop whose output is not cou-
pled to the following stage until metastability in the master
has resolved. This resolution step makes use of a filter cir-
cuitry that is widely used in mutual exclusion elements
[14, 7] to eliminate metastability problems. This avoids
having weak input pulses from producing any output un-
less they trigger the master to a changed state.

2. gating off set inputs until a delay time after the output has
become 0, and gating off reset inputs until a delay time
after the output has become 1. The delay time for the set
input is provided largely by the combinational delay of the
reset function, and vice versa. A local delay compensation,
as shown in Figure 3, parallel to the critical path is inserted
when the difference of delay between the set and reset
functions are not negligible.

E Hazard-Freeness and Synthesis Procedure

Theorem 2 A semi-modular SG with input choices satisfying CSC
admits a hazard-free implementation within the N-SHOT architecture if
and only if it satisfies the trigger requirement and the delay requirement.

The proof follows from the previous analysis on the set and reset
mode and on the quiescent mode.

Definition 9 (Single Traversal SG) A single traversal SG is an
SG for which any trigger region contains only one state.

Corollary 1 Any single traversal semi-modular SG with input choices
satisfying CSC always admits an optimal hazard-free implementation
within the N-SHOT architecture.

Proof: A single traversal SG always satisfies the trigger re-
quirement and hence a hazard-free implementation always ex-
ists. Any minimization technique, such as ESPRESSO-exact can
be used to generate a two-level implementation for both set and
reset, since we put no constraints on it. 2

In Figure 7, both a single traversal SG and a non-single traver-
sal SG are shown. A non-single traversal SG can occur when
free running signals like clocks are used in the specifications.
Observe that this non-single traversal SG however satisfies the
trigger requirement.

QR(−p)QR(−p)

(b)(a)

trigger region

ER(+p)

trigger region

ER(+p)

Figure 7: (a) Single traversal SG. (b) Non single traversal SG

Hence the synthesis procedure for any semi-modular SG with
input choices satisfying CSC and the trigger requirement is
straightforward and is described as follows: 1. Derive an op-
timal set SOP and an optimal reset SOP using any logic mini-
mizer. If the SG is not single traversal, ensure that a trigger cube
corresponds with each trigger region5. 2. Map these SOP logic
into the N-SHOT architecture. 3. Determine the delay value.

F Initialization of the MHS flip-flop

Initialization of the MHS flip-flop is also generally required. One
trivial solution is to provide a “reset” product term at one output
of the master RS latch in the MHS flip-flop. A short analysis of the
final set and reset SOPs can detect when this reset is unnecessary.

For any non-input signal a implemented with a MHS flip-flop,
consider the initial state s0 2 S. The reset is only needed in both
situations:

1. s0 2 QR(+a) and set a(s0) = 0 in which case the MHS
flip-flop must be reset to 1.

2. s0 2 QR(�a) and reset a(s0) = 0 in which case the MHS
flip-flop must be reset to 0.

In the other situations the MHS flip-flop is always automatically
initialized to either 1 if s0 2 ER(+a) [QR(+a) or 0 if s0 2
ER(�a) [QR(�a).

V EXPERIMENTAL RESULTS

In our view, the most important contribution of this work is a new
method that guarantees a hazard-free gate-level circuit for a very
broad class of SGs, includingnon-distributive specifications, that
can make use of conventional highly-tuned two-level logic mini-
mization methods (as in the synchronous case) without the usual
complexities and difficulties of ensuring hazard-freeness during
logic minimization, by only requiring the SG to satisfy the com-
plete state coding property, which is the minimal requirement
on SGs necessary to derive unambiguously consistent logic.

We have implemented our method and tested it on a large
suite of benchmarks to verify that the solutions produced are
of high quality. In particular, the techniques described in this
paper have been implemented in the ASSASSIN compiler [21]. In

5Again all the examples tested in Section V were single traversal.

Circuit states SIS SYN ASSASSIN
area/del area/del area/del

chu133 24 352/5.2 232/4.8 256/4.8
chu150 26 232/7.0 240/4.8 240/4.8
chu172 12 104/1.6 152/3.6 120/2.4
converta 18 432/6.8 496/6.0 488/4.8
ebergen 18 280/5.6 344/4.8 312/4.8
full 16 224/5.2 240/4.8 240/4.8
hazard 12 296/6.6 256/4.8 232/4.8
hybridf 80 274/6.6 352/4.8 336/4.8
pe-send-ifc 117 1232/12.2 1832/6.0 1408/6.0
qr42 18 280/5.6 344/4.8 312/4.8
vbe10b 256 1008/10.0 800/4.8 744/4.8
vbe5b 24 272/4.2 240/3.6 240/3.6
wrdatab 216 824/4.8 840/4.8 760/4.8
sbuf-send-ctl 27 408/5.2 696/4.8 320/3.6
pr-rcv-ifc 65 1176/9.8 1640/6.0 1144/4.8
master-read 2108 1016/6.4 880/4.8 824/4.8
read-write 315 740/7.6 (2) 608/6
tsbmsi 1023 (4) 960/4.8 928/4.8
tsbmsiBRK 4729 (4) (3) 1648/4.8
pmcm1 26 (1) (1) 304/4.8
pmcm2 13 (1) (1) 160/3.6
combuf1 32 (1) (1) 480/4.8
combuf2 24 (1) (1) 456/4.8
sing2dual-inp 65 (1) (1) 386/4.8
sing2dual-out 204 (1) (1) 648/3.6

(1) : Non-distributive SG
(2) : Must add state signals (not handled in version 2.3)
(3) : can be handled with the latest version
(4) : Input file in SG format

Table 2: Experimental results

our implementation, we’ve used the ESPRESSO minimizer from
SIS [15] to produce the sum-of-product implementation6.

We have applied our implementation to generate hazard-free
implementations for two sets of benchmarks. The first set of
benchmarks taken from [5, 1] are all distributive specifications.
These benchmarks are given as SGs that have already been trans-
formed to satisfy the CSC property. For this class of SGs, we have
available to us two tools developed by Lavagno [5] and Beerel
[1] for comparisons. The results are reported in the first part of
Table 2. The obtained circuits for all three methods were real-
ized using the SIS library. The area and performance estimates
were derived using this library. We followed the same strategy
chosen in [1] to make area/performance comparisons between
the different methods7.

Concerning the implementations obtained from the SYN tool,
version 2.3, of Beerel, 2-level implementations for sets and resets
were almost always generated. This explains why results are
often similar with those produced by ASSASSIN. Differences are
explained because some optimizations present in SYN are not yet
implemented in ASSASSIN. For read-write and tsbmiBRK, SYN ver-
sion 2.3 either requires the insertion new state signals (which is
not handled in SYN version 2.3) or generates memory space prob-
lem. Concerning the implementations obtained from the SIS tool
of Lavagno, delay lines must be inserted to solve hazards, imply-
ing overhead in both area and delay. Both tsbmsi and tsbmsiBRK
are given in SG format and hence cannot currently be handled

6We’ve used the ESPRESSO command from insider SIS that performs
two-level minimization heuristically. Improved results can still be ob-
tained by using the ESPRESSO-EXACT minimizer [13] instead.

7See Section 5.1 of [1] for details how gate areas and delays are mea-
sured and how the comparisons were made between SYN and SIS.

by the SIS tool. On several examples, our method produced
significantly better results. Consider for example the bench-
marks pe-send-ifc, wrdatab, sbuf-send-ctl and pr-rcv-ifc. On these
circuits, our approach produced noticeably smaller circuits than
SYN which required extra internal hardware to ensure proper ac-
knowledgement. On the same circuits, and others, our method
generally produced faster circuits than SIS which required delay
insertions that lengthen the critical path to ensure the circuit is
hazard-free.

The second set of benchmarks are non-distributive specifica-
tions taken from actual industrial designs. The circuits pmcm1,
pmcm2, combuf1, and combuf2 are interface circuits from a mobile
terminal design [12]. The circuits sing2dual-inp and sing2dual-
out are interface circuits for performing switchable single-rail to
dual-rail conversion. These circuits are needed for the design of
an asynchronous DCC decoder [16, 19]. We have carefully sim-
ulated these industrial designs at the gate-level using VERILOG
and at the transistor-level using SPICE. Results are reported in
the second part of Table 2. For these non-distributive designs,
no comparison is currently possible.

Finally, it is important to remark that, in all of the examples
tested, delay compensation in the N-SHOT architecture was never
required.

REFERENCES
[1] P. A. Beerel and T. H. Meng. Automatic gate-level synthesis of speed-

independent circuits. In ICCAD, November 1992.
[2] T. A. Chu. Synthesis of Self-timed VLSI Circuits from Graph-theoretic Specifica-

tions. PhD thesis, MIT, June 1987.
[3] T. Jackson and A. Albicki. Analysis of metastable operation in D latches. IEEE

Trans. on Circuits and Systems, 36(11):1392–1404, November 1989.
[4] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and A. Yakovlev.

Basic gate implementation of speed-independent circuits. In DAC-94, June
1994.

[5] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Algorithms for syn-
thesis of hazard-free asynchronous circuits. In DAC-91, June 1991.

[6] B. Lin, C. Ykman-Couvreur, and P. Vanbekbergen, A General State Graph
Transformation Framework for Asynchronous Synthesis, In EuroDAC-94,
September 1994.

[7] A.J. Martin. Formalprogram transformations forvlsi circuit synthesis. In E.W.
Dijkstra, editor, Formal Development of Programs and Proofs. Addison-Wesley,
Reading, MA, 1990.

[8] S.M. Nowick and B. Coates. UCLOCK: automated design of high-
performance unclocked state machines. In ICCD-94, October 1994.

[9] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T. P. Fang. “Q-modules:
Internally clocked delay-insensitive modules”. IEEE Trans. on Computers,
Vol.37-9, September 1988.

[10] M. H. Sawasaki. General Hazard-Free Synthesis of Asynchronous Circuits. PhD
thesis, Katholieke Universiteit Leuven, February 1994.

[11] M. H. Sawasaki, C. Ykman-Couvreur, B. Lin, and H. De Man. Optimized
synchronous logic synthesis mapped into hazard free asynchronous circuits.
US Patent Filling Application, December 1993.

[12] L. Philips, I. Bolsens, B. Vanhoof, J. Vanhoof, and H. De Man. Silicon Inte-
gration of Digital User-end Mobile Communication Systems. In IEEE Inter-
national Conference on Communications, May 1993.

[13] Richard Rudell. Logic synthesis for VLSI design. Technical Report UCB/ERL
M89/49, Berkeley, 1989.

[14] C. L. Seitz. System Timing. In Introduction to VLSI Systems, C.A. Mead and L.A.
Conway, editors. Addison-Wesley, Chapter 7, 1980.

[15] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Sequential Circuit Design Using Synthesis and
Optimization. In ICCD-92, October 1992.

[16] K. van Berkel. Private communications. December, 1993.
[17] V. Varshavsky, M. Kishinevsky, V. Marakhovsky, V. Peschansky, L.Rosenblum,

A. Taubin, and B. Tzirlin. Self-Timed Control of Concurrent Processes.
Kluwer Academic Publishers, 1990.

[18] P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man, A Generalised State
Assignment Theory for Transformations on Signal Transition Graphs, Journal
on VLSI Signal Processing, Kluwer Academic Press. February 1994.

[19] S. Vercauteren. Interface design for switchable single-rail to dual-rail conver-
sion. EXACT internal report, IMEC, May 1994.

[20] K. Y. Yun, D. L. Dill, S. M. Nowick. Synthesis of 3D asynchronous state
machines. In ICCD-92, October 1992.

[21] ASSASSIN: A Synthesis System for Asynchronous Control Circuits. User and
Tutorial Manual. IMEC, September, 1994.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

