
Logic Clause Analysis for Delay Optimization

Bernhard Rohfleisch Bernd Wurth
�

Kurt Antreich

Institute of Electronic Design Automation
Technical University of Munich

80290 Munich, Germany

Abstract { In this paper, we present a novel method for
topological delay optimization of combinational circuits. Un-
like most previous techniques, optimization is performed after
technology mapping. Therefore, exact gate delay information
is known during optimization.

Our method performs incremental network transformations,
speci�cally substitutions of gate input or output signals by new
gates. We present new theory which relates incremental net-
work transformations to combinations of global clauses, and
show how to detect such valid clause combinations. Employ-
ing techniques which originated in the test area, our method is
capable to globally optimize large circuits.

Comprehensive experimental results show that our method
reduces the delay of large standard cell netlists by 23% on av-
erage. In contrast to most other delay optimization techniques,
area reductions are achieved concurrently.

1 Introduction

We address the problem of delay optimization of combina-
tional circuits. There are two classes of approaches to per-
formance optimization. The �rst class consists of approaches
which determine and remove long false paths [1,2]. After re-
moving all long false paths, the circuit delay is equal to the
delay of the longest topological path. Techniques which re-
duce the delay of the topological critical path form the second
class [3,4]. Our work belongs to the second class. Recently,
Saldanha et al. [5] presented an approach which takes into ac-
count both functional and topological aspects. Sensitization
functions are added to a circuit to improve performance func-
tionally. E�ective topological delay optimization techniques
are required to speed up the sensitization function circuitry.

As we consider methods of the second class, the critical
path will always refer to the longest topological path. Most
delay optimization methods of the second class are applied be-
fore technology mapping. The idea is to shorten the critical
path of the logic network such that a possibly delay-oriented
technology mapping step [6] produces a circuit with reduced
delay. However, during optimization the delay must be evalu-
ated on the unmapped network. Thus, simpli�ed delay models
such as the unit delay model are used. Singh et al. [3] iden-
tify regions of logic near the critical path that are collapsed
and resynthesized. As the identi�cation of the critical path
is based on a simple delay model, this method may miss the
real critical path and thus yield unpredictable results. This

�Bernd Wurth was supported by an Ernst von Siemens-grant given

by Siemens AG.

problem was pointed out by Touati et al. [4], who therefore
attempt to shorten all paths of the unmapped network. Since
also uncritical network regions are optimized for delay, the as-
sociated area penalty may be unnecessarily large. Touati's as
well as Singh's methods are based on a partial collapsing and
resynthesis of network regions.

Chen et al. propose a delay optimization method which
has the advantage that it works on mapped networks [7]. This
method directly reduces the levels of gates on the critical path
by removing critical inputs of gates. Allowed removals of crit-
ical inputs are identi�ed by permissible functions [8] which ex-
press global information about the network. However, permis-
sible functions must be computed in terms of primary inputs.
Thus, this method is not applicable to large circuits.

Our new approach overcomes the limitations of these ap-
proaches. It optimizes a netlist of gates after technology map-
ping such that exact delay information of gates is known. Only
gates on the critical paths are optimized. Consequently, in
most cases no area penalty is associated with delay optimiza-
tion. On the contrary, area can mostly be reduced concur-
rently with delay. Moreover, our method is able to globally
optimize large circuits. As an example, we succeed in reducing
the delay of benchmark circuit C6288 by 22% after technology
mapping. Our approach is based on detecting global depen-
dencies between signals. To detect such global dependencies,
we generalize techniques which originated in the test area.

A further contribution of our work is a comprehensive the-
ory on incremental network transformations based on clauses.
We develop basic correspondences between allowed network
transformations and valid clause combinations. Our method
incorporates a rich set of incremental network transforma-
tions. We introduce transformations where the output of a
new AND-, OR-, or XOR-gate substitutes existing gate out-
puts or inputs. Combined with substitutions of gate outputs
and inputs by single signals, these new transformations are
very powerful in restructuring the network.

The remainder of the paper is organized as follows. In Sec-
tion 2 we demonstrate how a circuit can be described by valid
clauses. In Section 3, we introduce netlist transformations such
as output and input substitutions involving two or three sig-
nals, and show their relation to global clauses. Our approach
to compute valid clauses and the application of clause analysis
to delay optimization are discussed in Section 4 and 5. We
present experimental results in Section 6.

2 Circuit Description by Clauses

We consider netlists of combinational logic gates. If the
signal at the output of a gate branches out to several fanout
gates, we distinguish between the root of the branching signal,
called stem signal, and the individual branches, called branch
signals. The output signal of a gate with a single fanout is
regarded as a stem signal.

Our view of a circuit is similar as introduced by Larrabee
[9]. Each gate of the netlist has associated a logic formula,
which contains the variables corresponding to the gate's input

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

and output terminals. The formula is a characteristic function
that is true i� the values assigned to the variables are consis-
tent with the gate's truth table. The formula is represented
in conjunctive normal form, i.e., a product of sums form. A
characteristic formula for the whole circuit is obtained by tak-
ing the conjunction of the formulas of all gates. Thus, the
function for the whole circuit is true i� the values assigned to
input, output, and internal variables are consistent with the
truth tables of all gates.

A sum of variables is called a clause. Valid clauses describe
dependencies among the variables they contain.

De�nition 1 A clause is valid i� it evaluates to one for every
assignment of signal values produced by primary input vectors.

To denote that a clause, say (a+b), is valid we use the notation
((a+ b) � 1).

As an example, consider the circuit in Figure 1, which is

taken from [9]. The formula for the AND-gate is (d+a) � (d+

b) � (d+ a+b), the formula for the inverter is (c+ e) � (c+e),

and the formula for the OR-gate is (f+d) � (f+e) � (f +d+e).

The individual clause (d+a) denotes that any consistent value
assignment requires either (d = 0) or (a = 1).

In the context of test pattern generation, global implications
have been introduced by Schulz et al. [10]. Global implications
correspond to valid global clauses which cannot be derived from
a single gate's formula. Global clauses describe global signal
dependencies and thereby indicate optimization potential.

The local and global clauses considered so far are sums of
signal variables. Additionally, an observability variable can be
associated with a signal to express whether a fault on this
signal is observable at an output of the circuit. We will de-
note the observability of variable a by Oa. Clauses of signal
and observability variables express the relation between signal
observabilities and signal values. Clauses derivable from the
circuit structure can be added to the circuit's characteristic
formula.

From the circuit of Figure 1, the following clauses can be de-
rived. If input a of the AND-gate is observable, output d must
be observable. This implication between observability vari-
ables is expressed by the valid clause (Oa +O

d
). Similarly,

the clause (O
b
+O

d
) is valid. Since input a of the AND-gate

is observable at signal d only if the other input b equals 1, the
clause (Oa + b) is valid, also (O

b
+ a) is valid.

Similarly to the global clauses of signal variables, there exist
global clauses of signal variables and observability variables.
As an example, assume a circuit with a stuck-at-1 redundant
fault at signal a. For any primary input vector, the signal is

either unobservable, (Oa = 1), or its value equals one, (a = 1).

Hence, (Oa + a) is a valid global binary clause.
In this paper, we are dealing with a class of global clauses

which contain the negated observability variable Oa and a
number of signal variables including a. We classify clauses
depending on how many signal variables they contain. The
signals a , b, and c are stem or branch signals.

e

a

c

d

f

b

Figure 1: Example circuit.

a

b
G3

G1

G4

G2

G3

G1

G4

G2a

b

Figure 2: Additional AND-gate associated with the valid

clause (Oa + a+ b).

C1-clauses: C2-clauses: C3-clauses:

(Oa + a) (Oa + a+ b) (Oa + a+ b+ c)

(Oa + a) (Oa + a+ b) (Oa + a+ b+ c)

(Oa + a+ b) (Oa + a+ b+ c)

(Oa + a+ b) (Oa + a+ b+ c)

(Oa + a+ b+ c)

(Oa + a+ b+ c)

(Oa + a+ b+ c)

(Oa + a+ b+ c)
We will now show the usefulness of these global clauses for

incremental circuit transformations.

3 Circuit Transformations and Valid

Clauses

We have already seen that a valid C1-clause describes a
stuck-at redundant fault. The permissible circuit transfor-
mation associated with a valid C1-clause is redundancy re-
moval [11].

De�nition 2 A circuit transformation is called permissible if
it preserves the input/output behavior of the circuit.

Circuit Transformations related to C2-Clauses. A single
C2-clause is associated with inserting a 2-input gate into the
circuit, as shown in Figure 2. The connection between gatesG1
and G2 is cut and an AND-gate driven by a and b is inserted.
This transformation is permissible i� all primary input vectors
for which a is observable, i.e. (Oa = 1), assign values to
a and b such that (a = a � b) holds. Formally, this condition
can be written as an implication: (Oa = 1) =) (a = a � b).
The term (a = a � b) is true whenever (a+ b = 1) is true, so
the condition can be rewritten as (Oa = 1) =) (a+ b = 1),

or ((Oa + a+ b) � 1). Hence, the C2-clause (Oa + a + b) is
valid.

Several circuit optimization approaches have been presented
based on this modi�cation. In [12], the new 2-input gate is
termed a permissible basis bridge. Inserting 2-input gates is
described by D-implications [13] and connection faults [14,15].
Adding a new gate perturbs the network and can make other
signals stuck-at redundant such that after removal of these
redundancies an optimization gain is achieved. This concept
is exploited in [13,14].

Combining several C2-clauses may directly yield a gain in
circuit area [12] or delay as shown in this paper.

De�nition 3 An output substitution OS2(a;b) substitutes
the stem signal a by signal b. An input substitution IS2(a;b)
substitutes the branch signal a by signal b. Output and input
substitutions with inverted signal b are de�ned analogously.

OS2 and IS2 substitutions are illustrated in Figure 3.

Theorem 1 An output substitution OS2(a;b) is permissible

i� the conjunction of the two C2-clauses (Oa +a+b) � (Oa +
a+ b) is valid.

a

a) Original netlist c) IS2(a',b)

b bb

b) OS2(a,b)

region
pruned

ddd

a'
a" a"

cc c

a"
a' a'

aa

Figure 3: Output substitution OS2(a,b) and input substitu-

tion IS2(a',b).

Proof: The substitution of signal a by signal b is per-
missible i� all input vectors for which a is observable, as-
sign values to a and b such that (a = b). Formally,
(Oa = 1) =) (a = b) holds. The term (a = b) is true when-

ever ((a+ b) � (a+ b) = 1) is true, so the implication can be

rewritten as ((Oa+a+b) � (Oa+a+b) � 1). Hence, the con-

junction of the two C2-clauses (Oa + a+ b) � (Oa + a+ b) is
valid. �

Theorem 1 can easily be extended to substitutions with in-
verted signal b.

If an output substitution for the stem signal a is performed,
all gates driven by a are connected to b instead and all gates
exclusively necessary to compute a are pruned, as shown in
Figure 3 b). An output substitution yields a gain in area and
possibly in delay. Input substitutions are potentially useful
for delay optimization. For example, if the input substitution
IS2(a0;b) for the branch signal a0 is permissible, and if a0 is
on a critical path, its substitution by signal b reduces the path
delay if the arrival time at b is smaller than the arrival time
at a0.
Circuit transformations related to C3-clauses. Now we
introduce further netlist modi�cations, which generalize the
concept of OS2 and IS2 substitutions. Substitutions associated
with C3-clauses are the output substitution OS3 and the input
substitution IS3.

De�nition 4 An output substitution OS3(a;b;c) substitutes
the stem signal a by the output of a new gate driven by the
signals b and c. Similarly, an input substitution IS3(a;b;c)
substitutes the branch signal a by the output of a new gate
driven by the signals b and c.

For an OS3 or an IS3 substitution, an AND-, OR-, or XOR-
gate with a certain phase assignment to the driving signals
b and c is inserted. As in the case of the substitutions OS2
and IS2, there can be a gain in area and delay due to the
substitutions OS3 and IS3. The circuit area is reduced by
an output substitution OS3, if the area required by the new 2-
input gate is smaller than the area of the pruned region. Delay
reduction by OS3 and IS3 is possible, if the substituted signal
a belongs to a critical path and if the arrival time of the newly
inserted gate is smaller than the arrival time of signal a.

Theorem 2 The substitution of signal a by the output signal
of a new AND-gate with inputs b and c is permissible i� the

conjunction of the clauses (Oa + a+ b)�(Oa + a+ c)� (Oa+

a+ b+ c) is valid.

The substitution is illustrated in Figure 4.
Proof: Whenever signal a is unobservable, i.e. (Oa = 0),
the value of signal a may be changed. However, if a is
observable, the value produced at the output of the AND-
gate must be equal to the value of a. We can write this
condition as an implication: (Oa = 1) =) (a = b � c). The
term (a = b � c) can be expressed in sum of clauses form as

((a+ b) � (a+ c) � (a+ b+ c) � 1). Therefore, the condition

a

c

b

a

a) Original netlist

c

b

b) OS3(a,b,c)

pruned region

Figure 4: OS3(a,b,c) substitution with AND-gate.

for the substitution to be permissible is ((Oa + a+b) � (Oa +

a+ c) � (Oa + a+ b+ c) � 1): �

Extension of Theorem 2 to other types of 2-input gates
is straightforward. It shows that any output substitution
OS3(a;b;c) by an AND- or an OR-gate with arbitrary phase-
assignment to b and c involves two valid C2-clauses and
one valid C3-clause. OS3-substitutions involving an XOR- or
XNOR-gate are associated with the combination of four valid
C3-clauses each. For the XOR-gate, we have ((Oa + a + b+

c) � (Oa+a+b+c) � (Oa+a+b+c) � (Oa+a+b+c) � 1),

and for the XNOR-gate, we have ((Oa+a+b+c) � (Oa+a+

b+c) � (Oa+a+b+c) � (Oa+a+b+c) � 1). Note, that the
same conditions hold for input subsitutions, where a refers to
a branch signal.

4 Computation of Valid Clauses

There exists a variety of methods to determine valid global
clauses. Bit-parallel fault simulation (BPFS)[16] has been
adapted and combined with automatic test pattern generation
(ATPG) for this purpose [12]. Another method is to compute
global implications using the circuit structure [10,13], or an
implication graph [9,17]. So far, however, all of these methods
have only been used to compute C2-clauses. To calculate valid
C3-clauses, we generalized the concept based on BPFS.

According to De�nition 1, a clause is valid i� it evaluates
to one for all signal assignments produced by primary input
vectors. Therefore, a clause is invalid i� there exists a primary
input vector which causes an assignment of values to the signals
such that the clause evaluates to zero.

We start BPFS assuming that each clause is valid. For each
simulated input vector, each clause is checked and immediately
discarded if proven invalid by the current signal assignment.
Using BPFS, a set of l input vectors is simulated parallely,
where l denotes the machine word length. Thus, BPFS can be
used to e�ciently identify invalid clauses.

If simulation is exhaustively, i.e., the complete set of in-
put vectors is simulated, then the clauses not discarded during
BPFS are valid. In general, of course, exhaustive simulation
can not be performed since the number of input vectors grows
exponentially with the number of circuit inputs. Instead, a
set of random input vectors is simulated to discard the vast
majority of invalid clauses. The clauses not discarded during
BPFS are either valid or invalid. We still have to prove the
validity or invalidity of these potentially valid clauses.

As we intend to compute valid clause combinations associ-
ated with output or input substitutions, we do not prove the
validity of a single clause, but of clause combinations. Poten-
tially valid clauses are combined to the clause combinations
discussed in Section 3. A set of potentially valid clause combi-
nations (PVCCs) is thus obtained. Then, validity of the indi-
vidual PVCCs can be checked via ATPG [10]. Alternatively,
the validity of a PVCC can be checked by carrying out the cir-
cuit modi�cation associated with the PVCC, and performing a

BDD-based veri�cation of the original circuit versus the mod-
i�ed circuit. For small and medium sized circuits, this method
turned out to consume less CPU time. ATPG, however, en-
ables the optimization of circuits for which BDD representa-
tions become too large.

This procedure can be adapted to detect valid clauses of
any order. While very e�cient for the identi�cation of C2-
clauses, the initial number of clauses is a serious problem when
C3-clauses are to be found. In a circuit with n signals, an
upper limit NC2 on the number of C2-clauses is given by the
number of a-signals times the number of signals b 6= a: NC2 =
n � (n � 1). To avoid cycles, signal b may not be situated in
the transitive fanout of signal a. Thus, the upper limit on the
number of C2-clauses is somewhat smaller than n � (n � 1).
The upper limit NC3 on the number of C3-clauses is given by

n �
�
n�1

2

�
. For n = 1000, we have NC3 = 5 � 108. Simply by

the number of potential C3-clauses, the computation of valid
C3-clauses is a di�cult problem due to memory consumption
and CPU times.

Therefore, methods are needed to reduce the set of consid-
ered clauses before BPFS. A list of clauses is associated with
each a-signal. Reducing the number of a-signals decreases the
number of clause lists, while a reduction of the number of b/c-
signals for a given a-signal decreases the lengths of individual
clause lists.

In the sequel, we will shortly discuss three methods to re-
duce the set of C3-clauses considered before BPFS:

Reduction without loss of optimization quality: Trivially,
branch signals need not be considered as b/c-signals. Further-
more, a clause need not be considered if it can only be used in
clause combinations such that the associated circuit modi�ca-
tions yield no gain. In the case of delay optimization, a clause
need not be considered if the arrival time of a b/c-signal plus
the delay of the inserted gate is larger than the arrival time of
the a-signal.

Reduction with loss of optimization quality by exploitation
of C2-clauses: According to Theorem (2), an output substi-
tution OS3 involving an AND- or OR- gate is permissible i�
two C2-clauses are valid. Therefore, we exploit the results of
a simulation for C2-clauses, which precedes simulation for C3-
clauses. This reduces the number of clause lists as well as
the lengths of clause lists. Experiments have shown that the
number of considered clauses is thus reduced to some percent.
However, some OS3 substitutions involving XOR-gates cannot
be detected any more.

Reduction with loss of optimization quality by exploitation
of structural dependencies: The b/c-signals must be struc-
turally related to the a-signal. Taking into account path
lengths from the primary inputs to a-signal and b/c-signals,
and path lengths between a-signal and b/c-signals, we reduce
the number of considered clauses by 90% at a loss of valid
clause combinations of about 10%.

Using these methods, the number of considered clauses is
reduced to less than 107 in all the benchmark circuits we ex-
amined.

5 Exploitation of Valid Clauses for

Delay Optimization

We achieve an optimization of the netlist by incremental
transformations. As we work on mapped netlists, we can use
the gate delay times as speci�ed in the library. Any of the
applied modi�cations preserves the mapping. If XOR-gates
are not contained in the library, they can be excluded from
consideration by not building the corresponding PVCCs from
the clauses after simulation.

Gates on a critical path, called critical gates, are identi�ed
by slack computation. We directly optimize the critical path by
substituting outputs and inputs of critical gates. Only critical
gates are considered as a-signals during BPFS.

After simulation, we sort the PVCCs according to two crite-
ria. The �rst criterion is the number of critical paths (NCPs)
leading through the a-signal of a PVCC. Selecting a modi�-
cation with a maximum NCP value shortens as many critical
paths as possible in order to obtain a reduction of the overall
circuit delay.

Modi�cations with an identical NCP are sorted according to
their local delay save (LDS). The LDS for the OS2 substitution
shown in Figure 3 b) is given by the di�erence of the arrival
time of signal a and the maximum arrival time of signals b,
c, and d. The extension of the LDS-computation to other
modi�cations (IS2, OS3 and IS3) is straightforward. The valid
modi�cation with the maximum number of critical paths and
the maximum local delay save is chosen and executed in the
circuit. Note that the LDS of a modi�cation is just an upper
bound for the reduction in circuit delay by this modi�cation.
Other paths may be critical in the modi�ed circuit. Therefore,
after a modi�cation we update the slack and determine the
current set of critical gates.

Our main procedure consists of two phases. In the �rst
phase, called delay reduction phase, we apply substitutions of
critical gate outputs and inputs. This phase incrementally re-
duces the delay of the circuit. As simulation of C2-clauses costs
less CPU time, substitutions OS2 and IS2 are carried out �rst.
Note that several modi�cations per simulation are performed.
If no delay improvement by C2-related modi�cations is possi-
ble any more, we start simulation for C3-clauses. As discussed
in the previous section, the result of the previous simulation
for C2-clauses can be used to reduce the number of consid-
ered C3-clauses. If no delay reducing substitutions are found
anymore, we enter the second phase.

The second phase, called area optimization phase, reduces
circuit area without increasing the delay. In this phase, substi-
tutions of noncritical gates are carried out unless they cre-
ate new critical paths. Again, C3-simulations follow C2-
simulations. Our experiments showed that delay reducing sub-
stitutions may be permissible again after some substitutions in
the area optimization phase have been performed. Therefore,
the algorithm goes back to the delay reduction phase whenever
a certain number of substitutions has been executed in the area
optimization phase. The algorithm terminates if neither delay
reducing nor area reducing substitutions are found anymore.

6 Experimental Results

To evaluate our delay optimization method, we used ISCAS-
85 and ISCAS-89 benchmark circuits [18]. We implemented
our delay optimization technique in program GDO (Global De-
lay Optimization), which is embedded into the synthesis tool
TOS.

We present two sets of experimental results. For both
sets, we �rst optimized each circuit using the standard script
(script.rugged) in SIS [19].

In the �rst set, we mapped the circuits to the MCNC library
mcnc.genlib with the SIS command map -n 1. Mapping was
done without fanout optimization since at this point we do not
consider fanout dependencies in our implementation. Table 1
shows the number of gates, literals, and the circuit delay before
and after GDO was run. We give the number of OS2/IS2-
modi�cations, the number of OS3/IS3-modi�cations, and the
CPU time in seconds on a DEC 3000/600.

Our global delay optimization technique yields an average

Table 1: Results of GDO on a set of benchmark circuits.

circuit]gates]literals delay]mod. CPU
before after before after before after OS/IS2 OS/IS3 [sec]

Z5xp1 106 77 212 152 32.7 10.6 42 0 52
term1 152 125 301 260 13.3 10.7 21 12 197
9sym 193 170 403 359 14.1 12.6 24 6 84
C432 150 140 318 302 29.9 26.4 9 4 238
C499 370 352 920 772 23.4 19.0 88 74 2416
C1355 370 352 920 772 23.4 19.0 88 74 2400
C880 337 289 722 650 50.6 41.0 19 24 658
C1908 488 402 933 803 41.2 33.9 51 53 1364
vda 700 633 1165 1086 25.0 16.6 27 37 4608
rot 637 581 1178 1089 26.6 25.2 15 24 1431
alu4 680 528 1260 1026 40.2 28.6 82 69 7252
x3 654 631 1354 1286 17.2 14.5 43 10 1480
apex6 686 668 1372 1306 20.1 18.6 27 11 1875
frg2 825 777 1489 1416 26.3 15.2 47 27 6581
pair 1447 1371 2893 2695 34.9 27.0 79 49 18654
C5315 1576 1374 3249 2790 37.3 31.0 138 86 16288
C6288 3148 3009 5357 5923 117.7 92.3 310 327 60083P

: 12519 11479 24046 22687 573.9 442.2 - - -
red.: 8.3% 5.7% 22.9% - - -

Table 2: Results of GDO on circuits synthesized by SIS with

the script script.delay.

circuit]gates]literals delay]mod. CPU
before after before after before after OS/IS2 OS/IS3 [sec]

Z5xp1 98 82 191 168 21.4 11.9 23 9 34
term1 128 109 281 237 11.0 11.0 13 6 110
9sym 168 146 378 331 13.6 12.3 32 10 117
C432 236 173 458 351 27.0 26.5 28 8 564
C499 344 300 810 729 15.5 15.2 29 2 392
C1355 351 301 833 730 15.5 15.2 35 2 437
C880 370 320 865 721 26.6 25.6 61 16 799
C1908 683 441 1337 964 29.2 25.6 140 73 4891
apex6 743 697 1641 1464 13.5 13.5 56 10 1863
rot 760 618 1501 1226 18.9 16.0 86 29 4943
frg2 819 708 1667 1415 15.4 12.8 132 43 8428P

: 4700 3895 9962 8336 207.6 185.6 - - -
red.: 17.1% 16.3% 10.6% - - -

delay reduction of 22.9%. Delay reductions were achieved for
each circuit. The individual delay reduction ranges from 5.3%
for circuit rot to 68% for the small circuit Z5xp1. Remarkably,
we achieved area reductions of 5.7%. Note that the number of
literals increased only for circuit C6288. The average area re-
duction of all circuits except C6288 is above 10%. CPU times
are strongly correlated with the number of performed modi�-
cations and thus the optimization quality.

In the second set of experiments, we applied GDO in com-
bination with the depth reduction technique implemented in
SIS [4]. Each circuit was optimized and mapped onto the
mcnc.genlib library with the script script.delay. We then ap-
plied global delay optimization with GDO. GDO achieved ad-
ditional delay reductions of 10% on average, although for some
circuits, e.g, term1, apex6, no delay reductions were possible.
Our approach concurrently reduces circuit area by 16.3%. We
conjecture that GDO recovers area penalties which are due to
the depth reduction technique in SIS.

7 Conclusion

We introduced logic clause analysis of combinational cir-
cuits with application to delay optimization. For the �rst time,
basic relations between clauses and incremental netlist trans-
formations were developed. In this context, we introduced OS3
and IS3 substitutions which contributed to delay and area re-
ductions in mapped netlists. Our approach, which has been
implemented in the delay optimizer GDO, exploits global op-
timization potential detected by valid clauses. Experimental
results show that global delay optimization achieves signi�cant
reductions in circuit delay and area.

Acknowledgment

Special thanks are to Manfred Henftling and Hannes
Wittmann who provided helpful advice in understanding and
implementing clause analysis.

References

[1] K. Keutzer, S. Malik, and A. Saldanha, \Is redundancy neces-
sary to reduce delay?," IEEE Transactions on Computer-Aided
Design, vol. 10, no. 4, pp. 427{435, 1991.

[2] A. Saldanha, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
\Circuit structure relations to redundancy and delay," IEEE
Transactions on Computer-Aided Design, vol. 13, no. 7,
pp. 875{883, 1994.

[3] K. J. Singh, A. R. Wang, R. K. Brayton, and A. Sangiovanni-
Vincentelli, \Timing optimization of combinational logic,"
IEEE/ACM International Conference on Computer-Aided De-
sign, ICCAD, pp. 282{285, 1988.

[4] H. Touati, H. Savoj, and R. K. Brayton, \Delay optimization
of combinational logic circuits by clustering and partial col-
lapsing," IEEE/ACM International Conference on Computer-
Aided Design, ICCAD, pp. 188{191, 1991.

[5] A. Saldanha, H. Harkness, P. C. McGeer, R. K. Brayton,
and A. Sangiovanni-Vincentelli, \Performance optimization us-
ing exact sensitization," 31th ACM/IEEE Design Automation
Conference, DAC, pp. 425{429, 1994.

[6] R. Rudell, \Logic synthesis for vlsi design," Ph. D. thesis, U.C.
Berkeley Memorandum UCB/ERL M89/49, 1989.

[7] K.-C. Chen and S. Muroga, \Timing optimization for multi-
level combinational networks," 27th ACM/IEEE Design Au-
tomation Conference, DAC, pp. 339{344, 1990.

[8] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney, \The
transduction method - design of logic networks based on per-
missible functions," IEEE Transactions on Computers, vol. 38,
no. 10, pp. 1404{1424, 1989.

[9] T. Larrabee, \Test pattern generation using boolean satis�abil-
ity," IEEE Transactions on Computer-Aided Design, vol. 11,
no. 1, pp. 4{15, 1992.

[10] M. H. Schulz and E. Auth, \Improved deterministic test pat-
tern generationwith applications to redundancy identi�cation,"
IEEE Transactions on Computer-Aided Design, vol. 8, no. 7,
pp. 811{816, 1989.

[11] D. Bryan, F. Brglez, and R. Lisanke, \Redundancy identi�ca-
tion and removal," International Workshop on Logic Synthesis,
1989.

[12] B. Roh
eisch and F. Brglez, \Introduction of permissible
bridges with application to logic optimization after technol-
ogy mapping," The European Design and Test Conference,
ED&TC, pp. 87{93, 1994.

[13] W. Kunz and P. Menon, \Multi-level logic optimization by im-
plication analysis," IEEE/ACM International Conference on
Computer-Aided Design, ICCAD, pp. 6{13, 1994.

[14] K.-T. Cheng and L. A. Entrena, \Multi-level logic optimization
by redundancy addition and removal," The European Design
and Test Conference, ED&TC, pp. 373{377, 1993.

[15] S.-C. Chang, K.-T. Cheng, N.-S. Woo, and M. Marek-
Sadowska, \Layout driven logic synthesis for FPGAs," 31th
ACM/IEEE Design Automation Conference, DAC, pp. 308{
313, 1994.

[16] J. A. Waicukauski, E. B. Eichelberger, D. O. Forlenza, E. .
Lindbloom, and T. McCarthy, \Fault simulation for structured
VLSI," VLSI Systems Design, pp. 20{32, 1985.

[17] S. T. Chakradhar, V. D. Agrawal, and S. G. Rothweiler, \A
transitive closure algorithm for test generation," IEEE Trans-
actions on Computer-Aided Design, vol. 12, no. 7, pp. 1015{
1028, 1993.

[18] S. Yang, \Logic synthesis and optimization benchmarks user
guide, version 3.0," MCNC, Research Triangle Park, N.C.
27709, 1991.

[19] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Bray-
ton, and A. Sangiovanni-Vincentelli, \Sequential circuit design
using synthesis and optimization," IEEE/ACM International
Conference on Computer-Aided Design, ICCAD, pp. 328{333,
1992.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

