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Abstract|
This paper presents a new logic partitioning method

for optimizing large scale circuits. The proposed
method partitions a given circuit into transitive fanin-
disjoint sub-circuits by matrix operations, so that var-
ious optimization methods can be applied to each par-
titioned sub-circuit instead of the whole circuit. Ex-
perimental results show that the proposed method
achieves high-quality design comparable to the one
optimized for the whole circuits, with much shorter
time(1/20). Thus, the circuits with over 10,000 gates
can be optimized by the proposed partitioning.

I. Introduction

Over the past decade, many techniques have been pro-
posed for technology independent area optimization for
combinational circuits. Now a day, the size of the circuits
to be optimized is growing rapidly, and logic synthesis
system is requested to optimize given circuit to meet area
and delay constraints speci�ed by users. Since logic opti-
mization techniques use complicated operations based on
Boolean algebra, they require huge amount of memory
space and computation time for large circuits. Therefore
conventional algorithms can optimize only limited size of
the circuits.
For example, transduction method [1] can not optimize

C6288 and C7552 in the MCNC benchmark set, because
of the complicated structure in case of C6288 and large
circuit size in case of C7552. On the other hand, the cir-
cuit attening and 2-level minimization[2] method cannot
process circuits with over about 16 fanins. It takes much
time to decompose more than 10,000 literals circuit. Al-
though such methods analyze the whole circuit to obtain
circuit information, they deal with only very limited por-
tions of the circuits in the optimization process.
There is the following property:

Property 1 If two circuits have no common transi-
tive fanin(TFIN), there are no possibility for inter-
circuits optimizations.

Thus, if the circuits are partitioned into sub-circuits
which have no common transitive fanin, and each of them
is optimized independently, the obtained results are ex-
pected to have almost the same quality as the ones ob-
tained by whole circuit optimization.
First, this paper proposes a new partitioning method

for circuit optimization based on the above property. The
proposed partitioning technique �nds and extracts sub-
circuits which have disjoint transitive fanins each other,
by using Boolean matrix based operations. After parti-
tioning, the following optimization techniques are applied
to the partitioned sub-circuits;

1. decomposition,
2. attening, 2-level minimization, and decomposition,
3. transduction method after 2.

Next, the results of the computational experiments are
shown, which are very encouraging.
In this paper, logic circuits are expressed by the

Boolean Network[3] where each node represents a logic
expression, and each edge represents fanin, fanout or logic
connection.

II. Conventional Approaches

When a given circuit is too large, it is natural to parti-
tion the circuit into sub-circuits having suitable size to be
optimized. Several partitioning techniques based on the
re-convergent structure have been proposed[4][5](Figure
1).
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Figure 1: Re-convergency based partitioning

The re-convergent structure is de�ned as a sub-circuit
which includes more than two paths starting from a node
with multiple fanouts and converging at another nodes. It
is highly expected that circuits with such structure have
redundancies because the structure has usually many du-
plicate signals.
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In these conventional methods, �rst, the circuits with
the re-convergent structure are extracted from a given
circuit. Next, the extracted sub-circuits are optimized
by attening based method. Then, the attening process
reduces redundancy in the re-convergent structure. After
the process, a 2-level optimization algorithm is applied
and decomposed for re-synthesis.
Since these methods are based only on re-convergent

structure, there are following two disadvantages. One is
that the method can not extract sub-circuits which have
redundancies in the sub-circuits whose types are not re-
convergent structures. For example a half re-convergent
structure which has multiple fanout nodes but does not
have the nodes at which the signal from the multiple
fanouts converge. The other is that, the partitioned sub-
circuits sometimes become too large and they cannot be
optimized because of large computational time. In or-
der to avoid these two disadvantages, we propose a new
method which partitions the given circuits quickly by us-
ing common TFIN informations under limitation of the
number of fanins in partitioned sub-circuits.

III. Partitioning with Boolean Matrix

De�nition

Boolean network(BN) is de�ned as (PI[PO[INT;E),
where PI, PO and INT are the set of primary inputs,
the set of primary outputs and the set of internal nodes,
respectively. Each node in INT represents the sum of
products of Boolean equations. E � f(a; b)ja; b 2 PI [
PO [ INTg is the set of directed edges which presents
fanin and fanout information. An edge (a; b) 2 E means
that a is fanin of b.
Node Literal Cube Incidence(NLCI) Matrix[6] is known

as a common cube extraction technique on a network.
NLCI matrix is a 0-1 Boolean matrix with rows R and
columns C, where each row and each column corresponds
to a cube and a literal, respectively. Element at (i; j) is
\1" if and only if a cube c corresponding to row, i 2 R,
has a literal x corresponding to column j 2 C. Rectangle

of NLCI matrix is de�ned as a subset of rows, R, where
jRj � 2 and a subset of columns, C, where jCj � 2, such
that (i; j) = 1 for all i 2 R, j 2 C. The rectangle in
NLCI matrix presents common cube in networks.
The proposed method partitions the circuit using four

matrices which are de�ned by extending the NLCI matrix.

NVI matrix Node Value Incidence (NVI) matrix is de-
�ned as a 0-1 Boolean matrix with rows R and
columns C. Each row corresponds to a node x 2
INT [ PO, and each column corresponds to a node
a 2 PI [ INT . The element at (i; j) = 1, if and only
if a node x corresponding to a row i 2 R has a fanin
node a corresponding to a column j 2 C (Figure 2).

TNVI matrix Transitive Node Value Incidence (TNVI)
matrix is de�ned as a 0-1 Boolean matrix, where sim-
ilar to NLCI matrix, each row corresponds to a node
and each column corresponds to a element of TFIN.
The element at (i; j) = 1, if and only if, a node z
corresponding to row i 2 R, has a TFIN , c, corre-
sponding to column j 2 C (Figure 4).

p-TNVI matrix p-TNVI matrix is a TNVI matrix such
that TFIN level which is the number of nodes along
the path from each node to TFIN, does not exceed

i. 2-TNVI matrix presents the fanin nodes, and the
fanin nodes of fanins for a node.

p-qfanin-TNVI matrix p-qfanin-TNVI matrix is a p-
TNVI matrix such that each column size, the number
of TFIN of each node, does not exceed q.
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Figure 2: NVI matrix

Making Up Matrix

The NVI matrix can easily be built up by assigning
each INT and PO node to each row, and each fanin of
the PI and INT node to each column, and setting element
(i; j) as 1 if the node corresponding to row, Ri, has a
fanin corresponding to column, Cj . On the other hand, p-
qfanin-TNVI matrix can be built up by tracing the fanin
of nodes in matrix, as shown in the following. For the
ease of explanation, the algorithm is presented for the
case where p = 2 and q = 16 (Figure 3).

Making_up_2-16fanin-TNVI_Matrix
{

construct NVI_matrix;
alloc(2-16fanin-TNVImatrix);
i = 0;
set R(i) = i-th row in NVI matrix;
foreach_row(R(i++)) {

set X = node corresponding to R(i);
/* Row R(i) corresponds to INT node X */
k = 0;
set C(j) = j-th column;
/* Row R(i) corresponds to

INT node or primary input Y */
set EL(i, j) = j-th column element of R(i);

foreach_element(EL(i, j)) {
set Y = node corresponding to C(j);
if ( Y != primary input ) {

Row(k++) = row corresponding to Y;
}

}
foreach(Row(k)){

Row(k) = row_or(Row(k), Row(k-1)); /* (a) */
}
TMP_ROW = row_or(R(i), Row(k));
if(size(TMP_ROW <= 16 ){ /* (b) */

insert TMP_ROW to 2-16fanin-TNVI;
}else{

insert R(i) to 2-16fanin-TNVI;
}

}
}
}

Figure 3: Algorithm for building up 2-16fanin
TNVI matrix



The TFIN of node x which corresponds to row Row(i),
can be calculated by applying logic-or operations (Figure
4) for the Row(i) and the rows which is corresponding to
the fanin nodes of node x (see line (a) in Figure 3).
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Figure 4: 2-fanin-NVI matrix

In order to �nd the fanin nodes of x, the following op-
erations are applied; 1) search for the elements of Row(i)
and 2) �nd the nodes corresponding to the column of the
elements.
Moreover, it is possible to give a limit of the number of

fanins (see line (b) in Figure 3). Although, the algorithm
is explained in Figure 3 where p = 2 and q = 16, it is easy
to verify that p+1-TNVI can be constructed from p-TNVI
by recursively applying the algorithm.
The p-TNVI matrix has the following property.

Property 2
A common TFIN between node x and y within p-level
exists, if and only if, the result of logic-and operation
for Rx and Ry is not empty, that is,

row and(Rx; Ry) 6= �

at rows corresponding to nodes x and y in p-TNVI
matrix.

The computational complexity to make up a NVI ma-
trix is O(N), where N is the number of INT and PO
nodes, since each row in NVI matrix is constructed by
scanning fanins of one INT and PO node. In order to
build p-TNVI matrix, it is required to construct matrix p
times. Thus, the complexity is O(pN). In actual problem,
however, the complexity for making up p-TNVI is equiv-
alent to O(N), since p is a constant and small enough.

IV. Logic Optimization by Logic Partitioning

In this section, two logic optimization algorithms based
on the proposed logic partitioning, are described. In
the �rst algorithm, a given circuit is partitioned into
sub-circuits whose fanins(not transitive) are disjoint each
other. Then the partitioned sub-circuits are optimized by
a logic decomposition technique.
In the second algorithm, a given circuit is partitioned

into sub-circuits whose TFIN are disjoint each other.
Then the partitioned sub-circuits are optimized by at-
tening, 2-level minimization, decomposition and trans-
duction techniques.
Common Fanin Based Partitioning

From the property presented in section III, it is shown
that node x and y have common fanins, if the result of
logic-and operation between two Rows, Rx and Ry in NVI
matrix corresponding to node x and y, respectively, is
not empty. In the rectangle (R;C) extracted from NVI
matrix, rows R correspond to the nodes which have com-
mon fanins among them and column C corresponds to
the common fanins.
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Figure 5: Rectangle extract

In the example of Figure 5, two rectangles ((x; z); (a; b))
and ((x; y); (b; c)) are extracted. As for the former one,
both x and z have common fanins a and b. Thus, pro-
posed algorithm calculates the rectangle in NVI matrix,
and extracts the sub-circuit corresponding to R from a
whole circuit. Then, logic optimization algorithms are
applied to the partitioned sub-circuits.



In order to �nd a maximal node set with common
fanins, the proposed algorithm �nds a maximal rectan-
gle, because the rows of the rectangle in NVI matrix cor-
responds to a node set with common fanins . The rectan-
gle covering problem is NP-hard even in Boolean matrix.
However, there is a very fast heuristic rectangle cover-
ing algorithm named pingpong[6], which is used in com-
mon cube extraction. The proposed algorithm applies the
pingpong heuristic to �nd the rectangle.
The following algorithm �nds a rectangle, then extracts

the sub-circuit corresponding to the row of the rectangle,
from the given circuit(Figure 6). The extracted circuit is
handed over total logic optimization process.

Logic_partitioning_algorithm_for_logic_optimization
{
construct NVI matrix;

i = 0;
NVI(0) = NVI;
rect(R, C) = pingpong(NVI(0));
while( rect(R, C) == NULL ){

/* rectangle extraction */
Nodes = nodes corresponding to R;
/* select the partitioned nodes*/
Opt_nodes = optimization(Nodes);
if ( # of literals(Nodes)

>= # of literals(Opt_nodes)) { /* (c) */
replace Nodes by Opt_nodes;

}
NVI(i++) = remove R from NVI(i);
/* reshape the NVI(i)*/

rect(R, C) = pingpong(NVI(i));
}

}

Figure 6: Algorithm for partitioning method for
logic optimization by using NVI matrix

A comparison between the sub-circuits before and after
optimization gives a guarantee not to increase the number
of literals by the subsequent replacement, see line (c) in
Figure 6. After extraction, whether the replacement is
successful or not, the rows of the rectangle are deleted
from NVI matrix. The process continues till NVI matrix
does include no rectangle. In case of decomposition, this
comparison is not required because the number of literals
must be decreased by the decomposition.
Table 1 shows the results of the proposed method, \

Partitioning decomposition", for MCNC complex bench-
marks. It applied the fast extract[7] which is one of fast
logic decomposition algorithms, to the partitioned sub-
circuits. For comparison, the results of the fast extract
for \Whole circuit decomposition" are also shown. In Ta-
ble 1, \# of literals" is the number of literals in factored
form and \time" is CPU time on Sparc Station 2(28.5
MIPS, 32MB memory).

Table 1: Logic decomposition

Whole circuit Partitioning
decomposition decomposition

# of time # of time

literals sec literals sec

C6288 4226 85 4229 16

C7552 2543 34 2551 12

S15850 3952 60 3983 22
S38584 13621 501 13767 33

clma 20455 460 20639 21

The results of Table 1 show that the di�erence of the
number of literals between the whole decomposition and

the partitioned decomposition is at most 1%, and that,
the proposed partitioning based method is 15-22 times
faster than the other when a given circuit has more than
10,000 literals.
TFIN based partitioning

TFIN based partitioning for logic optimization can be
implemented by replacing NVI matrix with TNVI ma-
trix in above common fanin (not transitive) partitioning
algorithm.
In general, the reasonable limit of circuit size is about

16 fanins for optimization by attening and 2-level mini-
mization. Thus, the proposed technique partitions up to
16 fanins sub-circuits which do not have common fanins.
Table 2 and Table 3 show the results of proposed method
which uses the TFIN based partitioning. The optimiza-
tion algorithms used in the experiments are attening,
2-level minimization and decomposition.
For TNVI-Matrix, 5 level and 16 fanin are given as

constraint. For comparison to the proposed method, the
results of standard script of UCB's SIS are added to the
tables. The results of SIS are obtained by applying SIS's
transduction method, full simplify after sct.boolean [8].
In MCNC benchmark data, since C6288 is a multiplier
and C7552, S15850, and S38417 are too large, it is di�-
cult to construct BDD[9] for optimization. Therefore, the
transduction algorithm cannot be applied to such circuits.
Table 2 shows the results of the comparison of

full simplify after sct.boolean and the proposed method
for the circuits.

Table 2 : Compared with full simplify

full simplify Proposed
# of delay CPU # of delay CPU

lits ns sec lits ns sec

C3540 1248 59 1543 1290 47 45
C5313 1709 50 1316 1745 37 72

In the results of Table 2, though the proposed method
produced a little larger circuits, their computation time
are much shorter than sct.boolean and full simplify. The
di�erences of the numbers of literals are less than 3%, and
the proposed method is more than about 20 times faster
than full simplify. The results of full simplify and the
proposed method are mapped with real CMOS technology
library, and the amounts of static delay are calculated.
The amounts of circuits delay of the proposed method are
up to 26% smaller than full simplify, since the proposed
method based on attening for limited area reduces logic
levels instead of transforming of gates and nets.
If the proposed partitioning method extract good sub-

circuits, the method of attening, 2-level logic minimiza-
tion and decomposition can produce the similar result
as transduction method, since local attening and re-
synthesis by 2-level minimization and decomposition can
delete the same redundancies as transduction. The reason
why full simplify can generate slightly better results in
area than proposed method, is that BDD have the wider
logic information than attening, and the proposed parti-
tioning method sometimes fails to �nd good sub-circuits.
Since the proposed method optimizes the circuits

within a limited area, it fails to �nd out the possibility
for the optimization across two partitioned sub-circuits.
In order to avoid this disadvantage, it is e�ective to apply
the proposed method repeatedly. For example, the TVNI



matrix in Figure 7 has two rectangles, A and B. Since A
and B have equal size, the proposed algorithm can select
either one. If B is selected, all nodes (a; b; c; d; e) are op-
timized. However, when A is selected, the nodes (c; d; e)
are optimized and new nodes (r; s) are generated. Af-
ter this operation, B0 is selected and the nodes (a; b) are
optimized to produce the new nodes (p; q).
In the next iteration, the new TVNI matrix is con-

structed, the new rectangle is selected and the the nodes
(p; q; r; s) are optimized. Thus, optimizing the two parts
((a; b) and (c; d; e)) obtains similar results as optimizing
the one part (a; b; c; d; e).

Rect :A

Rect : B
Select Rect A

Rect : B’

a    1 1 1 
b    1 1 1
c    1 1 1 1 1
d    1 1 1 1 1
e    1 1 1 1 1

p   1 1 1 
q   1 1 1
r   1 1 1 1 1
s   1 1 1 1 1

a   1 1 1
b   1 1 1

Make New Matrix

Figure 7: Rectangle Selection

Table 3 : Compared with sct.boolean

sct.boolean Proposed

# of delay CPU # of delay CPU
lits ns sec lits ns sec

C6288 3550 151 1484 3389 136 161

C7552 2297 63 989 2157 52 144
S15850 2413 67 964 2280 58 361

S38584 12847 189 20348 12156 177 1892
clma 11932 66 25952 11197 61 2351

Table 3 shows that comparison of results obtained by
applying the proposed method 3 times repeatedly and
SIS's sct.boolean for large circuits where BDD based ap-
proach cannot be applied. Table 3 shows that the results
of proposed methods are up to 7% smaller in area, up to
18% shorter in delay and 10 times faster than sct.boolean.
Table 4 shows the e�ectiveness of applying the

full simplify algorithm to each partitioned sub-circuit to
obtain the smaller results after the optimization shown in
Table 3.
By means of partitioning, full simplify can be applied

to each partitioned sub-circuit, even for the circuits such
as C6288 or C7552 which are too large to apply trans-
duction algorithms to whole circuits. Since partitioned
sub-circuits are small enough, full simplify can optimize
them after attening, 2-level minimization and decompo-
sition.

Table 4 : Partially full simplify

# of lits # of cells delay CPU

C6288 2975 2505 141 332
C7552 2094 2205 46 251

S15850 2217 6241 69 983
S38584 12008 19312 185 4857

clma 11072 12041 64 6648

The results of Table 4 show that the area of circuits
is slightly decreased by using transduction method after
decomposition. However, the delay and CPU time are in-
creased since the transduction method can transform the
sub-circuits having wider area. If a well-balanced circuit
is required in a short time, it is not necessary to apply
the transduction method after the proposed partitioning.

V. Conclusion

This paper proposed a new partitioning method to op-
timize large scale circuits. The method makes up the
Boolean matrixes and extracts the rectangle from the
matrices so as to partition a given circuit to sub-circuits
which have no common fanins each other. The following
optimization methods apply to partitioned sub-circuits.

1. decomposition,
2. attening, 2-level minimization, and decomposition,
3. transduction method after 2nd optimization.

In the case of 1, the proposed method can decompose
about 22 times faster than the decomposition method for
a whole circuit in case of over 20,000 literals circuit. In
the case of 2, the method can produce a slightly larger but
much shorter delay results than a a transduction method.
Moreover the smaller and shorter delay results are ob-
tained than SIS's standard script in a short time.
In the case of 3, the method is applied to the circuits

which are too large for the transduction method to han-
dle, and gets smaller results than the case 2.
The proposed method can handle more than 100,000

literal circuits in a practical CPU time and get high per-
formance circuits, because the method can run in almost
linear time to a given circuit size and optimize the small
sub-circuits in detail.
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