Productivity Issues in High-Level Design:
Are Tools Solving the Real Problems?

Reinaldo A. Bergamaschi
IBM Research Division
Thomas J. Watson Research Center
Yorktown Heights, N.Y., U.S.A.

1 Introduction

For the last decade, high-level design has been con-
sidered the breakthrough technology that will enable de-
signs to be completed in a fraction of the time of current
methodologies. This notion has been put forward by re-
searchers in academia and industry. While this concept
is perceived to be true, it is unclear how much time is
actually saved in the total design cycle, including spec-
ification, synthesis, verification (simulation), layout and
test.

This paper analyzes the impact that a high-level de-
sign methodology can have in the total design cycle. The
main question being raised here is how much high-level
design tools really help. For example, one can use a high-
level tool to perform scheduling or generate a pipelined
implementation of a for loop; and that may save a week
in design time. But that alone does not decrease the
months of simulation time that still must be performed
in large designs. This paper discusses these issues and
presents possible approaches for making high-level design
tools more effective in the total design cycle.

The term high-level destgn tools, as used in this paper,
denotes primarily synthesis and analysis tools capable of
handling hardware description languages at the behav-
ioral and register-transfer (RT) levels.

2 High-Level
Overview

Design Methodology

The methodology analyzed in this paper is shown in
Figure 1. Typically, a design starts with some high-level
(e.g., English) specification that gradually gets refined
to a hardware description in a mixture of abstraction
levels. A complete design normally incorporates pieces
described at the behavioral, RT and gate level as well as
custom partitions (transistor level).

32nd ACM/IEEE Design Automation Conference O
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright noticeand the title of the publication and its date appear,
and notice is giventhat copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requiresafee
and/or specific permission. [J 1995 ACM 0-89791-756-1/95/0006 $3.50

Behavioral, RTL, Gate-Level

Specification

High-Level Synthesis

. S Analysis
Simulation - / Estimation

(all levels) %, /

Structure
RTL / Gate-Level

b Logic Synthesis

Floorplanning ™.
P g <. ‘| Technology Dependent
Gate-Level Netlist

" Formal Verification
Emulation
Custom Design

,
2

+
Layout

Figure 1: High-level design methodology.

This refinement process is usually done manually, al-
though there are modeling tools available in the market
that can to help automate it.

The complete synthesis path can be divided into two
parts: first, high-level and RTL synthesis map a language
description into a structural representation at the tech-
nology independent RT level or gate level; second, logic
synthesis performs optimization and technology mapping
producing a technology dependent gate-level netlist. The
intermediate RTL structural representation is ignored in
most high-level methodologies as tools operate mainly at
the two extremes, language and gate-level descriptions.

Simulation starts as soon as a hardware description is
available. The type of simulator used (e.g., event-driven,
cycle-based, gate-level) is dependent on the simulation
tools and on the level of description being simulated.
Thus, if behavioral VHDL is available, an event-driven
simulator is used. If an RTL network is available, a cycle-
based simulator can be used. As these simulators differ
in performance, it is beneficial to use the fastest simula-
tor as early as possible in the design process. Currently,
cycle-based simulators can outperform event-driven sim-
ulators by an order of magnitude or more.



Other design steps, such as area and delay estimation,
floorplanning, emulation and formal verification operate
usually at the gate-level.

The underlying problem with this methodology is that
tools are not working on the most efficient level of de-
sign. For example, cycle-based simulators are preferable
to event-driven ones for performance reasons. But they
need RTL structural representations which are not usu-
ally available (language level and gate-level are the com-
mon formats). Estimation and floorplanning tools either
operate at the top, block level representation, with cor-
responding inaccuracies, or at the gate level which is ac-
curate but may have a much larger size and impact per-
formance. Emulation and formal verification tools also
use gate-level and netlists.

High-level synthesis represents the bridge between
hardware descriptions at the behavioral and RT-level and
the lower-level tools in existing methodologies which re-
quire structural networks as input. Most high-level syn-
thesis systems function as compilers that map language
descriptions into RTL networks, performing various op-
timizations, such as scheduling, allocation, binding, etc.
That is, high-level synthesis typically operates as a front-
end optimizer for logic synthesis; in this role, its value-
added is limited because it does not help significantly
to speed up the design process. Behavioral descriptions
can be significantly more compact than gate-level or even
RTL descriptions. However, specification time is only a
fraction of total design time, which in high-performance
designs is dominated by simulation and logic synthesis.

High-level synthesis can be a lot more effective if used
as a front-end optimizer for all other design tools that
require structural networks as input. Significant design
time can be saved if the designer can, in the much shorter
time that it takes to run high-level synthesis, obtain a
structural RTL/gate-level representation which can be
used for estimation, simulation and formal verification.
This requires changes in most tools. First of all, high-
level synthesis needs to be fast, efficient and tuned to
the other tools. For example, it is important that the
network produced by high-level synthesis be efficient for
simulation purposes. Hence, it is better to produce an
RTL network with multi-bit operators and busses, than
to use a gate-level network. However, estimation of area
and delay works better at the gate-level, thus new esti-
mation algorithms at the RT-level need to be developed
to take advantage of the RTL network produced by high-
level synthesis.

3 Can High-Level Synthesis Deliver?

The approach presented in the previous section can
only work if high-level synthesis systems become more
efficient and more acceptable to designers. Designers are
clearly interested in tools that help them solve problems,
and as they see it, high-level synthesis is, in fact, creating
or ignoring the following problems:

e Register problem: high-level synthesis may cre-

ate registers due to scheduling or inferencing. The
creation of unezpected registers affects the simula-
tion and verification steps. Designers need to know
how and why registers are being created and need
control mechanisms to guide synthesis.

Simulation problem: if scheduling is performed,
the cycle-by-cycle behavior of the synthesized design
may differ from the behavior specified in the initial
description. This may cause the simulation results
after synthesis to mismatch (on a cycle basis) the
language simulation results. This may be not be a
problem in designs whose function is to compute a
result at the end of several cycles, however, it is a
significant problem in designs that perform a lot of
handshaking and output results at different cycles.

Estimation problem: most of the estima-
tion work in high-level synthesis concentrates on
lower/upper bounds on the numbers of basic blocks
such as registers, muxes, adders, etc. These met-
rics are too inaccurate for any practical use. Area
estimation has to be based on full control and data-
path area. Delay estimation has to be performed
at the bit level (worst case block-level timing is too
inaccurate). Efficient algorithms are needed that
can estimate area and delay at the bit-level without
having to expand the network into single-bit oper-
ators (which would increase its complexity). This
estimation is relatively strighforward for data-path
operators, however, it can be very inaccurate for
control logic.

Efficiency problem: there are efficient algorithms
for isolated problems, such as, scheduling, allocation
and resource sharing; however, solving each of these
problems well does not necessarily correlate with
smaller chip area or delay. This is usually caused
by the fact that these algorithms use cost-functions
which are not fully representative of real area and
delay. The execution time for high-level synthesis
1s considerably shorter than that of logic synthesis,
but it is still not fast enough for it to be used as a
front-end for simulation, for example, where model-
build time is critical. Ideally, high-level synthesis
execution times should approach those of optimizing
language compilers which are currently around b to
10 thousand lines of code per minute.

Controllability and Predictability problem: control-
ling and predicting the output of high-level synthesis
is an area that has been largely ignored. Designers,
however, need to understand the results of synthe-
sis and need to know how to change and annotate
the input description in order to get the desired re-
sults. High-level synthesis systems need to provide
control mechanisms and generate results which are
predictable in the designer’s view.



(a) Logic Synthesis-based Methodology

Specification Logic Structural Layout
(RT, Gate, Synthesis Netlist
Structural) T A | T
Simulation Simulation
(b) High-Level Design Methodology
Specification High-Level RT-Level Logic Structural Layout
(Behavioral, Synthesis Network Synthesis Netlist
RT, Gate, * 'T |
Structural)
Simulation Simulation Estimation Floorplanning

Figure 2: Two design methodologies: logic synthesis-based ws. high-level design

e Language subset problem: high-level synthesis sys-
tems tend to accept only behavior-level descriptions
or even graph representations. A complete design,
however, incorporates partitions specified at differ-
ent abstraction levels, thus high-level synthesis sys-
tems need to accept all abstraction levels and be
able to apply different synthesis algorithms to each
level. Moreover, support for complex language con-
structs, such as, records, arrays, generics and gen-
erates (in VHDL), allows for very compact descrip-
tions which decrease specification time.

Once these problems are overcome, high-level synthe-
sis can start playing a major role as a front-end optimizer
for various other design tools and not only for logic syn-
thesis.

4 Savings in Design Time

High-level synthesis can become much more important
by providing the designer with relevant design informa-
tion earlier in the design cycle. Such information can
then be used for simulation, verification, redesign, etc.,
allowing problems to be detected early, saving costly de-
sign iterations. To estimate how much time this method-
ology can save in a high-performance design, one needs
to understand that a design is hardly a linear sequence
of steps and usually there are several iterations through
simulation, synthesis and layout. It is clearly beneficial
to minimize the time through each iteration.

Table 1 compares the execution times of high-level and
logic synthesis in two small examples using IBM HIS Sys-
tem [1] for high-level synthesis and IBM BooleDozer [2]
for logic synthesis. It is reasonable to expect high-level
synthesis to run 10 to 100 times faster than logic synthe-
sis.

VHDL | High-Level | Logic Size

(lines) | Synthesis |Synthesis | (gates)
Designl| 400 17 sec 500 sec | 1800
Design2 | 1500 26 sec 4300 sec | 11100

Table 1: Execution time comparison between high-level
synthesis and logic synthesis

To estimate the productivity impact from using high-
level synthesis, consider the two methodologies shown in
Figure 2. Figure 2a shows the prevailing logic synthesis-
based methodology (LS), whereas Figure 2b shows a
high-level design methodology (HLD) which uses high-
level synthesis as a front-end to logic synthesis and other
design tools.

The savings in design time in a high-level design
methodology depend upon the type of design and on the
number of design iterations required, which in turn de-
pends on the performance and size of the design.

An average design cycle of a low-performance design
could exhibit the following characteristics:

e Minor functional problems that require some recod-
ing.

e Minor area and timing problems.

e Few synthesis iterations/reruns.

e 4 to 8 logic synthesis runs (in LS methodology) vs.
5 high-level synthesis + 3 logic synthesis runs (in
HLD methodology).

Under these assumptions, the savings in synthesis time
can be expected to be as shown in Figure 3a. A low-
performance design is more amenable to be described



(a) Low-Performance Design, average design cycle

Cut in specification time: 2x to 10x

_ Behavioral / RTL Specification

Cut in synthesis time: 1x to 3x

# RTL / FSM / Gate / Structural Specification

High-level Synthesis + Logic Synthesis

| Logic Synthesis

(b) High-Performance Design, difficult design cycle

Cut in specification time: 2x to 5x

Cut in synthesis time: 2x to 5x

_ Behavioral / RTL / FSM / Gate / Structural Specification

RTL / FSM / Gate / Structural Specification

| | High-level Synthesis + Logic Synthesis

yava
SS Logic Synthesis
77

Figure 3: Savings in design time.

using behavioral or RT levels, as less implementation de-
tails need to be given. This can save 2 to 10 times in
specification time.

Fewer logic synthesis runs are needed in an HLD
methodology because many area and timing related prob-
lems can be detected through early estimation after high-
level synthesis. Cycle-based simulation can also start ear-
lier with the network produced by high-level synthesis. In
low-performance designs, logic synthesis will not need to
be run several times, therefore the savings in synthesis
time in an HLD methodology will be small.

A difficult design cycle of a high-performance design
could have the following characteristics:

Several functional problems.

e Specification changes in the middle of the design.

Tight area and timing requirements.

Several synthesis iterations/reruns needed.

10 to 30 logic synthesis runs (in LS methodology)
vs. 10 high-level synthesis + 5 logic synthesis runs
(in HLD methodology).

Under these assumptions, the savings in synthesis time
can be expected to be as shown in Figure 3b. A high-
performance design is likely to have partitions described
at lower levels for performance reasons. This reduces
the savings in specification time. However, it is even
more important that area and timing problems be de-
tected early through estimation. Links to early floorplan-
ning can estimate global capacitances which can then be
passed to logic synthesis. This helps decrease the num-
ber of post-layout (after backannotation) synthesis runs,
thus contributing to bigger savings in synthesis time.

5 Conclusions

High-level design is an emerging methodology based
on high-level synthesis which has great potential for
speeding up the design process, For this productivity in-
crease to become a reality, high-level synthesis needs to
be made more efficient as a synthesis tool as well as more
integrated with other design tools. This paper outlined
the main problems with current high-level synthesis sys-
tems and indicated approaches for using high-level syn-
thesis as a front-end optimizer for other design tools that
require structural networks as input, such as estimation,
early floorplanning, cycle-based simulation and verifica-
tion.

References

[1] R. Bergamaschi, R. O’Connor, L. Stok, M. Moricz,
S. Prakash, A. Kuehlmann, and S. Rao, “High-level
synthesis in an industrial environment,” IBM Journal
of Research and Development, vol. 38, January 1995.

[2] D. Brand, R. Damiano, L. Van Ginneken, and
A. Drumm, “In the driver’s seat of BooleDozer,” in
Proceedings of the IEEE International Conference on
Computer Design, pp. 518-521, IEEE, October 1994.



	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index


