
Multi-Level Logic Minimization based on Multi-Signal Implications

Masayuki Yuguchi Yuichi Nakamura Kazutoshi Wakabayashi Tomoyuki Fujita

C&C Research Laboratories, NEC Corporation

Miyazaki, Miyamae-ku, Kawasaki 216, Japan

Abstract| This paper presents a novel method for
logic minimization in large-scale multi-level networks.
It accomplishes its great reductions on the basis of
multi-signal implications and the relationships among
these implications. Both are handled on a transitive
implication graph, proposed in this paper, which real-
izes high-speed, high-quality minimization. This pro-
posed method holds great promise for the achieve-
ment of an interactive logic design environment for
large-scale networks.

I. Introduction

With recent rapid progress in VLSI computer design
technology, highly e�cient algorithms for logic minimiza-
tion in large-scale multi-level networks have become in-
creasingly important. While the potential for using a net-
work's internal don't care set to transform intermediate
logic functions in such a way as to reduce network size
has long been apparent, use of all of the elements of a set
has proven too expensive, and minimization techniques
employing subsets have been di�cult to perfect [1, 2].
The Transduction method [3] is one example of a sub-

set approach. Permissible functions (intimately related to
observability don't care (ODC) sets) enable network-size
reductions. (RENO [4] is an example of a good appli-
cation of Transduction) In large-scale networks, however,
permissible functions are too complex for practical han-
dling.
Another example of an internal don't care subset

approach is the Global Flow method [5, 6]. Global
Flow collects underlying implications among signals
in a network and, with these implications, iterates
a connection/redundancy-removal transformation. The
collected implications are, in fact, satis�ability don't care
(SDC) subsets. While Global Flow can be used in the
minimization of large-scale networks, its minimization ca-
pacity is insu�cient: each transformation uses only the
implications from a single signal. That is to say, only very
limited elements of the internal don't care subset are used
at any one time for transforming intermediate logic func-
tions, which makes it di�cult to achieve dramatic size
reductions.

In this paper, we propose a method for high-speed,
high-quality minimization in large-scale networks, which
applies an entirely new approach to the use of implica-
tions: it uses the implications from multiple signals for
each transformation, and, most particularly, it makes use
of the relationships among those implications. (We refer
here to implications from multiple signals as multi-signal
implications) The fact that individual transformations are
performed on the basis of multi-signal implications and
that these transformations take into consideration the re-
lationships among those implications gives our method
the capacity to reduce the size of large-scale networks
drastically.
In the sections which follow, we �rst present a concept

of the transitive implication graph, which plays a key role
to our method. This kind of graph e�ciently represents
implications underlying a given network and facilitates
the use of the relationships among these implications.
Moreover, this graph can be generated for large-scale net-
works. Second, we introduce a new minimization method
based on those relationships as they are represented in
the transitive implication graph. Our method iterates
a subnetwork-addition/redundancy-removal transforma-
tion. A subnetwork can be generated with multi-signal
implications and can then be added to the original net-
work, which will then contain a removable redundancy
signi�cantly larger than the added subnetwork. When
this redundancy has been removed, total network size will
be signi�cantly reduced. Use of information (contained
in the transitive implication graph) regarding the rela-
tionships among implications allows for simple reduction
in the size of the subnetwork that will produce a given
size redundancy. This characteristic is especially impor-
tant to the high-quality minimization achieved with our
method. Further, since with this method it is necessary
only to determine the relationships among implications
within individual subsets (i.e. subgraphs of the transitive
implication graph), as opposed to having to determine all
the relationships among all the implications, minimiza-
tion can be accomplished at signi�cantly increased speed.

II. Preliminaries

This paper represents networks in Boolean form [1].
A Boolean network is a directed acyclic graph, consisting
of nodes and arcs. Each node i is either an (primary)
input node (i = 1; 2; � � � ; p) or an intermediate node (i =
p + 1; p + 2; � � � ; p + q (= n)). Each input node i (i =
1; 2; � � � ; p) is assigned with an input variable yi. Each
intermediate node i (i = p + 1; p + 2; � � � ; p + q (= n)) is
assigned an intermediate variable yi and an intermediate
logic function Fi. Some intermediate nodes are designated
as the primary output nodes of a network. An arc from

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

41

2

3
5

6

7

y

y

y

y y

y

y

1

2

3

4

5

6

7

F = y y4 1 2

F = y y5 2 3

F = y y6 4 5

F = y + y
7 4 5

4
1

2

3 5

6

7

4

5
7

0

0

1

0

1

0

1

0

0

1

(a) Example Boolean network (b) Corresponding transitive implication graph

Figure 1: Transitive implication graph

node i to node j means that node j uses variable yi in
Fj. If there is an arc from node i to node j, node i is a
fan-in of node j, and conversely, node j is a fan-out of
node i. If there is a path from node i to node k, node
i is a transitive fan-in of node k, and conversely, node k

is a transitive fan-out of node i. In this paper, the terms
variable and signal are used interchangeably, and each arc
in a Boolean network is also called a connection.
A simple example of a Boolean network is shown in

Fig.1(a). In this Boolean network, the input nodes are
f1;2; 3g and the intermediate nodes are f4; 5; 6; 7g. We
assume that nodes f6; 7g are designated as the primary
output nodes of the network. The fan-ins of node 4 are
f1;2g and the fan-outs of node 4 are f6; 7g. The transitive
fan-outs of node 1 are f4; 6; 7g and the transitive fan-ins
of node 6 are f1;2; 3; 4; 5g.
In a Boolean network, an implication indicates that if

yi = a, then yj = b (a; b 2 f0; 1g), which is denoted by
yi = a) yj = b (a; b 2 f0; 1g).

III. Transitive Implication Graph

In this section, we present an e�cient new represen-
tation of implications, the transitive implication graph,
which can e�ciently represent both implications and their
relationships.
Before de�ning the structure of this graph, let us �rst

de�ne a transitive implication.

De�nition 1 If an implication yi = a) yj = b (a; b 2
f0; 1g) satis�es the following conditions, it is called
a transitive implication:

1) A node j is a transitive fan-out of node i.
2) Either no transitive fan-in of node i has an impli-

cation to yi = a or at least one fan-out of node
i does not have an implication from yi = a.

3) For every node k on the paths from node i to
node j, except for nodes i and j themselves,
all fan-outs of node k have implications from
yi = a.

4) At least one fan-out of node j has no implication
from yi = a.

This transitive implication is denoted by yi = a
�

) yj = b.
With this transitive implication, a transitive implica-

tion graph is de�ned as follows.

De�nition 2 A transitive implication graph is a di-
rected acyclic graph which consists of vertices and
edges:

vertex: A vertex ia represents yi = a (a 2 f0; 1g).

edge: An edge represents a transitive implication.
For example, the edge from vertex ia to vertex

jb represents yi = a
�

) yj = b (a; b 2 f0; 1g).

The edge from vertex ia to vertex jb (a; b 2 f0; 1g) is
denoted by (ia; jb). If there is an edge (ia; jb), vertex jb

is called a head vertex of this edge and vertex ia, and
conversely, vertex ia is called a tail vertex of this edge
and vertex jb. The set of all head vertices of vertex ia is
called a head set of vertex ia.
Fig.1(b) shows the transitive implication graph which

corresponds to the network in Fig.1(a). Vertex 20 in-
dicates y2 = 0. If y2 = 0, then y4 = 0 and y5 = 0,
and moreover, y6 = 0 and y7 = 0. These transitive im-
plications are represented by the edges (20; 60), (20; 70),
respectively, in this graph.
A transitive implication graph can be generated by

searching through the paths from each node to transi-
tive fan-outs of this node. This searching process re-
quires O(n3) time complexity (n is the number of nodes
in a network) in the worst case which is equivalent to the
one in which a transitive closure of the network is found.
However, this worst case hardly ever occurs, because only
transitive implications are searched for. This search will
be fast in most cases. Similarly, a graph can be generated
for a large-scale network since the size of a transitive im-
plication graph is in practice much smaller than that of a
transitive closure of the network.
Our method uses the relationships among edges, each

of which represents an implication, in a transitive impli-
cation graph. Speci�cally, our method handles an inter-
section of the head sets of multiple vertices. Such in-
tersections of large size are very useful for our method.
A transitive implication graph is de�ned with transitive
implications so as to increase the number of edges from
or to each vertex and, as a result, to generate large-size
intersections.
There are some cases where, if one edge is used in a

minimization approach, another edge represents a wrong
implication. Therefore, we make a transitive implication
graph in the following way: a transitive implication graph
will ever include only one or the other of them, so that
such a case never occurs.

IV. Conventional Approach

To help understand the method we will introduce
in Section V, we �rst show a conventional approach to
network-size reduction, one which is similar to Global
Flow and which uses only for the information a transi-
tive implication graph contains about implications, not
for the other information it contains about the relation-
ships among those implications.
First, let us consider the following theorem about signal

connection.

Theorem 1 In a transitive implication graph, if
there is an edge (ia; jb) (a; b 2 f0; 1g), then Fj can
be replaced by

8>><
>>:

yiFj (if a = 0 and b = 0)
yi + Fj (if a = 0 and b = 1)
yiFj (if a = 1 and b = 0)
yi + Fj (if a = 1 and b = 1)

Thus, node i becomes a fan-in of node j.
Proof: Similar to that of Theorem 3 in [6].

This connection (i; j) is called a signal connection. It
is important to note that such signal connections may

F = y (y + y)

F = y y y

41

2

3
5

6

7

(a) (b)

1

2

3

6

7

6 1 2 3

7 2 1 3

Redundant Connections

Signal Connections

Figure 2: Example conventional approach

make some other connections redundant, and redundant
connections can be detected with the following theorem.

Theorem 2 Suppose that there are edges
(ia; j

0
b0
); (ia; j

1
b1
); � � � ; (ia; j

r
br
) (a; b0; b1; � � � ; br 2

f0; 1g; r � 0) in a transitive implication graph, and
that the signal connections for these edges have been
made in accord with Theorem 1. A connection from
node i to node j becomes redundant if every path
from node j to the primary outputs that are reach-
able from node j includes at least one node from
fj0; j1; � � � ; jrg. In such a case, then, Fj can be re-
placed by Fjyi (if a = 0), or Fjyi (if a = 1). (Fjyi is
a cofactor of Fj with respect to yi).

Proof: Similar to that of Theorem 4 in [6].

Fig.2(a) illustrates an application of a signal connection
and redundancy removal transformation to the network
originally introduced in Fig.1(a). Signal connections for
the edges shown in Fig.1(b), (20; 60) and (20; 70), have
been made in accord with Theorem 1. The connections
from node 2 to node 4 and to node 5 become redundant,
then, in accord with Theorem 2. For example, the stuck-
at-1 fault on the connection from node 2 to node 4 can
not be propagated to any primary outputs because the
values of node 6 and node 7 are both 0. Thus, F4 =
y2F4y2 + y2F4y2 = 1 � F4y2 + 1 � F4y2 = F4y2 = y1. The
resulting network is shown in Fig.2(b). (This network is
represented without any bu�er or inverter.)
In our experience, however, a conventional approach

based on signal connection and redundancy removal has
very limited capacity to reduce network size. For exam-
ple, let us consider Fig.3(a), which shows a part of a net-
work. Each node has an AND logic function, and the net-
work has 30 literals. Signal connection and redundancy
removal for individual nodes can not reduce network size.
Six signal connections (from node 1 to nodes 14 � 19)
are made for node 1, and two connections (from node 1

2

3

4

5

6

7

8

9

10

11

12

14

15

16

17

18

19

20

21

1

2

3

4

5

6

7

8

9

10

11

12

14

15

16

17

18

19

20

21

1

2

3

4

5

14

15

16

17

18

19

20

21

22

23

24

25

26

(a) Example Boolean Network (b) Conventional approach (c) New approach

1

Figure 3: Conventional approach and new approach

to nodes 6 and 8) will be removed. The resulting net-
work, shown in Fig.3(b), has 34 literals, greater than the
number in the original network.

V. Logic Minimization based on Multi-Signal

Implications

We propose a new minimization method which can re-
duce network size drastically. It accomplishes its great
reduction in network size on the basis of multi-signal
implications, and, most particularly, on information re-
garding the relationships among those implications, and
it achieves network-size reductions through the use of a
transitive implication graph.
Let us �rst consider again here the example, shown

in Fig.3(a). Our new approach performs a subnetwork-
addition and redundancy removal with all implications
from fy1 = 0; y2 = 0; y3 = 0; y4 = 0; y5 = 0g. This
subnetwork includes not only signal connections but also
new nodes, like nodes 22 � 26. The resulting network,
shown in Fig.3(c), has 26 literals, smaller than the number
of the original network.
Our proposed algorithm is shown in Fig.4. This algo-

rithm iterates subnetwork-addition/redundancy-removal
transformation. In Step 2, a subgraph is extracted from
the transitive implication graph. This subgraph consists
of the edges from multiple vertices and their tail and head
vertices. These edges correspond to multi-signal implica-
tions. In Step 5, the subnetwork to be added is generated
with this subgraph. If the subgraph has been previously
transformed in Step 4, the subnetwork of smaller size
can then be generated. It is important to note that this
subgraph transformation utilizes the relationships among
edges and allows for simple reduction in the size of the
subnetwork which will produce a given redundancy size.
In Step 6, this algorithm detects any redundancy which
would be created in the original network if the subnetwork
were to be added to the network. Such redundancy can
be easily detected with a transitive implication graph. In
Step 7, the algorithm examines whether the entire net-
work size would be reduced by adding the subnetwork
and removing the redundancy. In Step 9, this subnet-
work is actually added into the network at this time and,
in Step 10, the redundancy detected in Step 6 is removed.
With subnetwork size reduction, redundancy removal can
drastically reduce network size.

Logic Minimization Algorithm

1 Generate a transitive implication graph
2 Extract a subgraph from it
3 if (no more subgraph) end
4 Transform the subgraph
5 Generate a subnetwork with the transformed subgraph
6 Detect the redundancy created in the original network

if the subnetwork were to be added to it
7 Determine whether network size would be reduced or not
8 if (the network size is not reduced) f

Restore the subgraph
Free the subnetwork and go to 2

g
9 Add the subnetwork to the network
10 Remove the redundancy and go to 2

Figure 4: Logic minimization algorithm

1

2

3

4

5

10
11

12

13

14

15

1

0

0

0

1

1

1

1

0

0

0

1

2

3

4

5

10
11

12

13

14

15

6

7

8
9

y

y

y

y

y

y

y

y

y

y

y

y

y

1

2

3

4

5

6

10 11

12

13

149

15

F = y y

F = y + y

F = y y

F = y + y

F = y y

F = y y

F = y + y

F = y + y

6 1 2

7 2 3

8 3 4

9 5 8

11 3 6

12 2 8

13 2 8

14 7 9
(a) Example extracted subgraph (b) Correspoding subnetwork

y7

8y

Figure 5: Subgraph extraction

In the following sections, we consider in great detail
the processes of subgraph extraction, subgraph transfor-
mation, subnetwork addition, and redundancy removal.

A. Subgraph Extraction

For the subgraph transformation mentioned in Section
V-B, it is desirable that each extracted subgraph con-
tains an intersection of the head sets of multiple vertices.
Our method extracts a subgraph for each vertex ia in the
transitive implication graph. For ia, our method �nds all
vertices whose head set has an intersection with the head
set of ia (ia itself is also included in these vertices) and
extracts a subgraph which consists of these vertices, their
head vertices, and the edges among them.
An example extracted subgraph is shown in Fig.5(a).

It has been extracted for vertex 20. The vertices whose
head sets have an intersection with the head set of vertex
20 are f11; 20; 30; 40; 51g. Fig.5(b) shows the part of the
network which relates to the extracted subgraph. (The
full network also has the other nodes, such as the transi-
tive fan-ins of nodes f1; 2; 3; 4; 5; 10; 15g and the transitive
fan-outs of nodes f10; 11; 12;13; 14; 15g.)

B. Subgraph Transformation

Let us �rst describe a case in which the subgraph is
not transformed. If a subgraph were simply extracted
(not transformed), a corresponding subnetwork consist-
ing of only signal connections alone, can be added to the
network in accord with Theorem 1. The redundancy cre-
ated by adding this subnetwork can be detected in accord
with Theorem 2. This process would be no more success-
ful than the conventional approach described in Section
IV. In our method, however, we �rst reduce the number
of edges in the graph. This, as may be seen from Theorem
1, reduces the number of connections in the subnetwork
to be added, which results in a reduction in the number

Subgraph Transformation Algorithm

1 Find a set of vertices whose head sets have the largest size
intersection. The vertices set is called an SRC set and the
corresponding intersection is called an FRC set.
If the FRC set has only one vertex, exit

2 Generate a new vertex mc (c 2 f0; 1g)
3 Remove all edges in f(ia; jb)jia 2 SRC; jb 2 FRCg from
the subgraph

4 Generate edges (ia;mc) for all ia 2 SRC

5 Generate edges (mc; jb) for all jb 2 FRC and go to 1

Figure 6: Subgraph transformation algorithm

1

2

3

4

5

10
11

12

13

14

15

1

0

0

0

1

1

1

1

0

0

0

1

2

3

4

5

10
11

12

13

14

15

1

0

0

0

1

1

1

1

0

0

0016

1

2

3

4

5

10
11

12

13

14

15

1

0

0

0

1

1

1

1

0

0

0016

017

(a) (b) (c)

Figure 7: Subgraph transformation

of literals. Our heuristic subgraph transformation algo-
rithm based on a search for the largest intersections, is
shown in Fig.6.
Fig.7 shows how the transformation is applied to the

subgraph in Fig.5(a). In Fig.7(a), the largest FRC set
is f110; 120; 131;141g and the corresponding SRC set is
f20; 30g. A new vertex 160 is made, and the edges among
the SRC set and the FRC set are re-made as described
in the algorithm. In Fig.7(b), the largest FRC set is then
f120; 131; 141g and the SRC set is f40; 160g. From this,
the subgraph may be transformed to that of Fig.7(c).
This subgraph transformation requires O(v4) time

complexity in the worst case. (v is the number of vertices
in the full transitive implication graph) This is because,
for each vertex, the entire subgraph may be searched for
the largest size intersection. This search requires O(v3)
time complexity. With subgraph transformation requir-
ing a time complexity O(v4), the algorithm in Fig.4 re-
quires O(v5) time complexity in the worst case. However,
for a large-scale network, extracted subgraphs are hardly
ever equivalent to the whole graph, and actual perfor-
mance is much faster than the worst-case scenario in most
instances.

C. Subnetwork Addition

Subnetworks consist of connections and nodes. Each
connection corresponds to an edge in the subgraph, and
each node corresponds to a new vertex generated in the
subgraph transformation.
This subnetwork can be added to the original network.

Let us consider a new vertex mc (c 2 f0; 1g), its tail
vertices i0a0 ; i

1
a1 ; � � � ; i

r
ar (a0; a1; � � � ; ar 2 f0; 1g; r � 0),

and its head vertices j
0
b0
; j

1
b1
; � � � ; j

s
bs

(b0; b1; � � � ; bs 2
f0; 1g; s � 0). With regard to the edges to vertex mc, we
can make a new node m (Fm = 1 (if c = 0) or Fm = 0 (if
c = 1)), and the signal connections for the edges to vertex
mc can be made in accord with Theorem 1. With regard
to the edge from vertex mc to vertex j

t
bt

(0 � t � s),

let us consider the values of Fjt and Fjt
0(= ymFjt) in the

case c = 0 and bt = 0. If ym = 0, then Fjt
0 = 0, and at

least one yik (0 � k � r) of yi0 ; yi1 ; � � � ; yir is yik = ak.
Since there ought to be the edge from i

k
ak to j

t
0 before

transforming the subgraph with vertex m0, there is the
implication yik = ak) yjt = 0. Thus, Fjt = 0. On

the other hand, If ym = 1, then Fjt
0 = 1 � Fjt = Fjt.

Consequently, Fjt can be replaced by Fjt
0(= ymFjt), and

the connection from node m to node j
t can be made.

Fig.8(a) illustrates the addition of a subnetwork gen-
erated from the transformed subgraph of Fig.7(c). The

2

12 2 8

1

2

3

5

10
11

12

13

15

6

7

8

9

16

17

4
14

1

2

3

5

10
11

12

13

15

16

4

14

17

F = y y y y
161

F = y y y
1711 3 6

F = y + y + y
13 2 8 17

F = y + y + y + y
14 5 7 9 17

F = y y
16 2 3

F = y y
17 4 16

F = y y F = y F = y

F = y + y F = y y F = y y

11 1 12 17 13 17

14 5 17 16 3 17 4 16
(a) (b)

16

Figure 8: Subnetwork addition and redundancy removal

added subnetwork consists of these connections and the
nodes which are shaded. The connections are signal con-
nections for the edges of the transformed subgraph, and
the nodes correspond to new vertices generated in the
subgraph transformation.

D. Redundancy Removal for Subnetwork Addition

Redundancy is created in the original network when
the subnetwork generated in Section V-C is added to the
network. It is important to note that, whether the ex-
tracted subgraph has been transformed or not, the same
redundancy can be created.
Let us consider the edges from ver-

tex ia, (ia; j
0
b0
); (ia; j

1
b1
); � � � ; (ia; j

r
br
), in the subgraph

which is not transformed (a; b0; b1; � � � ; br 2 f0; 1g; r �

0). When the subgraph is transformed, each implication
yi = a) yjs = bs (0 � s � r) is preserved. This is
why such an implication can be represented by the edges
(ia; k

0
c0); (k

0
c0 ; k

1
c1); (k

1
c1 ; k

2
c2); � � � ; (k

t
ct ; j

s
bs
) for the

new vertices k
0
c0 ; k

1
c1 ; k

2
c2 ; � � � ; k

t
ct (c0; c1; � � � ; ct 2

f0;1g; t � 0). Thus, the stuck-at-1 faults on the con-
nections from node i, which are redundant when the sub-
graph is not transformed, are also redundant when the
subgraph is transformed. This is because these faults can
not be propagated to any primary outputs in both cases.
In Fig.8(a), when the subnetwork is added to the net-

work, the redundant connections marked \�" can be de-
tected and removed. The resulting network is shown in
Fig.8(b).

VI. Experimental Results

We implemented our method on a SPARC Station 2
(28.5MIPS). All cpu times (seconds) were measured on
this workstation.

Table 1: Experimental results

Circ. Init. Signal connection Proposed method Pro./Sig. Iteration
literal literal ratio time literal ratio time ratio time literal time

C3540 2221 2142 3.60% 70.9s 1822 18.0% 66.0s 5.00 0.93 1810 191.2s
C5315 3528 3486 1.19% 43.9s 2847 19.3% 44.1s 16.2 1.00 2769 132.3s
C6288 4705 4225 10.2% 62.6s 3790 19.4% 58.7s 1.90 0.94 3762 267.4s

C7552 4740 4626 2.41% 154.2s 3789 20.1% 66.8s 8.34 0.43 3657 210.8s
s13207 5791 4991 13.8% 148.0s 4420 23.7% 125.8s 1.72 0.85 4137 353.0s
s15850 7299 6617 9.34% 245.1s 5954 18.4% 124.1s 1.97 0.51 5783 332.3s

s38417 18698 17625 5.74% 308.4s 16351 12.6% 258.4s 2.20 0.84 16232 792.0s
s38584 24348 22005 9.62% 1817.6s 20485 15.9% 791.3s 1.65 0.44 20144 1900.0s
clma 39927 38625 3.26% 212.5s 37999 4.83% 190.9s 1.48 0.90 37643 612.8s

Experimental results are shown in Table 1, including
the resulting reductions in the number of literals (in fac-
tored form) for ISCAS '85,'89 benchmark large networks,
from which bu�ers and inverters had been removed. We
compared our proposed method (the column \Proposed
method") with signal connection and redundancy removal
(the column \Signal connection") which is closely similar
to Global Flow. The column \ratio" shows the ratio of
the network-size reduction. We can see that our proposed
method produces about 1.5 � 16 times larger reductions
than signal connection and redundancy removal at much
higher speed in most cases.
The simple iteration of our proposed method can give

more reductions. The column \Iteration" shows the re-
sulting reductions of three-time iteration.

VII. Conclusions

In this paper, we have presented the transitive im-
plication graph as an e�cient form for representing im-
plications and the relationships among them, one which
can be generated for large-scale networks. We have also
proposed a new minimization method which makes use
of multi-signal implications and the relationships among
these implications in the graph to iterate subnetwork-
addition and redundancy-removal transformation.
Our method achieved experimentally 1.5 � 16 times

larger reductions than the signal connection and redun-
dancy removal approach for the large benchmark net-
works at much higher speed in most cases, and appears
to hold great promise for the achievement of an interac-
tive logic design environment for large-scale circuits which
contain more than tens of thousands nodes.

References

[1] K.A.Bartlett, R.K.Brayton, G.D.Hachtel, R.M.Jacoby, C.R. Mor-
rison, R.L.Rudell, A.Sangiovanni-Vincentelli, and A.R.Wang,
\Multi-Level Logic Minimization Using Implicit Don't Cares",
IEEE Trans. on CAD, Vol.7, No.6, pp.723-740, 1988.

[2] R.K.Brayton, R.L.Rudell, A.Sangiovanni-Vincentelli, \MIS: A
Multiple-Level Logic Optimization", IEEE Trans. on CAD, Vol.6,
No.6, pp.1062-1081, 1987.

[3] S.Muroga, Y.Kambayashi, H.C.Lai, J.N.Culliney, "The Transduc-
tion Method -Design of Logic Networks based on Permissible Func-
tions", IEEE Trans. on Comput., Vol.38, No.10, pp.1404-1424,
1989.

[4] K.C.Chen, M.Fujita, \E�cient Sum-To-One Subsets Algorithm for
Logic Optimization", IEEE DAC, pp.443-448, 1992.

[5] C.L.Berman, L.H.Trevillyan, \Global Flow Optimization in Au-
tomatic Logic Synthesis", IEEE Trans. on CAD, Vol.1, No.5.
pp.557-564. 1991.

[6] R.K.Brayton, E.M.Sentovich, F.Somenzi, \Don't Cares and Global
Flow Analysis of Boolean Networks", IEEE ICCAD, pp.98-101,
1988.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

