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Abstract – The paper discusses issues related to the applica-
tion of information modelling to the field of Electronic CAD,
using VHDL as the basis for discussion. It is shown that an
information model of VHDL provides a coherent and uniform
description of the VHDL objects at different levels of the lan-
guage and of the transformations that interrelate these levels.
In addition, it captures the time-dependent aspects of the lan-
guage. Hence, a hierarchy of VHDL information models can ex-
ist which encompasses the range from abstraction to detail and
can help support CAD applications in a direct manner.

I. INTRODUCTION

A major domain of research in the field of electronic
computer-aided design (ECAD) is that of modelling. The aim
is to build clear and unambiguous descriptions of the seman-
tics of various ECAD languages and artifacts. Of the many
possible modelling methods, information modelling has re-
ceived particular attention in recent years. For example, the
specification of the Electronic Design Interchange Format [5]
and that of the Design Representation Programming Interface
of the CAD Framework Initiative [3] are accompanied by in-
formation models. These models use the specification lan-
guage EXPRESS [6].

The relatively restricted circulation and application of
these early information models and the relative novelty of the
field has limited the general acceptance of information mod-
elling as a useful tool with a wide range of applicability. The
consideration of information modelling as a competitive al-
ternative to other modelling methods has also suffered be-
cause, misguidedly, information modelling is seen only as a
means of defining the contents of a data base rather than as a
conceptual description of the modelled universe of discourse
(UoD).

The aim of this paper is to outline some of the specific
features which an information model and, in particular, an
EXPRESS model, can provide. Although the discussion fo-

cusses on VHDL [12], a typical language used in the ECAD
field, its relevance is more general. The paper tries to show
that (a) an informationmodel of VHDL can integrate different
perspectives of VHDL objects directly and uniformly; (b) the
model can describe the mappings between these perspectives
and (c) the model can keep track of the described perspectives
for each language object. These features, taken together, can
seldom be found in other kinds of model such as formal mod-
els [11], which mainly describe functional aspects of VHDL
such as its behavioural semantics, or implementation models
[13], which concentrate on the representation of the language
objects as data structures.

The problems discussed result from work supported by the
UK Defence Research Agency and by the ESIP (ESPRIT
8370) project which aim to produce a comprehensive infor-
mation model of VHDL’87 and, eventually, of VHDL’93. As
the work progressed it become clear that a single model of
VHDL is not a satisfactory option from the end user point of
view. Instead, a hierarchy of models, each of which describes
the relevant aspects related to a specific application and from
a specific perspective of VHDL, is a more realistic solution.
However, the model at the apex of this hierarchy describes
the essential objects and the semantics of VHDL at the design
description, analysis, elaboration and simulation levels of the
language. It can be seen as an abstraction of all the other mod-
els in the hierarchy. Such a model, identified here as the core
model, is currently under review [8]. It is the basis for this
paper.

The discussion which follows applies to VHDL’87, called
VHDL hereafter. Note that for brevity the examples in the pa-
per are not meant to be complete.

II. INFORMATION MODELLING

In contrast to computation, which aims to show how val-
ues which characterise a UoD are obtained, information mod-
elling is intended to capture the conceptual structure of the
UoD: the underlying objects and concepts, their relationships
and constraints. The UoD here is VHDL. The main thrust of
computation is to solve; the goal of information modelling is
to describe.

The main construct of a VHDL information model is the
description of a VHDL object. It specifies the attributes of
the object and the constraints which the values of the at-
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tributes must satisfy. For example, using EXPRESS, the ob-
ject explicit signal which designates an explicitly declared
signal, can be described by means of a construct, called EN-
TITY, as in example 1. Note that here attribute, constraint
and ENTITY are EXPRESS terms.

This partial example illustrates the main points of an ob-
ject description. Each attribute has a name and a type, which
is the name of another entity. It specifies that in an entity in-
stance the value of the attribute is normally an instance of the
entity which represents the type of the attribute. For exam-
ple disconnection delay is an attribute the values of which
are of type time expression, itself an entity which must be
fully specified in the model. The attributes in the example are:
mandatory (e.g. signal type, inherited from the signal en-
tity), optional (e.g. disconnection delay) and computed (e.g.
is guarded).

A constraint specifies either a local condition on the values
of an entity attribute or a relationship between the values of
the attributes belonging to the same entity or to different enti-
ties. It is a logical expression which must not evaluate to false
for each valid instance of the containing entity. For exam-
ple, the constraint valid disconnection states that each signal
(in reality each instance of the entity explicit signal) can be
associated with a disconnection delay only if it is a guarded
signal, i.e. if the attribute signal kind is explicitly specified.
Predefined or user defined functions can be called within con-
straint expressions. In the example above is type and subele-

SCHEMA design_description_schema;
REFERENCE FROM vhdl_type_schema;
...
ENTITY signal ABSTRACT SUPERTYPE OF

(ONEOF(explicit_signal,...);
signal_type: VHDL_type;

END_ENTITY;

ENTITY explicit_signal ABSTRACT SUPERTYPE OF
(ONEOF(port,internal_signal) AND
ONEOF(scalar_signal,composite_signal) AND
ONEOF(signal_subelement,complete_signal))
SUBTYPE OF(signal);

-- declared attributes
signal_kind: OPTIONAL bus_or_register;
disconnection_delay: OPTIONAL time_expression;
resolved_by: OPTIONAL resolution_function;

DERIVE -- computed attributes
is_guarded: LOGICAL:= EXISTS(signal_kind);
is_resolved: LOGICAL:= EXISTS(resolved_by) AND

NOT subelement_of_resolved_signal(SELF);
(* A signal is resolved if it is not a subelement

of a resolved signal and there exists an associated
resolution function *)

WHERE -- constraints
valid_signal_type:

NOT is_type(signal_type,[’file_type’,’access_type’]);
valid_disconnection:
(* Only guarded signals can have disconnection delays *)

is_guarded OR NOT EXISTS(disconnection_delay);
END_ENTITY;
END_SCHEMA;

Example 1: The partial model of a signal

ment of resolved signal are user defined functions.
Entities can be structured into hierarchies of supertypes--

subtypes which can be used for classification purposes and
for attribute and constraint inheritance. Entities are grouped
to form a SCHEMA, which is a sub-model of a specific part
of the modelled UoD. Entities from one schema can be used
in other schemas. In this way a complete model can be parti-
tioned into smaller and conceptually consistent parts.

An EXPRESS model can be represented diagrammatically
by using a graphical notation called EXPRESS-G. The dia-
grams consist of symbols with different formats for different
EXPRESS constructs such as entities and types. For example,
an entity is represented by a solid rectangle which is starred
if the entity contains constraints. The symbols are connected
by lines: thin lines connect attributes to their containing en-
tities; thick lines indicate subtype / supertype relationships.
Attribute optionality is represented by dashed lines. The di-
rectionality of the relationships is indicated by a circle at the
target end of a line. Additional information is displayed on
thin lines indicating the nature of the attribute, e.g., DER (in
Fig. 1) stands for a computed attribute. For instance, the sig-
nal model can be represented as illustrated in Fig. 1.

III. INTRA-LEVEL MODELLING

The basic goal of an information model is to describe the
objects of the given UoD, outlining their structure, intrinsic
properties and direct relationships with other objects of the
UoD. For instance, a VHDL core model must describe the ba-
sic VHDL objects at different levels of the language: source
design description (which corresponds to a source VHDL
program), design analysis (which considers specific VHDL
objects as libraryunits), design elaboration (which transforms
an analysed VHDL description into a network of processes
controlled by signals), and design simulation (which high-
lights the time-dependent behaviour of an elaborated VHDL
description). There is a sub-model corresponding to each
VHDL level and, at each level, the model of an object em-
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Fig. 1: The diagrammatic representation of the signal model



phasises the possible perspectives of the object.
The explicit signal entity in example 1 illustrates intra-

level modelling at the level of source design description. The
entity shows that a signal can be classified according to: (a)
its role - port or internal signal (declared in an entity declara-
tion, package declaration, block or architecture), (b) its struc-
ture - scalar or composite, and (c) signal membership - subele-
ment of another signal or stand alone signal. Therefore, an ex-
plicit signal is an aggregate of these three perspectives. The
model outlines the intrinsic properties of an explicit signal
by showing that it has a type and may have a kind, an asso-
ciated resolution function and a disconnection delay. Some
properties of a signal depend on other properties. For exam-
ple, the derived attribute is resolved shows that if the signal is
a sub-element of a resolved signal then it is considered unre-
solved, regardless of the existence of an associated resolution
function, i.e., the resolution function plays no role in comput-
ing the value of the signal (Std 1076-1987 page 2-7).

Information modellingmakes it possible to hide or enhance
detail as needed, according to the purpose of the model. The
fact that a resolution function is associated with a signal via
the subtype of the signal specified in a signal declaration is not
described by the signal model nor does the model show that a
disconnection delay is associated with a signal via a discon-
nection specification. These are considered inessential details
that are omitted from the core model, the aim of which is to
describe only the basic concepts of the language.

IV. MULTI-LEVEL MODELLING

A given VHDL object can have correspondents at differ-
ent levels of the language. For example, a signal occurs at the
source design description and elaboration levels. Each level
uses a particular perspective of the object, which implicitly
means that the object may have different (but interrelated) de-
scriptions at different levels. Therefore, the abstract model
of the object can be seen as the tuple of all its corresponding
level-models.

Example 2 illustrates the model of a signal corresponding
to the elaboration level of VHDL. The elaborated signal is
the entity describing the result of elaborating a signal. It is
contained in the design elaboration schema, which is the
sub-model corresponding to the VHDL design elaboration
level. The signal entity is the entity shown in section II. and
specified in the design description schema which is the sub-
model corresponding to the VHDL design description level.

Each elaborated signal from an elaborated VHDL descrip-
tion corresponds to a source signal from the source descrip-
tion from which it is elaborated. The model shows that there
can be several instances of the entity elaborated signal that
have the same value for the attribute source signal. In other
words, the generic relationship signal - elaborated signal
can be one-to-many. In addition, the model from example 2
shows that the nature of a signal (e.g., whether it is a port
or an internal signal) is no longer important at the elabora-

tion level, where a design is seen as a flat structure containing
processes connected by a network of signals [10]. Instead, an
elaborated explicit signal is characterised by a set of sources
which are used to compute the values of the elaborated signal
while the simulation process unfolds.

Based on the sources of a signal, the concept of sig-
nal resolution can now be fully described. The constraint
valid resolution of the entity elaborated explicit signal
shows that an elaborated signal which has multiple sources
and is not a sub-element of a resolved signal of a composite
type must be elaborated from a source signal which is associ-
ated with a resolution function (Std 1076-1987 page 2-7,4-6).

Note that the model of a VHDL object, such as the model
of an elaborated signal, concentrates information that, in the
language reference manual (LRM), is scattered in different
places. In addition, the structuring of the model according to
the levels of the language clarifies the abstraction level of the
different perspectives of VHDL objects. For example, at the
description level, a signal is an abstract object. It plays the
role of a template, which cannot have sources, states and val-
ues. At the elaboration level a signal has a material existence.
An elaborated signal has sources and can have states and val-
ues. An information model of a VHDL object and, in gen-
eral of VHDL, acts both as a concentrator and as a structured
representation of the essential information which conveys the
semantics of the language.

V. CROSS-LEVEL RELATIONSHIPS

A major goal of a VHDL core model is to describe the re-
lationships between the objects and object perspectives cor-
responding to different levels of the language. A typical case

SCHEMA design_elaboration_schema;
REFERENCE FROM design_description_schema;
...
ENTITY elaborated_signal ABSTRACT SUPERTYPE OF

(ONEOF(elaborated_explicit_signal,...));
source_signal: signal;

END_ENTITY;

ENTITY elaborated_explicit_signal SUBTYPE OF
(elaborated_signal);

sources: SET OF elaborated_signal_source;
DERIVE

has_multiple_sources: LOGICAL:= SIZEOF(sources) > 1;
has_resolution_function:

LOGICAL:= EXISTS(source_signal.resolved_by);
is_subelement_of_resolved_signal:

LOGICAL:= subelement_of_resolved_signal(source_signal);
WHERE

valid_resolution:
( has_multiple_sources AND
NOT is_subelement_of_resolved_signal AND
has_resolution_function) OR

NOT has_multiple_sources OR
is_subelement_of_resolved_signal;

END_ENTITY;
END_SCHEMA;

Example 2: The partial model of an elaborated signal



is that of describing the salient properties of the algorithmic
processes used to generate or transform objects from one lan-
guage level into objects of another level. These properties are
part of the language semantics.

Fig. 2 illustrates the simpler case of signal driver elabo-
ration. A signal driver of a target signal S is the set of all
the signal assignments the target of which is S and which are
contained in the same process. All these assignments taken
together constitute one potential source of S. Depending on
the design level being considered, there are: signal drivers,
as specified at the source description level of design, and
elaborated signal drivers which result from the elaboration
of the signal drivers. Therefore, the entity signal driver is
defined in the design description sub-model of the VHDL
core model, whereas the entity elaborated signal driver is
a member of the design elaboration sub-model.

Consider that the entity elaborated signal driver has
the attribute source signal driver, which designates the
signal driver which is elaborated, and contains constraints
which show that: (a) there is a one-to-one correspon-
dence between the elaborated signal assignments of the
elaborated signal driver and the signal assignments
of the source signal driver, and (b) that the elabo-
rated signal assignments of the elaborated signal driver
must be contained in the same elaborated process. In
other words, the elaboration of a signal driver implies the
elaboration of each signal assignment of the driver.

These constraints implicitly specify properties of the elabo-
ration function signal driver -> elaborated signal driver,
as illustrated in Fig. 3. They show that an elabo-
rated signal driver is isomorphic to the corresponding
source signal driver. This isomorphism is an example of a
cross-level relationship between the design description level
and the elaboration level of VHDL. In a similar way, the
model can describe other cross-level relationships, such as:

design description j � � analysis �! design libraries
elaborated design j � � simulation�! signal process states
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Fig. 2: The model of an elaborated signal driver

VI. MODELLING OF TIME-DEPENDENT BEHAVIOUR

Intra-level and multi-level modelling of a given VHDL ob-
ject focus typically on properties that are not time-dependent.
The description of behavioural relationships, however, has to
cope with time dependent functional correspondences. For
example, an important part of VHDL semantics corresponds
to the behaviour of a design during simulation. The be-
havioural semantics address relationships between signals
and processes as a function of time. The general model illus-
trated in Fig. 4 suggests how VHDL behavioural relationships
can be modelled.

The attribute simulation cycles of the entity de-
sign simulation implicitly specifies the simulation function
as a set of points (previous simulation cycle, current simu-
lation cycle), where the entity simulation cycle contains as
attributes the set of process and signal states corresponding
to the cycle. The points of the simulation function must
correspond to valid transitions between the process states.
Therefore, additional properties are specified to further
constrain the points of the simulation function. These
’behavioural’ constraints show how process states relate to
signal states via a hierarchy of other entities which include:
executed wait statements, executed signal assignments,
signal drivers and transactions.

It should be noted that the ’behavioural’ constraints do not
describe the simulation framework of VHDL, e.g. the ker-
nel process and the different phases of a hypothetical VHDL
simulator. Instead they make sure that the functional rela-
tionships, with regard to time, between different simulation
events are correct. From this point of view the level of ab-
straction of the information model is higher than the level
of abstraction of other VHDL models which describe the be-
havioural semantics of VHDL indirectly, by considering the
semantics of a hypothetical simulation machine [2].

The task of modelling the VHDL behavioural semantics is
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Fig. 3: Cross level modelling
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Fig. 4: The general model of the simulation process

slightly more difficult than suggested here. This is due to the
VHDL feature of allowing delta delays which means that dif-
ferent object states corresponding to the same object and sep-
arated by a null time lapse may co-exist. The model has to
be able to order such states as explained in [10]. This discus-
sion is beyond the scope of the paper. A possible solution is
presented in [7].

VII. INFORMATION TRACKING

Besides intra-level, multi-level and time-dependent mod-
elling, an important but sometimes overlooked purpose of a
VHDL model is to provide an implementation basis for dif-
ferent applications of the language. To qualify for such a pur-
pose, a model must have two important properties. First the
model must have the capability to be instanced. Second, the
model must be able to keep track of all the information rele-
vant to the given application. The tracking of information is
particularly important since it links a specific result of the ap-
plication program to those parts of the source design descrip-
tion which are relevant to the result. Generally, any model can
keep track of information. The key issue is the balance be-
tween the information detail required and retrieval efficiency.

For example, a core model of VHDL could be used to guide
the execution of a simulator. Apart from specific behavioural
relationships, computing the value of a signal cannot be per-
formed without accessing information such as: signal kind,
disconnection delay, associated resolution function. Such in-
trinsic properties are used by the application control engine
to filter the model objects and the relationships which are
relevant for the application and which therefore should be
processed. This information is gathered selectively from the
models of VHDL design description, analysis and elabora-
tion and from their instances according to the detail required

by the execution of the application program, as illustrated in
Fig. 5.

A single model cannot keep track efficiently of the vast
amount of information necessary for a non trivial application
of VHDL. It is too costly and impractical. This suggests that
efficient information tracking requires the ability to integrate
models of different perspectives of the language. This is a
natural property of information modelling and an advantage
over other kinds of model.

VIII. CONCLUSIONS

The view of information modelling as discussed in this pa-
per is somewhat different from the usual perspective which
considers an information model as the contents of a data base.
The stress on modelling is on conceptual issues. There are
important consequences of this idea.

The informationmodelling of VHDL encourages the strati-
fication of the model according to the level of abstraction and
to the roles of the different objects and concepts of the lan-

ENTITY simulated_signal_state;

   simulated_signal: elaborated_signal;

...

END_ENTITY;

ENTITY elaborated_signal;

   source_signal: signal;

   ...

END_ENTITY;

END_ENTITY;

ENTITY signal ...

elaborated design instance

given design

design simulation instance

design description instance

design elaboration model

design description model

design simulation model

Fig. 5: Information tracking



guage. The paper has shown that static, structural properties,
object transformation and dynamic aspects of the language
can be appropriately integrated in an information model.

Several information models can exist for VHDL accord-
ing to the modelling purpose. In particular, it is thought that
a core model, seen as the root of a hierarchy of specialised
models, can be used to enhance the standard of the language
by clarifying the ambiguous aspects and, in addition, as a con-
ceptual comparison base between existing versions of VHDL.

An information model can be taken as a formal specifica-
tion of the language and, therefore, properties of the language
can be inferred from the model. Furthermore, an information
model can provide a unique and homogeneous implementa-
tion base for application systems. Assuming that an informa-
tion model forms the conceptual layer of the procedural de-
scription of an application [1], and therefore it can be seen as
the conceptual layer of a knowledge base, the model can drive
computer programs [4]. In particular, this will help to achieve
compliance to the standard, portabilityof VHDL descriptions
and the kind of inter-tool communication that is required in a
VHDL framework [9].

The work presented in this paper is just a first step towards
using information models as a basis for language documen-
tation and design. Future work will consider the modelling
of VHDL’93 and VHDL-A. The latter project is considered
as an opportunity to use information modelling in the process
of language design. There is also ample opportunity for work
on model verification and on model integration into practical
applications.
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