
Abstract

Local don’t cares of an internal node expressed in terms of
its immediate inputs are usually of interest. One can directly
apply any two-level minimizer on the on-set and the local
don’t cares set to simplify an internal node. In this paper, we
propose a memory efficient technique to calculate local don’t
cares of internal nodes in a combinational circuit.

Our technique of calculating local don’t cares makes use of
automatic test pattern generation (ATPG) approach which
allows us to identify quickly whether a cube in the local space
is a don’t care or not. Unlike other approaches which con-
struct an intermediate form of don’t cares in terms of the pri-
mary inputs, our technique directly computes the don’t care
cubes in the local space. This gives us a significant advantage
over the previous approaches in memory usage. Experimental
results on MCNC benchmarks are very encouraging.

1   Introduction

Don’t care sets represent the degree of freedom in trans-
forming a digital circuit into another equivalent one. Logic
synthesis algorithms use don’t cares to improve various cir-
cuit’s aspects such as area, timing, testability or power dissi-
pation. In particular, during a multilevel Boolean network
optimization, local don’t cares associated with internal nodes
are computed over and over again. In this paper, we propose a
memory efficient technique to calculate local don’t cares for
combinational circuits. For example, our new technique
requires only 4 Mbyte of memory to calculate don’t cares for
C7255 in ISCAS benchmarks and after simplification, the
resulting literal count is reduced from 3269 to 2980.

Local don’t cares of an internal node expressed in terms of
the immediate inputs are usually of interest. One can apply
any two-level logic minimizer on the on set and local don’t
care sets to simplify an internal node. The local don’t cares
contain the information of a circuit’s structure and are com-
posed of observability and satisfiability don’t cares. It was
shown that the observability don’t cares can be calculated
exactly by either flattening the network [1] or by using the
chain rule [3]. Both methods require enormous amount of cpu
time. In addition, when a modification takes place, the observ-
ability don’t cares of the modified circuit have to be recom-
puted. As a result, techniques have been proposed to compute

sub-sets of observability don’t cares. One such effort has lead
to the study of compatible observability don’t cares. The com-
patible observability don’t cares are less time-consuming to
compute and their recalculation is not necessary when the cir-
cuit is modified. For example, in [13] a technique to calculate
the compatible observability don’t cares through effective use
of image computation techniques has been proposed.

The techniques [11] [13] of computing the compatible
observability don’t cares still have disadvantages. First, for a
large circuit, these approaches, which are Binary Decision
Diagram(BDD) based, demand a lot of memory. This is
because the intermediate results of compatible observability
don’t cares computations need to be expressed in terms of pri-
mary inputs. Therefore, in the worst case, the memory
requirement may be O(2n) (n is the number of primary inputs).
Once the memory is used up, partial don’t cares or intermedi-
ate results cannot be retained for optimization. Secondly, the
techniques of calculating compatible observability don’t cares
are very inefficient when only a part of the circuit is to be opti-
mized while the rest is to remain intact. For example, in appli-
cations such as hierarchical design, design reuse, engineering
change, etc., some parts of a circuit may have already been
optimized, mapped or even placed and routed, therefore
should not be modified. But current approaches to determine
compatible observability don’t cares of internal nodes require
that the don’t cares of all nodes in the transitive fanout are cal-
culated. Therefore, cpu time is wasted when computing don’t
cares of those nodes which are not to be modified.

One simple way to tackle the above disadvantages is to par-
tition a circuit. For example in [15] a window around a node
in question is considered. The size of the window is deter-
mined such that the size of an intermediate BDD does not
exceed certain bounds. When calculating local don’t cares for
the target node, the nodes outside the window are not taken
into account.

Here we propose a memory efficient and time consistent
approach to compute the local don’t cares. A distinct feature
of our approach is that when calculating the local don’t cares
of a particular node, don’t cares of any other node need not be
computed. The don’t cares are determined through the use of
automatic test pattern generation (ATPG) approach which
allows us to identify quickly whether a cube in the local space
is a don’t care or not. Let us discuss the intuition how local
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don’t cares can be computed through ATPG approach. For
example, in Fig. 1, ab is a local don’t care of gate g5. This is
because when a=1 and b=0, g2 becomes 1. Since g2 is 1, the
primary output O1 is always 0 which blocks the observability
of gate g5. Unlike other approaches which construct an inter-
mediate form of don’t cares in terms of the primary inputs, our
technique directly computes the don’t care cubes in the local
space. This gives us a significant advantage over the previous
approaches in memory usage. We have applied our technique
to all MCNC and ISCAS benchmarks and the results are very
encouraging.

The rest of this paper is organized as follows. Section 2
shows our approach. Sections 3 and 4 present experimental
results and give conclusions.

2   An efficient local don’t care computation algorithm
based on implication

Intuition behind the relation between local don’t cares and
ATPG is as follows. In a circuit composed of AND and OR
gates, if a wire is stuck-at fault untestable, the wire is redun-
dant and can be removed from the circuit. Consider the exam-
ple (from [5]) shown in Fig. 2. The stuck-at-1 fault at wireg5-
>g9 (dotted in the figure) is untestable so it can be deleted.
Another view of the fact that stuck-at-1 atg5->g9 is untestable
is that (g5, g8, f)=(0,1,1) constitutes a local don’t care for the
gateg9. Therefore, from the fact that a wire is stuck-at fault
untestable, we can obtain certain information about the local
don’t cares for an internal gate. Section 2.1 reviews some
commonly used ATPG definitions. Section 2.2 shows our
main result for calculating local don’t cares. Section 2.32.3
describes a search structure for the don’t cares. Section 2.4
analyzes the time complexity of our algorithm and a discus-
sion on optimality is presented in section 4.5.

2.1  Redundancy identification

In this section, we review the procedure [5] that identifies
redundancies (stuck-at faults) using the concept of mandatory
assignments.Theabsolute dominators (dominators) [9] of a
wire W is a set of gatesG such that all paths from the wireW
to any primary output have to pass through all gates inG.
The mandatory assignments are the value assignments
required for a test to exist and must be satisfied by any test
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vectors. Given a faultf, we compute the set of mandatory
assignments [5] SMA(f). All mandatory assignments can be
computed via implication (9 value implication) [9] [14] and
recursive learning [10]. If the mandatory assignments of a
fault cannot be consistently justified, the fault is redundant.

2.2   Identification of the local don’t cares using
implications

Now, we show a technique to find local don’t cares for an
internal nodef: Br-> B. We used an ATPG based approach to
determine whether a cube in the local spaceBr is a don’t care
or not. Theoretically, a complete ATPG based approach may
be very expensive in some cases. For this reason we adopt a
compromising heuristic [7] described in the previous section.
This compromising heuristic uses the idea of mandatory
assignment to check redundancy. Since a complete ATPG
method is not used, our technique of computing don’t cares
may lose optimality. However, a better quality result can be
obtained if a more sophisticated implication approach for
example [10] is applied. In the subsequent context, we will
discuss cases where we lose optimality when applying our
heuristic. Note that the techniques of computing compatible
observability don’t cares which are the sub-sets of observabil-
ity don’t cares also lose optimality. The following theorem
describes the main concept of our technique.

Theorem: Consider an internal nodeni computing a func-
tion f(V): Br-> B, and a cubec0 ∈Br. A local_cube test for a
cubec0 is to check whether there exists a test vector that can
both satisfyV=c0 and propagate an (imaginary) fault fromni
to any primary output. If there is no test vector for alocal_-
cube test forc0, the cubec0 is a local don’t care for the node
ni.

Proof: omitted

The intuition behind this theorem is as follows. If a cube is a
local don’t care, this cube must be contained in the satisfiabil-
ity or observability don’t cares. The activation condition V=c0
checks whetherc0 is in the satisfiability don’t care set and the
condition of propagating the fault effect checks whetherc0 is
in the observability don’t care set.

For example, in Fig. 1, since there is no test vector that can
generate (a, b, g3) =(1,1,0), the cube a*b*g3 is a local don’t
care for g5. In addition, all the test vectors that generate (a, b)
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= (1, 0) cannot propagate the fault effect from the g5 to any
primary output so a*b is also a don’t care for g5.

Corollary:  Let ni be an internal node computing a function
f(V): Br-> B. If during the procedure of findinglocal_cubetest
for c0∈Br the mandatory assignments cannot be consistently
justified, the cubec0 is a local don’t care for nodeni.

For example, in Fig. 1, to perform(a, b, g3)=(1,1,0)
local_cube test, we have mandatory assignmentsa=1, b=1,
g3=0, g2=0(a side input to the dominatorg6), g1=1(a=1 and
b=1). Sinceg1=1, we haveg3=1 which conflicts with the
original assignmentg3=0. Therefore, we conclude that(a, b,
g3) =(1,1,0) is a local don’t care forg5. For another(a, b) = (1,
0) local_cube test, we have a conflicting mandatory
assignment ong2, becauseg2=0 from the side input to the
dominatorg6 andg2=1 from a=1andb=0. Therefore,(a, b) =
(1, 0) is a local don’t care forg5.

The above theorem and corollary show that we can identify
whether a cubec0 is a don’t care by doing a local_cube test. A
straighforward technique of calculating all local don’t cares
for f: Br-> B can be developed by applying the local_cube test
for all the minterms inBr. Therefore, for a given node, this
straightforward technique has complexity of O(2r * complexi-
ty(one cube_test)) wherer is the number of immediate inputs.
Note that any algorithm that computes local don’t cares for a
node withr immediate inputs has complexity of at leastO(2r).
It is because the representation of don’t cares itself may be
O(2r) in the worst case. In the following, we discuss an orga-
nized search for local don’t cares. Though in the worst case,
the algorithm is still O(2r), the efficiency can be improved a
lot.

2.3  The organized search and essential cubes

The basic idea of this organized search makes use of the fact
that when a cube is a don’t care, any minterm contained in it is
also a don’t care. Therefore, instead of checking whether the
individual mintermsx1x2,...xr-1xr and x1x2,...xr-1xr are don’t
cares, we check whetherx1x2,...xr-1 is a don’t care cube first. If
x1x2,...xr-1 is a don’t care then, we can conclude thatx1x2,...xr-
1xr andx1x2,...xr-1xr are both don’t cares and need not to be
tested. Our algorithm is shown in Fig. 3a. The algorithm
assigns an order to the input variables first. Then, it starts from
the first variable and performs a depth first search. Once a
cube is detected to be a don’t care, no further search in this
branch is necessary.

For example, in Fig. 1, we will find the local don’t cares for
g5. Assume the order ofg5’s inputs isa<b<g3<d. The search
tree is shown in Fig. 3b. When the don’t care for(a, b) =(1, 0)
is recognized, no further checking on this branch is necessary.
We also like to mention that all the information (mandatory
assignments) calculated at one level can be further used in the

next level. Therefore, we can perform an incremental updating
of the mandatory assignments from one level to the next level.

The algorithm described in Fig. 3a however, in the worst
case still has the complexity of O(2r* N), wherer is the number
of immediate inputs for the target node and N is the time for
eachlocal_cube test. Whenr is large, the algorithm may not
be feasible. In the following, we discuss the method that only
checks the essential cubes.

The idea of essential cube search is to identify those don’t
cares which are of interest for optimization. When minimizing
the literal count, one simple heuristic is to consider those
cubes that are one Hamming distance away from the on-set
cubes in the current expression. For example, in Fig. 1, the
node g5 computes a Boolean functiona*b*g1+g1*d. The one-
distance-away cubes froma*b*g1 are {a*b*g1, a*b*g1,
a*b*g1} and fromg1*d are {g1*d, g1*d}. Each time when a
one-distance-away cube is found, the literal count for the node
is reduced by one.

Suppose that an internal node has been decomposed into a
two-level network of AND and OR gates. Checking don’t
cares for one-distance-away cubes is equivalent to checking if
the wires (inputs to the two-level AND/OR circuit) are stuck-
at fault testable. For example, in Fig. 1, if the one-distance-
away cubea*b*g1 is a don’t care, then, the wirea->g4 (dotted
in the figure) is stuck-at-1 untestable. Therefore, these one-
distance-away cubes can be easily recognized by performing
redundancy check for the stuck-at faults at the corresponding
wires. Essential cubes are very useful in some cases. For
example, if there is an AND or an OR gate with large number
of fanins, the essential cube test is very efficient.

Find_local_dont_care(ni)
{dc =∅. Order = Assign_order( faninof (ni) );

check_dont_care(Order, 0, dc, 1);
}

check_dont_care(Order, current_var, dc, oldcube) {
newcube = oldcube�∩ newVar;newVar = Order[current_var];

if (cube_is_dont_care(newcube)) {dc = dc∪ newcube; return; }

newcube = oldcube�∩ newVar;
if (cube_is_dont_care(newcube)) { dc = dc∪ newcube; return; }

else

check_dont_care(Order, current_var+1, dc, newcube);else

check_dont_care(Order, current_var+1, dc, newcube);

(a) The search algorithm

(b)Graphical interpretation

return (dc)

Fig. 3 algorithm of
organized search and an
example
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2.4  Discussion on optimality

If a complete ATPG approach is used, we can check exactly
whether a cube is a local don’t care. Due to the exponential
nature of a complete ATPG for some cases, we adopt a com-
promising approach which is based on the idea of mandatory
assignments. In this compromising approach, only simple
implications are used during the local_cube test. When there
is a violation of mandatory assignments, we conclude that the
tested cube is a don’t care. In the following, we discuss an
example when the simple implication technique loses optimal-
ity.

In the Fig. 4,(g1, g2, g3) = (0, 1, 1) never appears in the
input ofg4 so (g1, g2, g3) = (0, 1, 1) is a local don’t care for g4.
However, with the simple implication approach, we cannot
detect that(g1, g2, g3) = (0, 1, 1) is a don’t care. During the
process, no further implications can be determined for the pri-
mary inputsa or b wheng1=0 alone. The same situation hap-
pens when g2=1 and g3=1. Therefore, in the simple
implication technique, we cannot conclude that (g1, g2, g3) =
(0, 1, 1) is a don’t care. According to our experiments, we feel
that when there are many XOR or XNOR gates in a circuit,
the simple implication technique may not perform well. As we
will show in our experimental results, for the ALU type cir-
cuits like alu2 and alu4, which contain many XOR, XNOR
gates, the simple implication technique does not work as well
as the CODC [13] technique. The results for these examples
can be improved if a more sophisticated implication approach
[10] is used. Here, we only briefly discuss how [10] works
using again the example in Fig. 4. After simple implication,
first, the primary input gatea is assumed to be 0. Froma=0
andg2=1, we have b=1. Sincea=0, b=1 andg3=1 are in con-
flict so we conclude thata must be 1. However, the implica-
tion which starts froma=1 still leads to a conflict. Therefore,
(g1, g2, g3) = (0, 1, 1)is a don’t care. This learning technique
[10] is more powerful than the simple implication technique
but requires more CPU time.

3   Experimental results

In this section, we present experimental results for combi-
national benchmark circuits. We have implemented the algo-
rithm shown in FIG. 5 on DEC 5000. In the algorithm, when
the number of direct inputs for an internal node is greater than
11, we check only the essential cubes.
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Fig. 4 An example when simple implications lose
optimality

We have compared the result of our algorithm with the
result in [13] which calculates CODC in BDD form and
applies image computation to find the local don’t cares. Note
that the don’t cares obtained by both algorithms are not exact.
Using the don’t cares obtained by both methods, we can sim-
plify the literal count for nodes in a circuit.

We have performed experiments to justify the usefulness of
our approach. In the experiment, we runscript.rugged [13]
listed in Fig. 6a and our script,script.local_cube listed in Fig.
6b on the same MCNC benchmarks. The results ofscrip-
t.rugged and local_cube are shown respectively in the third
and forth column of the TABLE 1. Several MCNC circuits
C2670, C3540, C5315, C6288, and C7552 cannot be finished
by the script.rugged (full_simplify) procedure due to the
excessive memory requirements. For such unfinished exam-
ples, we have listed the literal count of the original circuit.
The results on all the benchmarks suggest that our technique
is very memory and time efficient. For example, one large cir-
cuit C7552 requires less than 4Mbyte of memory and takes
less than 5 minutes to complete. Another circuit C5315 needs
only 3 Mbyte of memory and takes less than 3 minutes. Note
that the total cpu time is not listed because some circuits were
aborted during computation. In TABLE 1., we also list the
results of [15] in the second column. However, we would like
to mention that the comparison between max_proj [15] and
the other two is not quite fair. The reason is that the initial cir-
cuits for the max_proj [15] are different from the initial cir-
cuits for full_simplify and local_cube.

4   Conclusion

In this paper, we propose a memory and timing efficient
algorithm to compute local don’t cares of internal nodes. Our
algorithm is based on implication which allows us to quickly
identify whether a cube in the local space is a don’t cares or
not. Instead of checking whether all the minterms in the local

For each node ni in a circuit {
update_dominators();
dc = find_local_dont_care(ni);
simplify_node(function(ni), dc); }

FIG. 5 The local don’t care computation

sweep; eliminate -1
simplify -m nocomp
eliminate -1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx
resub -a; sweep

eliminate -1; sweep

sweep; eliminate -1
simplify -m nocomp
eliminate -1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx
resub -a; sweep

eliminate -1; sweep
full_simplify local_cube_simplify

(a) scirpt.rugged (b) script.local_cube
Fig. 6 SIS script.rugged and our algorithm
imbedded in it.



space are don’t cares or not, we develop a structured search
technique that can efficiently trim down the searching space.
Our experimental results have demonstrated the usefulness of
our approach.

TABLE 1. results from script.rugged and
script.local_cube in Fig. 5.
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