
Logic Synthesis for Engineering Change

Chih-chang Lin Kuang-Chien Chen
University of California, Santa Barbara Fujitsu Laboratories of America, INC.

Shih-Chieh Chang 1 Malgorzata Marek-Sadowska
Synopsys Inc. University of California, Santa Barbara

Kwang-Ting Cheng
University of California, Santa Barbara

Abstract | In the process of VLSI design, spec-
i�cations are often changed. It is desirable that
such changes will not lead to a very di�erent de-
sign so that a large part of engineering e�ort can
be preserved. We consider synthesis algorithms
for handling such engineering changes. Given a
synthesized network, our algorithm modi�es it
minimally to realize a new speci�cation.

1 Introduction

In a typical VLSI design process, speci�cations are of-
ten changed in order to correct design errors, or to meet
certain design constrains such as area, timing and power
consumption. Since a lot of engineering e�ort may al-
ready have been invested (e.g., the layout of a chip may
have been obtained), it is desirable that such changes in
speci�cation will not lead to a very di�erent design and a
large part of the engineering e�ort can be preserved. This
is usually called the engineering change (EC) problem.
Since synthesis tools usually perform global transfor-

mations (e.g., sharing of modules) to achieve good qual-
ity results, small and local changes in the speci�cation
could have global e�ects and produce a very di�erent net-
work. Realizing this fact, designers usually have to man-
ually modify the synthesized network to realize changes
in the speci�cation. Such practice not only increases the
chance of introducing inconsistencies between the higher{
level speci�cation (e.g., VHDL) and the �nal network, but
also it is an error{prone process that often fails because
the correspondence between the speci�cation and synthe-
sized network cannot be easily identi�ed (e.g., a signal
in the VHDL speci�cation may not appear as a signal in
the synthesized network). Therefore, there is an urgent
need for synthesis algorithms which can handle engineer-
ing changes e�ectively.

Example 1 Figure 1.(a) shows a network which repre-
sents the original speci�cation. After applying logic trans-
formation and optimization procedures [1, 2, 3] on it, the
resulting network is shown in Figure 1.(c). Suppose the
speci�cation in Figure 1.(a) is modi�ed by changing p5
from an XOR gate to an AND gate (Figure 1.(b)). After
applying the same synthesis procedures, we obtain a net-
work shown in Figure 1.(d). Although the change in speci-
�cation arises from a local modi�cation, general synthesis
procedures do not localize such a change and the networks
in Figure 1.(c) and Figure 1.(d) are quite di�erent.

One can modify the network in Figure 1.(c) directly,
and obtain a network similar to Figure 1.(c), yet realizing
the new speci�cation in Figure 1.(b). Such manual EC
technique, however, cannot be easily applied in this case.
This is because the signal corresponding to gate p5 in Fig-
ure 1.(a) is no longer available in the optimized network
Figure 1.(c). Therefore, although we know the change
arises from the modi�cation of p5, it is di�cult to tell
in Figure 1.(c) where and how the modi�cations should be
done.

A good synthesis procedure which considers engineering
changes will be able to modify the network in Figure 1.(c)
minimally, and retain functional equivalence to the spec-
i�cation in Figure 1.(b). By applying our algorithms on
the network in Figure 1.(c), the network in Figure 1.(e)
is obtained, di�ering from the network in Figure 1.(c) in
that the gates k0; k1 and k2 are removed and a gate k3 is
added. 2

Note that changes made at high levels can potentially
introduce large changes in the �nal design. For exam-
ple, suppose a design is described in terms of its state
transition graph, and modi�cations were made resulting
in changes in the number of states and state transitions.
Then, during synthesis, state encoding di�erent from the
original encoding may be used, potentially leading to a
very di�erent network. Therefore, it should not be ex-
pected that engineering changes can always be done with
very few modi�cations. In this paper, we will concentrate

1this work was conducted when the author was in University of
California, Santa Barbara.

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

x3
x4

x1

x1

x2

x0

p5

y0

y2

y1

x5

x3

x4

y0

y2

y1

x5

x1

x2

x0

x1

(e) a circuit synthesized by applying EC algorithm.

x3

x4

y0

y2

y1

x5

x1

x2

x0

x1

p5

x3
x4

x1

x1

x2

x0

y0

y2

y1

x5

x3
x4

y0

y2

y1

x5

k1

k2

k3

(b) a new specification.(a) the original specification.

t

t

k0 p1 x2
x0

x1

(c) a circuit synthesized from
 the specification in (a).

(d) a circuit synthesized from the
 new specification in (b).

Figure 1: An example of the EC problem.

on the core problem of the engineering change, i.e., han-
dling functional speci�cation changes for combinational
networks.

2 Basic De�nitions

For simplicity, we assume all the gates in the network
realize the AND, OR, NAND or NOR functions. Let
conni = (Si; Di) be a connection, where Si is the source
node and Di is the destination gate. We use fconni

(X)
to represent the function of conni with respect to the pri-
mary inputs X.
A connection is called redundant if the function of the

network remains unchanged after adding or removing it.
A connection conn2 = (S2; D2) is called substitutable
by another connection conn1 = (S1; D1) if the function of
the network remains unchanged after adding conn1 and
removing conn2. In the case where D1 equals toD2, conn2
is called directly substitutable by conn1. For given
connections conn1 and conn2, the exact requirement of
conn2 being directly substitutable by conn1 is [4]

fconn1(X) � fconn2(X) � ODC(conn2);

where ODC(conn2) represents the observability don't{
cares of conn2 2. In the case where D1 is di�erent from
D2, conn2 is called indirectly substitutable by conn1.
There is no simple way to tell if conn1 can indirectly sub-
stitute conn2 except by explicitly checking the equiva-
lence of two networks, one with conn1 and the other with

2In [4], fconn1 (X) is called a permissible function of conn2.

conn2. Moreover, there are O(N2) such possible substi-
tutions, where N is the number of gates in the network.
It would be time{consuming to do an explicit search on
the whole network.
To search heuristically for indirectly substitutable con-

nections, a technique used in a multi{level logic optimizer
[2] can be employed. Given a conn2, [2] restricts the
search to conn1's, where conn1's are redundant connec-
tions andD1's are dominators 3 ofD2. After adding conn1
(a redundant connection) to the network, conn2 can be
removed if it becomes redundant, therefore conn1 is in-
directly substituting conn2. We will give an example in
Section 4.2. For more details, please refer to [2, 3].
In the following discussion, let So be the original speci�-

cation and Co a corresponding synthesized network. Sup-
pose Sn is a new speci�cation resulting from engineering
changes. Then, the goal of logic synthesis for engineering
change is to synthesize a network Cn such that it real-
izes Sn and the structural di�erences between Co and Cn

are minimized. In the remainder of the paper, we shall
simply refer to So (Sn) and Co (Cn) as the old (new)
speci�cation and network, respectively.

3 Previous Work

In [5], Co and Cn are synthesized independently from
So and Sn, and then a post{processing step is performed
to identify the correspondence between pins and gates of
Co and Cn. This method is e�ective when Co and Cn are
structurally similar, but this is often not the case with
existing logic synthesis algorithms which tend to change
substantially the structure of the networks.
In [6, 7], the idea was to leave the old network Co totally

unchanged, and to rectify the speci�cation changes by at-
taching pre{logic and post{logic networks to the primary
inputs and outputs of Co. Boolean relation based algo-
rithms were developed to derive the functions of the pre{
and post{logic. This approach is useful when changes are
made at a later stage of the design process. However, the
pre{ and post{logic added may be too large to be use-
ful, and it is not suitable in situations where the internal
structure of the old network can be modi�ed.
In [8], a novel approach is proposed which explores

the structural equivalence between the So and Sn, and
the functional equivalence between the So and Co. Us-
ing these structural and functional equivalence, [8] estab-
lishes a mapping between the signals in Co and the ones
in Sn. Then, this mapping information is used to guide
an ATPG{based logic substitution process. This method
is computationally e�cient. However, its e�ectiveness de-
pends on the amount of the functional equivalence be-
tween the speci�cations and Co.
The error diagnosis problem can be viewed as an en-

gineering change problem if the appropriate networks are
interpreted as follows. Co is supposed to implement the
speci�cation Sn and contains an implementation error
such that it actually implements So and So 6= Sn. There-
fore, the correct speci�cation Sn is now the new speci�-

3A node A is called a dominator of another node B if every path
from B to the primary outputs passes through A.

2

cation, and our goal is to modify Co into another network
Cn which implements Sn correctly. In [9, 10, 11], error
diagnosis and correction techniques were proposed based
on a single{error model which assumed that the structural
di�erence between Co and Cn can be characterized as a
single gate type change or a single wire mis{connection.
In the following sections, we will discuss our approach

for solving the engineering change problem. Note that
since the amount of design modi�cations needed for
achieving speci�cation changes is really unpredictable, a
good approach needs to be able to complete the task even
when a large modi�cation is needed. At the same time,
it should be able to keep the modi�cations as small as
possible.

4 Synthesis Algorithms for EC

As discussed in the previous section, the error diagno-
sis problem has a strong relationship to the EC problem.
However, in error diagnosis, usually a simple single{error
model is assumed. In EC problems, our experience shows
that changes in speci�cation can potentially result in di-
verse changes in a network, and it is often necessary to
make multiple changes in the old network in order to re-
alize a new speci�cation. Therefore, to develop a robust
algorithm for EC, we do not assume any error model and
we do not limit the number of gates and connections that
can be changed. The overall process of our EC algorithm
can be divided into two major steps:

1) Identi�cation of candidate signals which can rectify
the di�erence between the old network and new spec-
i�cation, and also derive the target functions of those
candidate signals.

2) Synthesis of the target functions by utilizing existing
logic of the old network.

To realize the new speci�cation with minimal modi�ca-
tions, Step 1 should identify as few signals as possible.
Furthermore, the synthesis algorithms in Step 2 have to
be powerful enough so that the target functions can be
realized using as few gates as possible.

4.1 Identi�cation of Candidate Signals

To identify candidate signals which can potentially rec-
tify the di�erence between the old network and new spec-
i�cation, an error location technique discussed in [10, 11]
has been extended for use in our approach.
In the old network Co, suppose a signal t with function

fot (X) is selected (X is the set of primary inputs), we
want to know if there exists a new function fnt (X) such
that replacing the function of t by fnt (X) will yield a
network which implements the new speci�cation Sn. The
following lemma [10, 11] states the necessary and su�cient
condition.

Lemma 1 Let yoi (X) be the function of the ith output,
1 � i � k, of Co, and yoi (X; t) the same function ex-
pressed in terms of X and t. Let yni (X) be the function of

the corresponding ith output in the new speci�cation Sn.

Then, the di�erence between Co and Sn can be recti�ed by
replacing fot (X) with fnt (X) if and only if the following
condition holds:

yni (X) � yoi (X; t = fnt (X)) = 0; for 1 � i � k; (1)

which is equivalent to

yni (X) � yoi (X; t = 0) � fnt (X) � yni (X) � yoi (X; t = 1);

for 1 � i � k: (2)

The function fnt (X) is an incompletely speci�ed function
whose on{set and o�{set are as follows:

font (X) =
k[

i=1

yni (X) � yoi (X; t = 0); and

f
off
t (X) =

k[

i=1

yni (X) � yoi (X; t = 1):

Essentially, Lemma 1 states that each output yi poses
a constraint on the t and when all the constrains can be
satis�ed simultaneously, the signal t is a candidate signal.
Note that information of the network's structure (e.g. in-
tersection of fanin cones, dominator sets [11], etc.) can
be used to trim down the search space and an OBDD-
based [12] method can implement Lemma 1 e�ciently.
For example, in Figure 1.(c), we can identify the connec-
tion t = (k0; p1) as the candidate signal, and its target
function is as follows:

font (X) = x0x1x2x5; and f
off
t (X) = (x0 + x1 + x2)x5:

Once a candidate signal t is found, we realize its target
function by a subcircuit. The size of the subcircuit can
be very small (e.g., a single gate) or it could be quite
large, depending on both the target function and synthesis
algorithms, and this is where the quality of EC solutions
is determined.
If many outputs of the old network and new speci�-

cation are di�erent, the chance of �nding a candidate
signal which can rectify all of them becomes small, and
thus, we need to consider the possibility of changing the
functions of many signals. In our approach, when a sin-
gle candidate signal cannot be identi�ed, a divide{and{
conquer strategy is applied to overcome the problem. Let
POerror(POcorrect) denote the set of outputs which are
di�erent (equivalent) in the old network and new speci�-
cation. During divide{and{conquer step, the set POerror

is heuristically partitioned into two sub{groups (POerror
1

and POerror
2

) and then each sub{group is recti�ed sequen-
tially. When searching for a candidate signal to rectify
the erroneous outputs in POerror

i , we have only to check
Lemma 1 on the outputs in POerror

i and POcorrect. Thus,
the possibility of �nding such a signal increases. We de-
veloped a simulated annealing based approach to �nd a
partition such that the intersection of fanin cones in each
sub{group is maximized to increase the chances of �nding
candidate signals. Using this divide{and{conquer scheme,
we can always �nish the search of candidate signals. In
the worst case, we have to rectify each output in POerror

individually.

3

4.2 Synthesizing Target Functions for Can-

didate Signals

As discussed in the previous subsection, an in-
completely speci�ed Boolean function represented by

[font (X); fofft (X)] can be determined as a target func-
tion for a candidate signal t. Our goal is to synthesize

a function fnt (X) 2 [font (X); fofft (X)] using as few gates
as possible, by fully utilizing the existing logic in Co. We
examine several such algorithms in this subsection.
The �rst algorithm adopted in our approach is the

RENO algorithm [13], which tries to synthesize a sin-
gle complex gate to realize the target function. First,
in RENO, a list of candidate cubes are generated using
outputs of internal gates in Co. Each candidate cube
when expressed in terms of primary inputs X covers a
portion of font (X) but none of fofft (X). After generat-
ing a set of candidate cubes which can cover font (X), the
problem is transformed into the so{called sum{to{one
subset problem which can be viewed as a generalized 2{
level minimization problem. The solution obtained will be
a SOP form in terms of selected candidate cubes. Also,
the quality of the synthesis result depends on the total
number and choice of the candidate cubes. In our experi-
ments, computation time is reasonable when the number
of candidate cubes is less than 30. However, this number
is usually not large enough to fully explore the synthesis
possibilities.
To enhance the gate synthesis algorithm, we developed

another approach for single complex gate synthesis. In
this approach, instead of generating candidate cubes ex-
plicitly, we used an image computation technique [14]
to examine implicitly the candidacy of all the 3k cubes
formed by a set of k internal signals g1; � � � ; gk. The idea
is as follows: a cube (formed by g1; � � � ; gk) is a candidate
cube if and only if its function does not intersect the o�{

set fofft (X). Since the image of the o�{set fofft (X), with
respect to g1; � � � ; gk, represents cubes which intersect the
o�{set, the complement of the image contains all the can-
didate cubes formed by the k signals and they can be used
to synthesize the on{set font (X).

Lemma 2 The following formula computes all the candi-
date cubes formed by a set of k signals, G = fg1; � � � ; gkg:

fcandidate cubesg = imageG(f
off
t (X));

where imageG() is a mapping from 2X to 2G.

Compared with RENO, the image computation based
method can examine more candidate cubes and thus ob-
tain better results. In comparison to [10, 11], the image
based method is more e�cient since all the minterms in
terms of G are considered simultaneously and an OBDD{
based technique [14] can be used to achieve e�cient com-
putation. However, it is still a very di�cult problem to
choose an optimal set of k signals. We have developed
heuristics in which the signals are incrementally added
to the set G and conditionally rejected if the coverage of
font (X) does not increase.

The previous two approaches both try to realize the
target function by a single complex gate. It was found
experimentally that very often, although a candidate sig-
nal can be found, it cannot be realized by a single gate
using the gate synthesis algorithms discussed above. It
suggests that trying to realize the target function by just
one gate is probably too restrictive, and a more general
synthesis approach is still needed.
The third approach, which is also the most general one,

synthesizes a subcircuit Kt to realize font (X) in terms
of the primary inputs �rst, and then this subcircuit is
minimized by using existing logic of the old network Co.
Two minimization techniques, one based on permissible
functions [4], and one based on ATPG techniques [2, 3]
were employed.
In the permissible function based method, for each con-

nection conn2 in the subcircuit Kt, we search for a connec-
tion conn1 in Co which can directly substitute conn2.
If this happens, the connection conn2 and frequently also
a large portion of its fanin cone in Kt can be removed.
In the ATPG{based method [2, 3], the e�ort is on �nd-

ing connections which can indirectly substitute a cho-
sen connection in Kt. The goal here is to �nd conn1,
which when connected to conn2's dominators make the
conn2 redundant and therefore removable.

Example 2 Consider the irredundant network in Fig-
ure 2.(a). Suppose we are searching for indirectly sub-
stitutable connections of conn2 = (g1; g4). The idea is
to �nd a connection conn1 such that its addition to the
network will make the connection conn2 redundant. To
preserve the functionality of the network, we also have to
make sure that the connection conn1 is redundant in the
original network.
For conn2 to be irredundant, the assignments fg1 =

0; c = 1; g7 = 0; f = 1g on the gates must be realizable
by at least one input pattern. The constraint fg1 = 0g is
called a justi�cation constraint, while fc = 1; g7 = 0; f =
1g are propagation constraints. We have the propagation
constraint, say g7 = 0, because the gate g8 is a dominator
of conn2 and its input g7 is required to be zero to allow
the value of conn2 propagate through the dotted line. Us-
ing these constraints, we conclude that g5 must be zero
(because c = 1 implies g2 zero). Now if we connect g5 to
g9, it will block the propagation of the value coming from
conn2 through the dotted line and thus make the connec-
tion conn2 redundant. Before removing conn2, we check
if the connection conn1 = (g5; g9) is redundant. The an-
swer is yes, thus, we can add conn1 and remove conn2.
The result is shown in Figure 2.(b). 2

Note that the justi�cation and propagation constraints
described above are only the necessary constraints. The
example shows how to add a redundant connection to the
network to violate the propagation constraints of a target
connection. We can also apply the same technique to
violate the justi�cation constraints.
These two kinds of substitution (direct and indirect)

methods are complementary because they explore di�er-
ent substitution domains. Indirect substitution may the-

4

c
1

g1

g2

g4

g5

g7 g8 g9
10

y0

y1

0

(a) before substitition

c

b
d

e

d
a
b

f

g1

g2

g5

g7 g8 g9

y0

y1

(b) after substitution

b
d

e

d
a
b

f

Figure 2: Indirect substitution.

oretically subsume direct substitution. However, the im-
plications carried out by the ATPG{based redundancy
addition and removal method are not meant to be com-
plete in order to avoid spending huge portion of time on
hard{to{detect faults. As a result, the indirect substitu-
tion does not completely cover the search domain of direct
substitution.

4.3 Implementation of the EC algorithm

We have implemented the above EC algorithm based
on SIS 1.2 [1] and CMU BDD package [15]. Before calling
the EC algorithm, an OBDD{based veri�cation tool [1]
is used to �nd POerror and POcorrect. The overall EC
algorithm is shown in Figure 3.
Given an incompletely speci�ed Boolean function,

the procedure perform bdd minimize() �nds an OBDD
representation with minimal number of OBDD nodes
and returns its OBDD size [16, 17]. The procedure
choose best candidate() �nds a signal t among A with
minimal number of OBDD nodes.

5 The Experiment

In this section, we show the results on several combina-
tional benchmark circuits from MCNC91 and one indus-
trial example (SrCr) from Fujitsu.
The circuit SrCr (part of an ATM router chip) origi-

nally was given in VHDL. Later on, the speci�cation was
modi�ed by creating a new signal. It was a hierarchi-
cal design and contained ip{ops. For the experiment,
we attened the design and extracted its combinational
portion.
For MCNC91 benchmarks, it was assumed that each

of them represents the original speci�cation So. To ob-
tain Co, we optimized So by running script.rugged
script and then performed technology decomposition
(tech decomp {a 4 {o 4) in SIS [1]. The resulting number
of gates is shown in the third column of Figure 4. Be-
side the di�erence in the number of gates, the networks'
topology between So and Co are quite di�erent also.
To obtain Sn, we randomly modi�ed So by changing

the function of internal gates. For a complex gate (repre-
sented as a SOP form in BLIF format [1]), we arbitrarily
modi�ed its cubes. For a simple gate, say AND gate, we
changed it to OR gate, etc. The fourth column shows
the number of such changes and the number of primary
outputs a�ected.

EC(Co
; S

n
; PO

error
; PO

correct)
f

A = search candidate signals(Co
; S

n
; PO

error
; PO

correct)
if A 6= ;
foreach t in A

sizet � perform bdd minimize(font ; f
off

t
)

end
t � choose best candidate(A)

EC synthesize(Co
; t; f

on

t ; f
off

t
)

append PO
error to PO

correct

else
fPOerror

1 ; PO
error

2 g � partition(POerror)
EC(Co

; S
n
; PO

error

1 ; PO
correct)

EC(Co
; S

n
; PO

error

2 ; PO
correct)

end
g

EC synthesize(Co
; t; f

on

t ; f
off

t
)

f

tnew � RENO image synthesize(Co
; t; f

on

t ; f
off

t
)

if successful
replace t by tnew in C

o

else
Kt � construct subcircuit from bdd(ft;X)
replace t by Kt in C

o and mark the gates in Kt

loop f
perform indirect substitution(Co)
perform direct substitution(Co)
g until (no further improvement)

end
g

Figure 3: The pseudo code of EC algorithm.

Then, we applied the EC algorithm on a SUN SPARC
5 machine (128M memory) to generate Cn. The �fth col-
umn shows the result of recursively partitioning erroneous
outputs. For example, (1; 1; 1; 1; 2) shows that the number
of di�erent outputs in POerror is 6, and during searching
for candidate signals, the outputs in POerror were par-
titioned into 5 sub{groups. The sixth column shows the
amount of modi�cations on Co to generate Cn. We re-
port the number of added gates (A) and removed gates
(R). From our experiments, on the average, the amount
of modi�cation on Co to obtain Cn is less then 5% except
for the circuit z4ml. Also, the more we change the speci-
�cation, the more added and removed gates are required.

6 Conclusions

In this paper, synthesis algorithms for the engineering
change problem are described. To realize the changes of
the speci�cations, we developed algorithms to modify the
existing synthesized network minimally such that substan-
tial portion of engineering e�ort can be preserved. Our
EC algorithm can be divided into two steps. The �rst
step identi�es candidate signals, such that replacing them
with the target functions can rectify the di�erence be-
tween the old network and new speci�cation. The next
step synthesizes these target functions by utilizing gates
of the existing synthesized network. The experimental re-
sults show that our approach is e�ective for combinational

5

circuits.

Acknowledgments

This work was supported in part by NSF grant MIP91{
17328 and in part by Xilinx through the California
MICRO program.

References

[1] \SIS: A system for sequential circuit synthesis,"
Report M92/41, University of California, Berkeley,
1992.

[2] K.T. Cheng and L.A. Entrena, \Multi-level logic op-
timization by redundancy addition and removal,"
Proc. European Conference on Design Automation,
pp. 373{377, 1993.

[3] S.C. Chang and M. Marek-Sadowska, \Perturb and
simplify: multi-level boolean network optimizer," IC-
CAD, pp. 2{5, 1994.

[4] S. Muroga, Y. Kambayashi, H.C. Lai and
J.N. Culliney, \The transduction method { design of
logic networks based on permissible functions," IEEE
trans. on Computers, pp. 1404{1424, 1989.

[5] T. Shinsha, T. Kubo, Y. Sakataya and K. Ishihara,
\Incremental logic synthesis through gate logic struc-
ture identi�cation," ACM/IEEE Design Automation
Conference, pp. 391{397, 1986.

[6] Y. Watanabe and R.K. Brayton, \Incremental syn-
thesis for engineering changes," ICCAD, pp. 40{43,
1991.

[7] M. Fujita, Y. Tamiya, Y. Kukimoto and K.C. Chen,
\Application of boolean uni�cation to combinational
logic synthesis," ICCAD, pp. 510{513, 1991.

[8] D. Brand, A. Drumm, S. Kundu and P. Narain,
\Incremental synthesis," ICCAD, pp. 14{18, 1994.

[9] J. C. Madre, O. Coudert, J.P. Billon, \Automating
the diagnosis and the recti�cation of design errors
with PRIAM," ICCAD, pp. 30{33, 1989.

[10] H.T. Liaw, J.H. Tsaih and C.S. Lin, \E�cient auto-
matic diagnosis of digital circuits," ICCAD, pp. 464{
467, 1990.

[11] P.Y. Chung, Y.M Wang and I.N. Hajj, \Diagnosis
and correction of logic design errors in digital cir-
cuits," ACM/IEEE Design Automation Conference,
pp. 503{508, 1993.

[12] R. E. Bryant, \Graph{based algorithms for boolean
function manipulation," IEEE Trans. Computers,
vol. C-35, pp. 667{691, 1986.

[13] K.C. Chen, Y. Matsunaga, M. Fujita and
S. Muroga, \A resynthesis approach for network opti-
mization," ACM/IEEE Design Automation Confer-
ence, pp. 458{463, 1991.

EC Result of EC algorithm
S
o

C
o changes; POerror partitions A, R sec

z4ml 4 28 1; 1 (1) 4; 3 7
2; 2 (1; 1) 6; 3 10
3; 3 (1; 1; 1) 7; 3 30
4; 4 (1; 1; 1; 1) 6; 0 24

b9 117 89 1; 2 (1; 1) 6; 2 4
2; 3 (1; 1; 1) 6; 3 14
3; 4 (1; 1; 1; 1) 7; 3 33
4; 6 (1; 1; 1; 1; 2) 10; 7 123

frg1 3 115 1; 1 (1) 3; 0 67
2; 2 (1; 1) 4; 1 74
3; 3 (1; 1; 1) 7; 2 71
4; 3 (1; 1; 1) 7; 5 74

count 47 79 1; 1 (1) 2; 0 4
2; 2 (1; 1) 4; 1 8
3; 2 (1; 1) 7; 2 10
4; 3 (1; 1; 1) 7; 5 34

x1 28 207 1; 1 (1) 4; 1 25
2; 2 (1; 1) 5; 2 31
3; 3 (1; 1; 1) 7; 3 79
4; 4 (1; 1; 1; 1) 8; 4 104

x2 12 25 1; 1 (1) 1; 1 1
2; 2 (1; 1) 1; 3 2
3; 3 (1; 1; 1) 5; 4 13
4; 4 (1; 1; 1; 1) 3; 8 8

C880 357 261 1; 1 (1) 1; 1 69
2; 2 (1; 1) 1; 12 72
3; 3 (1; 1; 1) 2; 13 258
4; 4 (1; 1; 1; 1) 2; 12 251

SrCr 272 339 2; 1 (1) 20; 4 762

Figure 4: Experimental results of EC algorithm.

[14] O. Coudert, C. Berthet and J. C. Madre, \Veri�ca-
tion of sequential machines based on symbolic exe-
cution," Proc. of the Workshop on Automatic Veri�-
cation Methods for Finite State Systems, 1989.

[15] K.S. Brace, R.L. Rudell and R.E. Bryant,
\E�cienct implementation of a BDD package,"
ACM/IEEE Design Automation Conference, pp. 40{
45, 1989.

[16] S.C. Chang, D.I. Cheng and M. Marek-Sadowska,
\BDD representation of incompletely speci�ed func-
tions," EDAC, pp. 620{624, 1994.

[17] T.R. Shiple, R. Hojati, A.L. Sangiovanni-Vincentelli
and R.K. Brayton, \Heuristic minimization of BDDs
using don't cares," ACM/IEEE Design Automation
Conference, pp. 225{231, 1994.

6

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

