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Abstract { We observe that the switching ac-

tivity at a circuit node, also called the transition

density, can be extremely sensitive to the circuit inter-

nal delays. As a result, slight delay variations can

lead to several orders of magnitude changes in the node

activity. This has important implications for CAD

in that, if the transition density is estimated by

simulation, then minor inaccuracies in the timing

models can lead to very large errors in the esti-

mated activity. As a solution, we propose an ef-

�cient technique for estimating an upper bound on

the transition density at every node. While it is

not always very tight, the upper bound is robust, in

the sense that it is valid irrespective of delay vari-

ations and modeling errors. We will describe the

technique and present experimental results based

on a prototype implementation.

I. INTRODUCTION

Higher levels of integration and shrinking line widths

have led to a generation of devices that have more severe
power dissipation and reliability problems than typical de-

vices of a few years ago. Excessive power dissipation may

cause run-time errors and device destruction due to over-
heating, while reliability issues may shorten device lifespan.

It is especially useful to diagnose and correct these prob-

lems before circuits are fabricated. In the popular CMOS
technology, logic gates draw current and consume power

only when making logical transitions. As a result, power

dissipation and reliability strongly depend on the extent of
circuit switching activity.

y This work was supported in part by the National Science

Foundation (NSF), under grant MIP-9308426.

Circuit activity is dependent on the input patterns

being applied to the circuit. For one input set the circuit

may experience no transitions, while for another it may
switch very frequently. During the �rst input set the circuit

dissipates little power and experiences little wear, but for

the second its activity might cause device failure. Thus one
is tempted to simulate the circuit for all possible inputs in

order to measure the activity, which is highly impractical

for VLSI.

Recently, some approaches have been proposed to

solve this problem by using probabilities to represent typi-

cal behavior at the circuit inputs. In [1], the average num-
ber of transitions per second at a circuit node is proposed as

a measure of switching activity, called the transition den-

sity. An algorithm was also proposed to propagate speci�ed
input transition densities into the circuit to compute the

densities at all the nodes. Other approaches, such as [2]

and [3], have also been proposed to overcome the pattern
dependence problem and estimate the transition density.

However, in addition to being input pattern depen-

dent, the transition density at a node also depends on the
path delays inside the circuit. Thus, due to di�erent path

delays, a node in a clocked synchronous circuit may make

several transitions before settling down to its steady state
value in a clock period. Indeed, as we will illustrate in

the next section, the transition density at a node can be

extremely sensitive to the circuit internal delays. As a re-
sult, slight delay variations (due, say, to imperfections in

the manufacturing process) can lead to several orders of

magnitude changes in the switching activity. Furthermore,

if the transition density is estimated by simulation, such

as in [3], then minor inaccuracies in the delay models can

lead to large errors in the estimated activity. Likewise,

both approaches [1] and [2] can develop accuracy problems

resulting from extreme sensitivity. In [1], the circuit delays

are not explicitly taken into account, so the error due to
delay sensitivity becomes part of the overall approximation

error of the technique. In [2], the symbolic expressions rep-

resenting the probability of switching depend explicitly on
the circuit delays and will, therefore, have accuracy prob-

lems due to delay sensitivity.

To address this problem, we propose a method of es-

timating an upper bound on the transition density of indi-

vidual nodes within a combinational circuit (assumed to be

embedded in a larger sequential circuit). The upper bound

provides an estimate of the maximum transition density at
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a node, and is based on user-speci�ed min-max delay inter-

vals for each logic gate. This estimate is robust, in the sense

that it is valid irrespective of delay variations and timing
model inaccuracies (within the speci�ed delay intervals).

The technique uses signal uncertainty to capture the worst

case behavior of the circuit. It has been implemented in
a prototype simulator, called MaDest (Maximum Density

Estimator).

The rest of this paper is organized as follows. In the
next section, the notion of extreme sensitivity is illustrated

in more detail. Section III contains a detailed description of

the upper bound computation algorithm, and experimental
results are presented in section IV. Finally, a summary and

conclusion are presented in section V.

II. EXTREME SENSITIVITY

We will illustrate the extreme sensitivity phenomenon

with the help of the two circuits in Figs. 1 and 2. The cir-

cuit in Fig. 1 (Circuit A) was simulated using [3] to com-
pute the transition density at every node to within 1%,

with 95% con�dence. All inputs were assigned a (normal-

ized) transition density of 0:5 and a probability of 0:5. This
means that, on average, a primary input makes a transi-

tion every other clock cycle, and spends half the time in

the logic 1 state. Another circuit, shown in Fig. 2 (Circuit
B) was obtained from circuit A by simply removing the

NOR gate q. This circuit was then also simulated using [3]

under the same conditions. As far as the output node 32
is concerned, the only di�erence between the two circuits

is the slight change in the delay of the path (10, 22, 32)

due to the reduced capacitive loading when the NOR gate
is removed. This slight change in one of the path delays

causes the transition density at the output node to vary

by a factor of 0:38=0:0005 = 760, almost three orders of
magnitude, between the two circuits. Thus node 32 is said

to be extremely sensitive.
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Figure 1. Circuit A - node 32 has very

low transition density.

The implication for CAD is profound: if the transition
density is estimated by simulation, then minor inaccuracies

in the simulation models can lead to large errors in the es-

timated activity. Even if circuit simulation were used to
estimate switching activity, which would be prohibitively

expensive, extreme sensitivity may still be a problem. This

is because slight delay variations due to imperfections in

the manufacturing process may still lead to order of mag-
nitude changes in the switching activity. To overcome this

problem, we will propose in the next section an e�cient

technique for computing an upper bound on the transition
density that is valid irrespective of delay variations or mod-

eling errors. Using this technique, the user is alerted to the

possibility of having very high transition density at some
nodes. More detailed analysis can then be carried out on

these nodes, and corrective design measures can be im-

plemented. Before going on, however, we will make some
observations regarding the cause of the extreme sensitivity.
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Figure 2. Circuit B - node 32 has much
higher transition density.

Circuits A and B are not unique. Indeed it turns out
that a necessary condition for a node to be extremely sen-

sitive is that it be located where two or more reconvergent

paths meet, provided the paths have delays that di�er by
a small amount, approximately equal to the inertial delay

of the gate. Slight delay variations can then have a large

impact on the transition count, because if the di�erence in
path delays becomes less than the inertial delay, events will

cancel out and few output events will be generated. Oth-

erwise, if the di�erence in path delays is larger than the
inertial delay, then multiple events may be generated at

the gate output. This condition is not su�cient, however,

for extreme sensitivity. The signal values and the Boolean
properties of the paths play an additional key role in de-

termining extreme sensitivity. For instance, two competing

events at the inputs of an AND gate must be complemen-
tary, otherwise a single event will be generated irrespective

of the delays.

Based on this necessary condition, we have imple-
mented a simple pre-processor that examines the circuit

topology and 
ags a node as potentially extremely sensitive

if it satis�es the necessary condition. The results indicate
that a low percentage of nodes are potentially extremely

sensitive (3.2% for the ISCAS-85 benchmarks). Although

this is a small fraction of nodes, one cannot ignore this
problem because if one of these nodes is close to the pri-

mary inputs, then its density value will a�ect all other

nodes downstream from it, leading to large variations in
the estimated circuit activity.



III. UPPER BOUND COMPUTATION

We assume that the circuit to be analyzed is a combi-
national block that is part of a larger synchronous sequen-

tial design, as shown in Fig. 3.

The primary inputs to the circuit (combinational

block) switch in synchrony with the clock, if at all, and
can make at most one transition per clock cycle. Other

circuit nodes, however, can make multiple transitions per

clock cycle. Let nx(Tc) denote the number of transitions
at node x in one clock cycle Tc. For a given node, the av-

erage (or expected) number of transitions per clock cycle,

divided by the clock period, is the transition density for
that node [1] :

D(x) =
E[nx(Tc)]

Tc

If n̂x(Tc) is the maximum possible number of tran-

sitions per clock cycle at node x, then n̂x(Tc)=Tc is the
maximum transition density, so that:

D(x) �
n̂x(Tc)

Tc
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Figure 3. A combinational circuit embedded

in a synchronous sequential design.

We propose a method of computing an upper bound
on n̂x(Tc) that is independent of the sensitivities and de-

lay variations. We denote this upper bound by U [nx(Tc)].

E�ectively, this leads to an upper bound on the transition

density :

D(x) �
U [nx(Tc)]

Tc

Ideally, we would like U [nx(Tc)] to be equal to n̂x(Tc).

However, in order to maintain computational e�ciency, we
can not guarantee this and, in general, they will not be

equal.

A. Signal uncertainty representation

We will represent the variety of possible waveforms at

a circuit node with a single waveform that helps describe

our uncertainty about the behavior of the real signal. An
example of this representation is given in Fig. 4.
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Figure 4. Signal uncertainty representation.

The vertical axis gives the maximum number of tran-
sitions (integer valued) that a node can possibly experience

in speci�ed time intervals. Thus the waveform in Fig. 4 in-

dicates that this node makes at most 1 transition between
t1 and t2, at most 4 transitions between t2 and t3, at most 2

transitions between t4 and t5, at most 1 transition between

t6 and t7, and no transitions at any other time within the
clock period Tc.

Once such a waveform is available for every circuit

node, then adding the transition count associated with

each interval gives the required upper bound at that node,
U [nx(Tc)]. We derive the signal uncertainty waveform asso-

ciated with each circuit node by propagating user-speci�ed

uncertainty waveforms from the primary inputs throughout
the circuit. A primary input node can have at most one

transition. Thus the corresponding waveform consists of a

single interval in which the transition count is 1. Ideally,
this interval consists of the single time point t = 0. How-

ever, in order to allow for clock skew or delay variations,

we use a more general model in which this interval is spec-
i�ed as [0; t] where t is under user control (or a program

default), as shown in Fig. 5.
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Figure 5. The signal uncertainty representation

for a primary input node.

B. The propagation algorithm and heuristic

The propagation algorithm visits every gate in the

circuit only once, starting at the primary inputs, and pro-

cesses a gate only when all its fan-in gates have been pro-
cessed. It is assumed that the gate delays are not known

exactly, but are only known to be within user-speci�ed in-

tervals [td;min; td;max]. This allows for delay variations due
to process variations, temperature, drift, and timing model

inaccuracies. The delay limits, which may be di�erent for

di�erent gate types, are scaled by the fanout capacitance
seen by the gate.



When processing a gate, the uncertainty waveforms at

its inputs are examined, and a corresponding uncertainty

waveform is generated at its output. Since the logic val-
ues and speci�c transition times at the gate inputs are not

known, the only way to guarantee an upper bound on the

output transition count is to assume that every input tran-
sition goes through. In this case, the output transition

count of a gate is simply the sum of all its inputs' tran-

sition counts. To illustrate, consider an AND gate with
inputs A and B, and output C, for which the input and

output uncertainty waveforms are shown in Fig. 6. Notice

that the time interval at the output node is expanded to
allow for maximum and minimum propagation delays.
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Figure 6. Input and output transition characteristics.

It should be clear that this simple propagation pro-
cedure is very fast, but can lead to loose upper bounds.

While this is true in general, we have found that by using

two modi�cations to the basic technique, we can achieve
reasonable accuracy without impairing the speed advan-

tage of the approach.

The �rst modi�cation has to do with the fact that
logic gates have non-zero inertial delay. Thus the output

of a logic gate cannot carry arbitrarily short pulses. A

pulse has to be at least as long as the inertial delay if it
is to be transmitted. Therefore, every output node has a

minimum pulse width that puts a ceiling on the number of

transitions that it can have within each sub-interval.
The second modi�cation is a heuristic that we have

found works well in practice, as shown in section IV, and

which tries to account for the other gate inputs. One rea-
son that the upper bound can be loose is that whether or

not a transition propagates through a gate depends on the

signals at the other gate inputs. Among logic gates, only

the exclusive-or (XOR) gate has no controlling input value,
and thus allows more transitions to go through. All other

gate types (NAND, AND, NOR, and OR) will block some

transitions when one of their inputs is at a controlling value
(0 for AND and NAND, 1 for NOR and OR). To represent

this fact, it seems reasonable to compute the maximum

transition count for a logic gate (other than XOR) as some
fraction of the sum of its input transitions, rather than the

whole sum. We have found that a fraction of 3/4 works well

in practice. To see why this factor is plausible, consider
that, for a 2-input XOR gate, there are 4 combinations of

input transitions that produce an output transition, as il-

lustrated by the solid lines in Fig. 7a. In contrast, only 3
combinations of input transitions produce an output tran-

sition in the case of an AND gate, as shown in Fig. 7b.

Hence the 3/4 factor.
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Figure 7. Transition diagrams for (a) an XOR gate
and (b) an AND gate.

Similar analysis yields the same 3/4 factor for every

other gate type (other than XOR) and for any number

of inputs. The experimental data presented in the next
section demonstrate that this works well in practice.

IV. EXPERIMENTAL RESULTS

The proposed technique has been implemented in the

prototype program MaDest. The program uses a simpli�ed

gate timing model in which library-speci�ed propagation
delays are scaled by the external capacitive loading. The

gate library also speci�es min-max delay intervals for every

gate. We will present results for the ISCAS-85 benchmark
circuits [4] (after mapping to the gate library). In order

to study the accuracy, one needs the true \maximum num-

ber of transitions per clock cycle" at every node, allow-
ing for timing model inaccuracies, process and delay vari-

ations, clock skew, etc. Finding this would be extremely

computationally expensive. Instead, we will compare the
upper bound densities to the maximum observed densities

obtained from very long logic simulations, using [3]. It

should be clear that the true maximum should be at least
as high as that observed from any simulation run. Thus

the maximum observed densities measured from simulation

are actually lower bounds on the true maximum.
As a result, all accuracy comparisons will be made be-

tween the upper bounds produced by MaDest and the lower

bounds obtained from simulation. Thus the error mea-
surements presented below will be worst case, i.e., upper



bounds on the true errors. We will use the following error

measures to study the accuracy, where nx(Tc) is the num-

ber of transitions at node x in one clock cycle, U [nx(Tc)] is
the computed upper bound, L[nx(Tc)] is the lower bound

obtained from [3], and N is the total number of nodes in

the circuit:

Relative Error(nx) =
U [nx(Tc)]� L[nx(Tc)]

L[nx(Tc)]

�� = Average Relative Error =
1

N

NX

x=1

Relative Error(nx)

Table I.

AVERAGE RELATIVE ERROR FOR THE

ISCAS-85 BENCHMARK CIRCUITS.

Circuits #levels #gates �� ��h

c432 17 160 39.4% 7.4%

c499 11 202 64.7% 44.2%

c880 24 383 73.0% 20.7%

c1355 24 546 155.2% 57.8%

c1908 40 880 68.1% 32.6%

c2670 32 1193 60.3% 36.7%

c3540 47 1669 96.7% 63.2%

c5315 49 2307 60.2% 26.3%

c6288 124 2416 180.7% 131.0%

c7552 43 3512 93.1% 49.4%

The average relative errors observed for the ISCAS-85

circuits are shown in Table I, both with (��h) and without (��)
the heuristic. The heuristic works well and leads to consid-

erable improvement in the upper bound. On average, the

density results are overestimated by a factor of about 1.5.

To investigate this further, consider the histogram of the

relative errors at all the nodes in c432, shown in Fig. 8.

While most nodes have low error values, the errors for a

few of the nodes is quite high. Undoubtedly, this is due in

part to the approximations that have been used, and sug-

gests that one should try to do better. However, in some

cases the high error is simply a result of the node sensitiv-

ities. For instance, we have veri�ed that the three nodes

with the largest error values in Fig. 8 are potentially ex-

tremely sensitive - they satisfy the necessary condition of

section II. Similar trends were observed in other circuits:

nodes that are potentially extremely sensitive typically ex-
hibit large relative errors. Thus, while it is not always so,

in many cases the \error" observed is not so much an accu-

racy problem as it is simply an indication of the presence
of extremely sensitivity nodes.

It should be clear that the approach is very fast, and

has a time complexity that is linear in circuit size. Indeed,

the execution time (SUN Sparc ELC workstation) was un-

der 1/2 second for any one ISCAS-85 circuit. The largest

circuit took only 0.34 cpu seconds.
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Figure 8. c432 transition density relative error

histogram with the heuristic.

VI. SUMMARY AND CONCLUSION

The average number of transitions per second at a
circuit node is a measure of switching activity called the

transition density. We have observed that in some cases,
the transition density at a node can be extremely sensitive

to the circuit internal delays. As a result, delay variations

due to process imperfections can lead to order of magni-
tude changes in the switching activity. Furthermore, if the

transition density is estimated by simulation, then minor

inaccuracies in the delay models can lead to large errors in
the estimated activity.

As a solution, we have proposed an e�cient technique

for estimating an upper bound on the transition density at

every node. The upper bound is robust, in the sense that
it is valid irrespective of delay variations. Experimental

results demonstrate that the technique is fast, and that a

simple heuristic can be used to signi�cantly improve the
tightness of the bound.

REFERENCES

[1] F. Najm, \Transition density: A new measure of activity in
digital circuits," IEEE Transactions on Computer-Aided
Design, pp. 310{323, Feb. 1993.

[2] A. Ghosh, S. Devadas, K. Keutzer, and J. White, \Esti-
mation of average switching activity in combinational and
sequential circuits," 29th ACM/IEEE Design Automation
Conference, pp. 253{259, June 8{12, 1992.

[3] M. Xakellis and F. Najm, \Statistical Estimation of the
Switching Activity in Digital Circuits," 31st ACM/IEEE
Design Automation Conference, pp. 728{733, 1994.

[4] F. Brglez, P. Pownall, and R. Hum, \Accelerated ATPG
and fault grading via testability analysis," IEEE Interna-
tional Symposium on Circuits and Systems, pp. 695{698,
June 1985.


	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index


