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Abstract A tool called Tranalyze [4] has been created that transforms a

Our goal is to transform a low-level circuit design into a more switch-level circuit into a functionally equivalent gate-level repre-
abstract representation. A pre-existing tool, Tranalyze [4], takes &entation. Tranalyze is able to capture aspects of switch-level cir-
switch-level circuit and generates a functionally equivalent gatéryits such as bi-directional transistors, precharged logic, stored
level representation. This work focuses on taking that gate-level,, e and multiple signal strengths. As an example, consider the
sequential circuit and performing a temporal analysis Wh'Chswitch-IeveI domino circuit shown in Figure 1

abstracts the clocks from the circuit. The analysis generates a

CyCle'leVel gate model with the detailed tlmlng abstracted from thq’he abstraction process of Trana|yze can be broken down into a
original circuit. Unlike other possible approaches, our analysisfew steps. The first step performs a switch-level analysis and gen-
does not require the user to identify state elements or give the tingrates a low-level gate circuit. For this domino circuit, the switch-
ings of internal state signals. The temporal analysis process hagve| analysis generates a functionally correct but very compli-
applications in simulation, formal verification, and reverse engi-cated gate-level representation. The RS circuit in Figure 1 repre-
neering of eXiSting circuits. Experimental results show a 40%'70(ygents most aspects of the circuit generated by the switch-level
reduction in the size of the circuit and a 3X-150X speedup in simignalysis. The behavior of the circuit is similar to an RS latch with
lation time. the set activated on a low clock and the reset orarie of the

1 Introduction clock and data inputs. Note the complexity of this representation.

As the digital design industry continues to grow, so does the impoifhe normal operation of domino circuits is as follow: wigeis
tance of tools to aid in the analysis of large designs. Specificallypw the circuit is precharging and n@tis low. Wheng is high,
there exists a need for analysis tools that transform detailed circutite circuit conditionally discharges, and fi@tis essentially the
models into more abstract models. A more abstract circuit desigmand of netsa and b. Net P is easily recognized to be the
may provide advantages in the areas of simulation, formal hardwanevert  of netO. The circuit details of the clocking have been
verification, and reverse engineering of existing circuits. As designearefully included in the gate network, making it a complex repre-
grow larger, it becomes impractical to simulate an entire low-levesentation.

design. Transformations are performed to remove details from the

circuit design, thus producing a smaller, more abstract circuit anl} 'S POSSible to obtain a much simpler representation if the user
improving the performance of a simulator. Our formal verificationSpec'fles the clocking behavior and input/output timing for the cir-

strategy [2] attempts to bridge the wide gap between a detailed cﬁyit' For example, given the RS circuit in Figure 1 and details

cuit and the abstract specification. Abstraction of the circuit modeffoOUt the timing information for the circuit, our temporal analysis

enables us to reduce the gap between the circuit implementatiéC! can extract out a much simpler circuit, as shown with the 2-

and the abstract specification. Finally, the abstracted model can B¥utnand in Figure 1. This model is very simple to read since
used to reverse engineer the functionality of some pre-existing cifhe clock has been abstracted out. By taking advantage of the tem-
poral information specified by the user, a simple static logic gate

cuit designs. f
is produced.
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Figure 1 Domino Example Like the example above, many sequential circuits may have com-

J%Iicated clocking and timing patterns, making them difficult to
understand. If the clocking methodology is known, the clocks can
be abstracted through a “temporal analysis” that would generate a
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information built into it, and thus a temporal analysis is performedame phase. In effect, these input and output nets are multiplexed
that abstracts out all of the timing information from the circuit. Thisinto and out of the circuit over a period of time. Another limitation
temporal analysis stage will be the focus of this paper. Unlike othdlf earlier approaches is the lack of a way to deal with oscillating

possible approaches, our approach does not require the user to m3fs: Most of the previous approaches either could not deal with

ually identify state nodes. In addition, our tool automatically iden'[i-osc'”"’mng nets or merely set the net.to be a logic X We can dis-
Iay the true value to the user for a given discrete time.

fies internal state nodes and performs the temporal analysis basoe

on these nodes. All of the clock suppression approaches are implemented in a
) logic simulator. However, we will generate a new abstracted gate-
1.1 Previous Work level circuit that can be simulated using any gate-level simulator.

Most of the previous work done in the area of clock abstraction ia form of symbolic simulation is used to perform the temporal
based on the idea of clock suppression. This method attempts 4galysis.

reduce the activity in networks by suppressing the clocks during

simulation. The limitation of clock suppression is that it must belhe timing model used to describe sequential circuits is explained
implemented as algorithms in special purpose simulators. The orig? section 2. Our temporal analysis algorithm is presented in sec-
inal concept of clock suppression was devised by Ulrich [9]. Théion 3. Section 4 describes an example to illustrate the methodol-
suggested method is to temporarily disconnect the sequential circ@@y used for our analysis. Results are presented in section 5, and
from the clock source and reconnect it when a data input igection 6 offers concluding remarks.

received. Both Weber [10] and Takamine [8] introduce new sign . _—

values that represent periodic signals. Weber’s model introduce:z Discrete Tlmmg Model

periodic state withsignal wave informationwhich encompasses 2.1 Basic Model

the period, the rise times, and the fall times. Takamine introducesi# is worthwhile to define the terminology used to describe
separate states to describe periodic signals that are currently highseyuential circuits. Figure 3 shows the model for a sequential cir-
currently low, in both positive and negative logic. While both meth— ;. Primary inputs(Pl), or external inputs, are made updata

ods produce good results, neither guarantee a full clock SUPPIESH s (DI) andclocks(g). The combinationalportion of the cir-

sion. Although the number of periodic signals has been reduced, . . .
there may still be some signals that cannot be suppressed by th ggét (C) uses the primary inputs goésent state(PsS) to generate

methods and are thus evaluated during simulation. Another disa 1€outputs(O) andnext stategNS). The states are held during a

vantage of these methods is that with the introduction of new statEr0-delay evaluation of the circuit. The next states are updated to
new truth tables must be developed for each gate primitive. present states as each next state passes thraughdelay ().

) ) ) This delay represents the smallest increment of a time delay. Thus
A new general approach is called “Static Clock Suppression” [7]y state is held for one time unit. The switch-level analysis in Tran-

Razdan performs his analysis on a phase-level modpha&eis ;0 generates a model like the one on the left in Figure 3.
defined as a period of time when all clock inputs are held constant

Razdan only allows inputs to change at the beginning of a phase¢ )
Like other work done in this area, his method produces very ’
impressive results in simulation. However, it has certain restric-

tions. First off, inputs can only be set at phase boundaries. Sec DI c O DI
ondly, nets must stabilize before they are reported. Thus the user s s

unable to view nets during an oscillatory period.
Figure 3 Sequential Circuit model, before and after abstraction

Kam [5] generates a finite state machine from a transistor netlis
given information relating to clock signals and clock modules. The
method involves performing a fixed point computation of the
steady state response. The FSM generated is described as a BDD.
The size of the BDD could become very large, making it difficult toAfter performing a temporal analysis on the circuit, a model such
represent large, complex circuits. Another problem with thisas the one shown on the right in Figure 3 is obtained. In the new
method is that it is unable to handle oscillating circuits. Finallymodel, unit delays and clocks have been replacezytlg delag
inputs can only be changed on phase boundaries, similar to ti#). States are now held for a full clock period, as opposed to a

restrictions placed by the clock suppression techniques. single time unit with a unit delay model. Note also that the combi-
national portion of the new circuit is not necessarily the same as
1.2 Our Approach the combinational portion in the earlier model. Extra logic may be

All of the previously mentioned methods deal with circuits at aadded to make sure that all user-specified visible nets are present

phase-level, implying data inputs can only be set and outpuif the new circuit. Also, some logic may be deleted if none of the
viewed at phase boundaries, i.e. when a clock is changed. Wsible nets are dependent on this logic.

remove this limitation by working with a discrete time model. This

allows for inputs to be changed and outputs to be sampled at ard-2  Timing Specifications

trary points in time. As opposed to previous approaches, oun order to temporally analyze a sequential circuit, the user must
approach also allows input nets to take on multiple values in onexplicitly provide the temporal details of the circuit in a separate
phase. Similarly, any net can be sampled at multiple points in thide. Unlike other work which used a phase-level timing model,



our approach uses a discrete timing model. Under our timingssume that the circuit stabilizes at timeahd the next primary
scheme, there exists little difference between clocks and dataput changes at time t. If t 3 the circuit is stable and the analy-
inputs. Clocks must be set to a constant logic value, while datis uses net values from the Etircuit. If t < t, the circuit has
input values may be represented by symbolic variables. Variableot stabilized. However, the analysis can still proceed, using the
names must explicitly be given by the user for every interval irvalues from the C(t-1) circuit. In fact, this can be generalized to
which an input may take on a different value. The user must specifyandle oscillating nets. An oscillating circuit is represented when
the output nets or visible nets in the circuit and the discrete points tgis infinity. Inputs can still be changed without the circuit first
time which the user wishes to sample each output net. Note thstabilizing.

whereas data inputs and clocks are specified over an interval

time, outputs are sampled at discrete points in time. This allows fc | 1 |

nets that oscillate over time to be reported.

2.3 Detailed Model
The temporal analysis is performed on a sequential circuit over or ' o @ @

complete cycle. Any time a data input or clock changes, the circu

must be re-analyzed. After the circuit has been analyzed for a cor Figure 5 Transient Circuit
plete cycle, the individual results obtained are combined. Figure . .
shows a basic diagram of how this is accomplished. The shaded béx Temporal AnaIyS|s Algorlthm
in Figure 4 represents the combinational portion of the circuit oi®nce all of the data input and present state variables have been
the right in Figure 3. The data input, DI(t), and output, O(t), havéntroduced, the temporal analysis algorithm is invoked. An algo-
now been replaced by individual vectors for each discrete time. rithm for the analysis is presented below. The rouigebol-

. . . . . icSimulate  performs a zero-delay symbolic simulation of the
Since primary inputs are set over ranges of time, every input changgc it The algorithm takes in a circuit callekt and generates a
introduces a new input vector and a new combinational circUityey temporally analyzed circuit callekt’, while leavingckt
Associated with each new combinational circuit is a new outpuginchanged.
vector, as indicated in Figure 4. Note that while the inputs are set
over ranges of time, the outputs are sampled at discrete pointsyim -
time in the range [@)-1], with A representing the clock period TemporalAnalysis(ckt)
time =0

DI(A-1) apply inputs and clocks at time 0
B:Ef)'z) introduce variables for initial present states

SymbolicSimulate(ckt)
for each unique net in ckt, create new net in ckt
sample outputs at time 0
while (time < cycle_time)
apply any new data inputs and/or clocks
SymbolicSimulate(ckt)
for each net in ckt
if there is no logically equivalent net in ckt’
create new net
sample outputs at current time

Figure 4 Detailed Model of a Temporally Analyzed Circuit

In a unit delay model, next states are updated to present states] by ) ] )
traversing through unit delays. Thus the value for a next state net|at update time to point of next change in DI or ¢
time t is equivalent to the corresponding present state atttifne return ckt’

as shown in Figure 4. For instance, nets NS(0) and PS(1) can ‘e —
represented by the same net in the gate-level description. The sarfé€ Procedure analyzes the circuit for one complete clock cycle. It
is true for nets N®-1) and PSK). Since we are only representing P€gins by applying values to constant data inputs and clocks at
values in the range [@-1], the value of net P&j is the same as time O. Non-constant data inputs and present state nets are
the value of net PS(0), separated by a delag.dfhe net Pg{)  assigned symbolic variables. Then_a zero-_delay syrr_1l_JoI|c simula-
effectively represents the initial value of the present state for th#on of the circuit is performed until the circuit stabilizes. After

next cycle. Heuristics are used that allow a minimal amount of cirfach symbolic simulation call, nets are addecko. Logical
cuitry at each step. equivalence is checked by building up BDDs for each net. The

routine SymbolicSimulate represents a gate-level symbolic
By generating new circuits until the nets have stabilized, we argimulator that has been developed by our group. It uses binary
able to handle transient and even oscillating circuits. Figure Becision diagrams [3] as a platform for logic manipulation. The
shows the analysis for a circuit that incurs a change in a primasimulator uses a nominal transport delay model and an interpre-
input change at timey.t tive implementation method, as described in [1].




To initialize values, present states for the first stage were repr@o represent the three modes, two states are multiplexed onto the
sented by introducing new variables. These were created for tempggntrol signalop. Note thatop2 is set during the previous cycle,
rary purposes, as they actually represented states from the previQygrefore creating a pipelined design. Table 1 gives the encoding
cycle. Upon completion of the algorithm, these variables must bg hase modes of operation

removed. The initial present state nets now become cycle delays to

the next state nets in the last stage. Referring back to Figure 4, the Table 1 Modes of Operation for Stack
initial present state nets are PS(0). The next state nets in the last

stage are N®¢1). Note that this net is equivalent to the value of stack
the artificial net PSY). During this step, the temporary variables op2 opl mode operation
introduced for the PS(0) nets are replaced by cycle delays £ PS( 1 0 PUSH S.1-S
nets. Since the cycle delays are dependent on the values of the next 0 POP s s
states in the last stage, we must ensure that each of these nets are 1z
represented in our circuit. Thus, our tool automatically identifies 0 0 HOLD S -5

each of the state nets and marks each of these nets to be visible at ) _ _ o
time ‘cycle_time - 1’, which is the last discrete time in our cycle.In order to incorporate all of the input information in one clock
The values at this time represent the values in the last stage of {f¥!e, we have chosen to shift the cycle boundaries, as shown in
cycle, and thus guarantees that the next states in the last stage fiffure 7. As the user, we have chosen outpubuigto be visible

be represented in the temporally analyzed circuit. at time 50 within our cycle. This net is a function of the data input
from the previous cycle and the op-signal from both the previous
4 Mead and Conway Stack Example and present cycle. The bold signals represent the information sup-

An example is now presented to help explain the algorithm. Figur@lied to the temporal analyzer.
6 shows a block diagram for a pipelined stack, as described By e 8 shows a generalized section of the circuit generated after

Mead and Conway [6]. the temporal analysis has been performed. The figure represents
the circuitry required for thdibit of the stack. Referring back to

oL@2 Table 1, the functionality of sta is correct for the three modes
‘ ‘ of operation. For example, whepl=op2=0, aHOLD operation
op—» is performed. From Figure 8, this means that s@igsS;, andS;.
iN—td S S1S Sere- Sha 1 all retain their previous value. FolPDP operation, the values
out <— of the states get updated as follov@&:, - Si11, Sy~ S, and
Figure 6 Block Diagram for Mead and Conway Stack Si—S.1. The values in each state is shifted up one level. The

_ ) _ o PUSH operation is the reverse. The fourth case, when dyoth
A PUSH operation will shift the data inpuin{ into the stack and  angop2 are high, was designed to be a don't care. Our tool has
shift stored datag) deeper into the stack (to the right).FOP ., yecqy identified this case to implementH®LD operation.

operation does the reverse - the data stored ingaseoutputted .'Q“ne first and last bits of the stack represent special cases and
and the rest of the data is shifted up one level (to the left). The thir oo . . .
added circuitry is produced to represent their functionality.

mode is aHOLD, which retains the states in the stack. The circuit
uses a two-phase nonoverlapping clock. The mode of operation is
selected by the sequence of values on the op signal. Figure 7 shows
the timing for the circuit.

op2
op1

HOLD S =00
l t-1 JL t L POP S.; =01 -5
50 100 150 0 250 300 350 400 PUSH S;; =410
HOLD S 11

Figure 8 Temporally analyzed stack (generalized case)

AT @ 5 Results

The temporal analysis was performed upon three classes of cir-

in Rt @ cuits. The first two are Manchester adders (AdderX) and counters
@ @ (CounterX) and make heavy use of precharged logic. The last cat-
stat egory consists of dynamic RAMS (RamX) made up of 1 bit
out words. Table 2 shows the results of the tests. All experiments were
performed on a DEC 5000 workstation with 500 MB of RAM.
L Ou
0 2550 _5(:3'01115 175 2|00 The columns labeled “SLA” correspond to the gate circuit gener-

ated after the switch-level analysis in Tranalyze, without any tem-
Figure 7 Timing Diagram for Stack



Table 2 The effect of temporal analysis

Analysis (sec)

Memory (MB)

Gate Count | Simulation (sec

SLA TA SLA TA

SLA TA

Adderl 1.8 7.6 0.67

21

©

Adder4 4.1 11.2 0.74

29

Adder16 34.0] 114.3 1.06

S

Counter4 0.8 1.2 0.67

18

Counter16 7.7 8.0 0.9(

8]

Counter64 32.7 1.7

1N

Ram16 6.8 8.0 0.80

I\):b'ooco‘\l-b
©® H O O ;o AO

59

Ram64 40.1 1.12

Ram256 240.4 2.8

| =
o| ©
o
o ©
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poral analysis. The columns labeled “TA” correspond to the circuit References

generated after the temporal analysis

The temporal analysis reduces the gate count by 40%-70%. The cir-
cuit was simulated using Cadence Verilog-XL 1.7 and exhibited a
speedup of 3X-150X. The simulation speed comes at a price, that
being increased CPU time. However, this is a one-time cost and the
circuit can then be resimulated without first performing the analy-
Sis.

(3]

The temporal analysis displayed a greater speedup for larger cir-
cuits. Thus the benefits of temporal analysis may be further realized
on even larger circuits.

6 Conclusions and Future Work

We have developed a tool that performs a temporal analysis on
gate-level circuits. The net effect of this temporal analysis is that
the clocks are abstracted from the circuit, and a new gate-level cir-
cuit is produced. This new circuit has applications in simulation,

formal hardware verification, and reverse engineering of existing
circuits. We have observed a significant reduction in the size of the
circuit after a temporal analysis is performed. The speedup of the
simulation ranges from 3X-150X, with speedup increasing as the
size of the circuit increases.

One major limitation we discovered is the memory needed to per-
form the analysis. Our tool uses BDDs, which can easily become
very large if a non-optimal variable ordering scheme is used. There-
fore, we should focus future efforts on ensuring a good variable
ordering to control the size of the BDD.

Currently, our temporal analysis tool samples outputs at discrete
points in time. The formal verification strategy used by our group
requires outputs to be valid over a range of time, so it would be
advantageous for us to extend our temporal analysis so that outputs

are sampled over a range of time. This extension would also allow [10]

the analysis to generate an even more abstract circuit. For instance,
the next logical step would be to extract a finite state machine from
the temporally analyzed circuit.
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