
The Case for Design Using the World Wide Web

Mário J. Silva and Randy H. Katz

Computer Science Division
University of California, Berkeley

Berkeley CA 94720

Abstract — Most information and services required today by
designers will soon become available as documents distributed in
a wide area hypermedia network. New integration services are
required from the design environment, supporting business
transactions with design information providers, automatic
exchange of design data between independent groups, and inte-
grated support for new forms of collaboration. We discuss design
using electronic commerce and other services based on the Inter-
net, and propose a hypermedia system organization for a new
generation of CAD systems, conceived to make efficient use of
that infrastructure. We also describe our experience as designers
of an integrated design and documentation system that interfaces
existing design and documentation tools with electronic com-
merce services based on the World Wide Web.

I. INTRODUCTION

Industries are adopting new business models characterized by
close cooperation between independent organizations, known as
virtual corporations [7]. Key to this concept is the rapid exchange of
services between organizations. This implies the existence of an
ubiquitous infrastructure that makes it possible to perform business
transactions, advertise and distribute information products on a com-
mon network. There are already many initiatives dedicated to creat-
ing these infrastructures around the globe. One example, focused on
providing these services to the electronics industry, is Silicon Val-
ley’s CommerceNet [15].

The World Wide Web (WWW) is becoming thede facto standard
for providing information on the Internet [1]. The WWW software is
based on the exchange of electronic documents using a client-server
communications protocol. This protocol is well suited to transport
the information manipulated by designers across organizations. The
primary information format is derived from SGML, the ISO standard
for on-line documentation representation [8]. However, any other
data type can be transferred when encapsulated according to Internet
conventions for encoding multimedia data. As a result, we can easily
adapt existing WWW software to transport design data. CAD inter-
change formats can be defined as new media types, and included in
multimedia documents.

In an earlier prototype, we have used multimedia documents as a
common front-end to multiple design tools [13]. This was built as an
open hypermedia system supporting remote command executions
and hyperlinks between heterogeneous tools. In our system, the files
containing these links are calledactive documents. A hyperlink in
our system can contain data and a program to be executed upon acti-
vation. We call these linksactive messages. Designers use an elec-

tronic notebook to navigate in the web of information, add
annotations and create links. This provides them with an integrated
view of all design related information and tools as documentation
(see Figure 1).

The documentation paradigm for interacting with design informa-
tion has the additional advantage of being well adapted to interface
with the new services offered to system designers through the
WWW. In this paper, we describe the new architecture of Henry. This
has evolved to support design methodologies that include the use of
electronic commerce and support concurrent design involving inde-
pendent groups using heterogeneous CAD systems. We discuss pro-
tocols, exchange formats and tools that we adapted for supporting the
design process in the new kind of internetworked environment.

The rest of the paper is organized as follows. In Section II, we
present an overview of the new services that can be offered to
designers based on electronic commerce. Section III discusses the
limitations that would be faced by designers and system integrators
using the available frameworks in an internetworked design environ-
ment. Section IV describes design scenarios involving the use of
Henry in electronic commerce. In Section V, we describe the archi-
tecture of Henry. In Section VI its implementation. Section VII
closes the paper and presents directions for future work.

II. ELECTRONICCOMMERCE FORSYSTEM DESIGNERS

With the infrastructures for electronic commerce in place, new
design methodologies based on the outsourcing of design and manu-
facturing will become possible. We anticipate that electronic com-
merce will make it possible to offer multiple new services to
electronic design and manufacturing organizations:

active
message

T o o l s

Data & Flow Managers

Notebook
Electronic

Design Information Web

Libraries

documentsactive
message

documents

documents

commands

Fig. 1. Information flow in the Henry System. In the information-centric
environment of the Henry System, designers access tools, libraries and design
data and flow managers via active documents. These are connected into an
information web through active messages stored within the documents.
Active messages fire the commands to the tools. Command executions create
additional data, which is integrated into the web as new documents.

active
message

active
message

This project was supported in part by NSF under grant # MIP-9002962.

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

CAD outsourcing. There will be specialized CAD systems for spe-
cific design tasks available. For instance, a company may sell the
use of dedicated hardware and software for performing large and
expensive simulations.

Collaborative Design and Design/Manufacturing Integration. This
involves adopting standards for conferencing, shared editing and
exchange of design information. This will enable much closer
interactions between contractors and sub-contractors, speeding
and increasing the quality of the artifacts produced.

On-line Component Information Services. This will offer the ability
to quickly retrieve datasheets and select components for a specific
purpose. New billing methods, based on the actual information
retrieved, will be possible. Component information will become
affordable to smaller organizations.

Broker and Consulting Services. New brokerage services that can
search for specialized information will be available. These ser-
vices may provide application notes for specific designs with
embedded requests to access entry points to endorsed service pro-
viders. The ISI has a research project in this area [9].

Business Services. These will be the non-design specific services that
will form the backbone of electronic commerce infrastructures.
They will include electronic Yellow and White pages, electronic
payment services using Electronic Data Interchange (EDI) stan-
dards and certification authorities for authentication.

III. L IMITATIONS OF CURRENT FRAMEWORKS

The current generation of framework-based design environments
makes the assumptions that (1) a single framework controls the entire
design process, (2) all information is available locally to the design
team, and (3) the design is the product of a single organization. In
addition, frameworks only manage design specific tools and artifact
data. In our view, these assumptions are no longer valid. The next
generation ofinformation-centric design environments will have new
basic requirements. They must integrate multiple, independently
managed, heterogeneous frameworks, and be capable of accessing
on-line services available through electronic commerce. They also
should have a flexible structure, adapted to new business models and
concurrent design involving independent organizations.

Current CAD frameworks attempt to integrate the entire design
process. They offer multiple common services, such as design meth-
odology management and inter-tool communication. However,
implementation of a common design framework supporting all the
tools used in the design environment is hard to achieve. In a typical
CAD environment, the vendor supplying the logic synthesis tools is
not the same as the vendor that provides the best printed circuit
design or chip layout tools. As a result, we observe that system
design environments have multiple sets (or clusters) of integrated
tools in use. Good progress in the standardization of common data
representation formats, such as VHDL and EDIF, has been what
makes it possible to build environments composed of multiple frame-
works. We are at a point where integration is good within each clus-
ter, but poor when passing of control information between tool sets is
required. This creates the opportunity for development of new design
environment architectures, integrating multiple frameworks and pro-
viding support for automated exchange of data [6].

In addition, system design involves many non design-specific
tools, not integrated within any design framework, which have a cru-
cial role in the design process. Examples are the FAX and electronic
mail processing tools. These have always been used in the design
process and are increasingly becoming fully integrated components
in collaborative design environments. Despite all the standardization
attempts, it remains hard to integrate all the new tools that are con-
stantly being added to design environments.

IV. THE INTEGRATEDDESIGN ANDDOCUMENTATION
APPROACH FORSYSTEM DESIGN

One approach for integrating the heterogeneous data, frameworks
and on-line services that designers must cope with is by providing a
new viewport into the design environment, based on an active docu-
ment manipulation metaphor. We re-designed the architecture of
Henry to support an additional interface to WWW protocols. This
makes it possible to use the system for automatic exchange of data
between different groups and to access electronic commerce ser-
vices.

What follows is not a report of our experience using Henry in
actual designs, but the description of sequences of design operations
that can actually be performed with the existing prototype, reflecting
realistic usage scenarios. The design of the Henry architecture pro-
ceeded through the development of these mock-ups. We used them to
validate the architecture and inter-operation between the various
components of the environment.

Creating usable electronic commerce services to designers is not
simple. There are several problems in multiple domains that need to
be considered, including:

Authentication of clients and security of communications. For these,
we can use cryptography techniques. Certification authorities, dig-
ital signatures and Privacy Enhanced Mail are developed technol-
ogies that could be used for this purpose [5].

Billing. For this we could use existing software for automatic place-
ment of orders and payment, based on EDI, the Electronic Data
Interchange standard.

Intellectual property protection. This is of major importance to cli-
ents, as they need to have guarantees that the models loaded into
the remote server will not be used by someone else. We believe
that a combination of legal mechanisms and technical barriers
could be created to provide the necessary protection.
Our goal, in developing scenarios involving the use of electronic

commerce by designers, is to find the appropriate flow of information
and sequencing of tool invocations required to implement the ser-
vices. For the development of these, we assumed that the above prob-
lems could be addressed by re-using existing software. When in the
remainder of this section we mention billing, authentication or
encryption, we refer to the point where these operations should be
performed. In the mock-ups we built using the tools integrated in
Henry, these are not actually executed.

We have developed two scenarios. In the first, we prototyped the
operation of a SPICE simulation service that would be accessed over
the Internet. This is organized as follows. There is a WWW home
page that advertises the service. From there, it is possible to retrieve
the terms and conditions for its use. When a designer decides to use
the service, the contractual forms are sent to be filled-in interactively.
Once completed and authenticated, the designer receives a document
with a digitally signed contract. The document includes a Universal
Resource Locator (or URL, the specification of the address of an
object in the WWW) that can be used in the future to request simula-
tions. To send simulation decks for processing, designers use a new
script,postmessage.This posts a local file into to the WWW simula-
tion server (an operation supported by existing WWW servers). Sim-
ulation requests received at this URL are authenticated and billed to
the client when completed.

For the second scenario, we considered a designer selecting and
ordering an off-the shelf chip, its documentation, models and appli-
cation notes from a catalog on the WWW. Our goal was to develop a
mechanism for selling complex VLSI components on the Internet.
Information would be presented in a similar way to that used by the
MSU Microsystems Prototyping Lab library project (The MSU Stan-
dards Cell Library is available at URL: http://www.erc.msstate.edu/

mpl/libraries/stdcells). However, we made different assumptions
about how this information would be available. Access to part of the
information would be restricted and given for a fee. The business
transaction would be performed automatically using electronic com-
merce. In addition, instead of providing bitmaps of the layouts and
delay information as tables, we wanted to be able to send the layouts
in a CAD interchange format and simulation models. We also wanted
to have the files automatically installed in the clients databases via
active messages.

To order a component, a designer first consults a manufacturer’s
database with their specifications and application notes illustrating
their use. Once connected to the database, he receives a document
with a catalog of the available information. From the catalog, he can
retrieve apreview, containing publicly available information about
the component, such as its basic characteristics, cost and usage
terms. Next, the designer fills-in an electronic form containing the
company’s identification, type of framework where the component
models and schematics will be installed, interchange formats
accepted, address and payment method. In return, the designer
receives a document. This contains the transaction receipt and infor-
mation on how to retrieve the information.

Clients can retrieve the information in several forms. The simplest
way is by activating the hyperlinks to the URLs in the library server
pointing directly to the simulation models and schematic symbols for
the purchased component. With minimal extensions to the configura-
tion files on both sides, we can have the appropriate tools invoked to
display design files directly. However, as in this method we retrieve
the files one at a time, activation of links between the files that con-
stitute the component’s information package is not possible. This is
because the links use relative addressing to refer to other files. As a
result, its usability is very limited.

Full browsing capability only becomes possible when clients have
the Henry tools installed. These may download all the component’s
information in a single active message. This contains the complete
set of files for that component plus a script to install them in a direc-
tory structure reflecting that of the server. Links between the files in
the package can then be directly activated. This results in the invoca-
tion of the design tools to browse the received data and install it in
the local project database (See Table I).

TABLE I
 COMPONENT INFORMATION RETRIEVAL WITH ACTIVE MESSAGES

Step Operations

Select Connect to the Electronic Component Catalog’s Home
Page and browse or search through the advertised infor-
mation.

Order Fill-in an order form indicating the component
requested, type of payment, supported CAD interchange
formats. Specify the design framework being used, to
generate a custom installation script.

Receive An active message with the information package
requested and a script to browse and install it is received
by the deseigner’s WWW client. Henry’s active mes-
sage browser is automatically invoked to inspect and
evaluate the active message.

Install The script in the active message starts the tools to
browse the files encapsulated in the received informa-
tion package. Links between the files may be activated.
Finally, the designer may give a command to the active
message browser to install the files into the local project
database.

V. INTEGRATEDDESIGN ANDDOCUMENTATION IN HENRY

In this section, we present the main architectural concepts of the
Henry System. A detailed description is available in [12].

A. Communications in Henry

We envision design data distributed across a wide-area network,
organized as a web of related pieces of information. CAD systems
will integrate tools designed to communicate on distinct protocols. In
addition, they will have to support user-mediated asynchronous com-
munications. When we consider inter-organizational communication
related to collaborative design, the traffic will also contain unsolic-
ited messages that, for trustability reasons, may require user inspec-
tion before actual delivery.

The Henry System uses communication protocols suited for the
new active document-based design environment. Active documents
have the capability to send and receive commands and data. We call
these commands active messages, as they resemble the messages
used in active mail systems [4]. These extend electronic mail to
transport not only data but programs that can be activated upon read-
ing.

Active messages contain data and commands to be performed on
that data upon delivery. Active messages in Henry can be transported
via SMTP1 and handled by conventional mail readers, as in active
mail systems. However, we use them not only for communication
between end-users, but fundamentally for intertool communication.
For instance, a user browsing an active design document may gener-
ate an active message requesting a database to return the layout of a
circuit being described. The layout could come in the form of another
active message addressed to the layout editor, that would in turn dis-
play the data contained in the message.

Remote procedure call (RPC) protocols used for inter-tool com-
munication in CAD frameworks, such as Tooltalk [14], are optimized
for activating commands remotely with small latencies. Data is
assumed to be available via a common file system implemented
using NFS2. However, this combination of protocols does not scale
well when we consider larger networks consisting of multiple organi-
zations exchanging commands and data, as they were not oriented to
support the transaction-oriented paradigm for accessing information
required by our application.

A protocol more adapted for the exchange of active messages is
HTTP, the client-server communications protocol used in the WWW.
In Henry, we use HTTP to transport active messages. HTTP uses
MIME3 as the encoding mechanism to pack information into mes-
sages [2]. Communication is handled by HUBs, message servers that
communicate with tools and exchange active messages (see
Figure 2).

The organization of the design environment based on a web of
HUBs has the flexibility required to adapt to the dynamic constella-
tions of business units that characterize the virtual corporation. In the
Henry System, each user has an associated HUB running on his
workstation. These manage the activation and inter-tool communica-
tion between the tools run by each user. In addition, groups of users
can set up a HUB for handling messages for which the dispatching
procedure requires knowledge of the group organization, such as
broadcasts of messages addressed to team members assigned to a
specific task. In an electronic system design team, group HUBs

1SMTP — Simple Mail Transfer Protocol, the Internet standard for exchang-
ing electronic mail messages between hosts.
2NFS — Network File System, the Internet Standard for accessing remote
hosts’s file systems transparently.
3MIME — Multi-purpose Internet Mail Extensions, the extensible Internet
standard for formatting electronic messages containing not only text but other
types of data.

designed to “push” information to receivers of information.
Enabled Mail assumes an environment for activating messages

consisting of two interpreters of the Tcl language [10]. One runs
Safe-Tcl, a restricted sub-set of the commands of the Tcl language,
while the other fully supports it. The former operates as an untrusted
interpreter that evaluates the commands embedded in incoming
active messages; it has no access to any system resources. To do any-
thing meaningful, it has to send commands to the latter. This is pro-
grammed to execute only pre-defined commands that give access to
system resources under user control.

We have extended Enabled-Mail by adding new commands to the
Safe-Tcl language. The new commands define an interface to access
a library of message handling functions for sending commands to
design and documentation tools. In the Henry System, the HUB also
runs the two interpreters required in the Enabled Mail model. The
message handling functions that communicate with the tools run in
the trusted Tcl interpreter. On the other hand, the scripts embedded in
active messages run in the untrusted interpreter (See Figure 3).

Operation of the HUB

The HUB is structured in software layers, as is common in com-
munications systems. There are two main layers, (1) the Message
Transport Layer (MTL) and (2) the Message Handling Layer (MHL).

The functions that support the operations of converting MIME
messages to commands and data objects, as well as those for evaluat-
ing the active part of messages and associated handlers, constitute
the Message Handling Layer. The Message Transport Layer, consists
of the functions that perform the low level interface to start the tools
and send them the commands and data.

The interface between the two layers is defined by a new Tcl com-
mand,hmessage,used to call the operations that can be performed on
every tool. The general form of thehmessage command is

hmessage tool-address operation operation-parameters

where thetool-address field is a 3-element list containing (1) the
name of the application to which the message is directed, (2) the
Internet address of the user running the tool, and (3) the display
where the tool should run.Thehmessage command defines an essen-
tial interface in the HUB architecture. It has two major roles:

1. Defines the point of transition between the tool independent mes-
sage handling software and tool-specific message processing.

Fig. 3. Message Handling in Henry. We use the Enabled Mail conceptual
model for Message Handling. The Safe-Tcl commands embedded in active
messages are evaluated in an untrusted interpreter. This interpreter cannot
access any system resources, only the information contained in the message.
When part of the contents of a message needs to be saved into a file or a
command has to be sent to a tool, the unsafe environment has to use the
commands available in the trusted Tcl interpreter. These only give access to
compromising system resources after prompting the user.

active message

harmless
commands

(data + Safe-Tcl script)

HUB

Tools

tool
commands

Untrusted
Safe-Tcl
Interpreter

Files

Trusted
Tcl
Interpreter

would resolve message addresses like “logic designers” or the “PCB
design manager.” In a similar way, deeper hierarchies could be estab-
lished to support larger groups with multiple teams.

As HUBs use the Internet message exchange protocols and for-
mats, it is possible to create design environments with very heteroge-
neous frameworks and many levels of integration. The possibility of
exchanging design objects and commands to remote design systems
via electronic mail, makes it possible to create multi-organizational
design environments operating at various levels of integration. At
one site, processing of a given active message could consist in for-
warding the embedded commands for execution by a running tool. In
another less automated environment, the same message could be
placed into a user’s mailbox to be handled manually. To complete
processing, the designer at the receiving site would have to examine
the contents of the message, retrieve its contents, call the appropriate
tools and return the resulting data formatted according to the conven-
tions in use.

Conceptual Model for Message Handling

The format of active messages exchanged between HUBs and the
conceptual model for message activation on delivery that we adopted
is based on Enabled Mail (EM) [3]. EM extends the MIME format
and the conceptual model for processing electronic mail in the Inter-
net to support active mail systems. However, there is a significant
difference in the paradigm used to transport active messages in
Henry and active mail systems. The former uses HTTP, the client-
server protocol used in the WWW, while the later uses SMTP, the
Internet mail transfer protocol. Henry uses a RPC-based protocol to
“pull” information from information servers, while electronic mail is

HUB

HUB

HUB
HUB

HUB

Toolset Toolset

Tool

HUB

HUB

User Space

Group Space

documents

Group Space
Active M

essages

Fig. 2. The information-centric design environment organization. All design
information is viewed as a web of active documents, including design files
and scripts of commands. Tools are used to manipulate documents.
Documents are packed intoactive messages, containing data and operations
to be performed on the data by the receiver of the message. Active messages
are exchanged via specialized message servers, called HUBs. HUBs stand
between document manipulation tools and the information web. HUBs can be
setup to manage the exchange of information between the ensemble of tools
run by a user or between groups of users. The format of active messages and
the message exchange protocols used are defined by Internet standards. We
use MIME for active message representation and HTTP as the message
transport protocol.

2. Defines the point of transition between the untrusted execution
environment for active messages and the trusted environment. A
wrapper that prompts the user for confirmation before executing
anhmessage is available for execution from Safe-Tcl untrusted
interpreters used to evaluate active messages.

The importance of designing a common interface to abstract the
tools at this level is also an essential aspect of the Henry architecture.
In a system comprising heterogeneous tools, it becomes necessary to
find a common framework for supporting the different command
syntaxes used by the tools. For instance, to read a file into an applica-
tion’s address space, we observe that SPICE3 uses the command
source, whereas Magic usesload and FrameMakeropen. We have
identified the common operations supported by the tools to which we
interface. These are listed in Table II. By creating a uniform syntax to

invoke these common operations, we make the tool interface uniform
to higher layers of software. This uniformity also makes it easier for
integrators to create hyperlinks to tools that have different command
language syntaxes and terminologies.

B. Henry as an Open Hypermedia System

From a designer’s perspective, the Henry System operates as fol-
lows:

1. The designer selects a piece of design related-information;

2. When he activates the selection, he sees a list of descriptors for
other pieces of information. These are related to the object upon
which the operations are being performed.

3. Activation of one of the operations, launches the invocation of
another tool. The new tool fetches and/or generates other pieces of
information.

A similar type of interaction is already used with some combina-
tions of tools by VLSI designers. For instance, there are commercial
versions of integrated simulation systems containing a schematics
editor, waveform displayer and circuit simulator. In these systems, a
user can select a net on the editor and then request the waveform dis-
player to show the last simulated signal associated with the net. Our
goal is to generalize this interaction, so that users can define and
associate multiple actions with any design object, select one and
invoke it. In the same example, we would like to extend the schemat-
ics editor menu with the operations that can be applied to a net. The
new operation would open a document describing the circuit in the
section that specifies the function of the associated signal. In Hyper-
media terminology, we call these operationslive link activations. We
use this term because they do not simply cause the display of other
information, but rather send an arbitrary command to a running tool.

TABLE II
COMMON OPERATIONS SUPPORTED BY THE TOOLS INTEGRATED WITH THE HUB

Command Function

ping Check if a tool is running.

start Send the ping message to a tool and start it if no
answer is received.

open <object> Send the start message and open, source or load the
object given as argument.

do <command> Perform the command in the tool’s command lan-
guage syntax. This provides the “escape” function to
execute any tool specific command not offered by
this interface.

quit Terminate execution of the tool.

Our goal for the Henry environment is to create a framework
where hyperlinks are as easy to do as cut and paste within personal
computer software. This has to be achieved in a heterogeneous envi-
ronment where each application is developed using a different set of
user interface and inter-tool communication libraries. In Henry, live
links exploit active messages to define the actions and the link
anchors. These are sent between applications using the HUB ser-
vices. This interpretation of open hypermedia merges very well with
the concept of an information-centric design environment.

VI. IMPLEMENTATION OFHENRY

The existing prototype of the Henry System consists of a set of
design and documentation tools that communicate with a an initial
implementation of a message HUB. Some of the tools had to be mod-
ified to communicate with the HUBs. These incorporate a collection
of inter-tool communication interfaces for sending and receiving
commands. Henry already contains a diverse collection of commonly
used design and documentation tools. These include,

• FrameMaker, a documentation processing system with hypertext
support.

• Magic, a VLSI layout editor.

• SPICE3, a circuit simulator which is linked tonutmeg, a front-end
for waveform displaying.

• GNU Emacs, an extensible text editor. GNU Emacs runs also as a
front-end to a very sophisticated software development environ-
ment.

• VEM, the front-end to the Octtools VLSI Design Framework.

• The tools developed at the NCSA to interface with the WWW,
Mosaic and thehttpdserver.

• New tools we wrote to support integrated design and documenta-
tion.
This list gives a good coverage of the different types of interac-

tions performed by current system designers. It includes tools used
for information retrieval, software development, integrated circuit
layout and simulation, and documentation. We believe that other
tools addressing design aspects not covered by these, such as logic
synthesis and printed circuit board design, use fundamentally the
same types of interactions and could be integrated in similar ways.

A. Interface with the WWW

The organization of the software in Henry’s implementation of the
interface with the World Wide Web does not follow the organization
suggested by the system architecture we described. However, from
the functional point of view, it appears to designers as such. For
instance, our HUBs do not run two interpreters in a single process.
When an active message is received, it is parsed in a separate process
that runs the existing Safe-Tcl software. If a tool command has to be
executed, the Safe-Tcl interpreter passes the associated message to
the safe interpreter, which forwards it in turn to the HUB process.
From there, the message is then dispatched to the final destination
(see Figure 4).

In the Henry design environment there are two gateways for com-
munication with external services. One is based in electronic mail.
The other uses the client-server protocol of the WWW. We describe
their implementation in the remainder of this section.

Active Messages Transported by Electronic Mail

To send an active message by electronic mail from a tool, a user of
the system presses a button or highlighted text in one of the tools.
This has the effect of sending ahmessage to the HUB. As the HUB
runs a Tcl interpreter, it is straightforward to send a file to another

user. The followinghmessage would do it:

hmessage HUB [exec mail user@host < file]

We also havemailmessage, a script that we wrote to generate
active messages fromhmessagesand send them by electronic mail.
Mailmessage generates a MIME message with the files indicated as
arguments, and hmessage commands to the tools to operate on them
at the destination. Then, it pipes the resulting active message tosend-
mail, the UNIX program to send mail over the Internet.

To deliver active messages received by electronic mail in the
Henry environment, a user needs to configure his mail agent program
to automatically dispatch these to the Henry tools. This is achieved
through a mail classifying program (such asslocal, which is part of
the MH mail handling system [11]). HUBs are assumed to be running
while the associated users are in session. If a HUB to which a mes-
sage has to be relayed is not running at the time of delivery, the mail
classifier simply places the message into a special folder. The mes-
sage can then be read and possibly re-activated at a later time.

Active Messages Transported by the WWW Protocol

The sequence of operations for sending an active message using
the WWW interface is similar to the one used to send it via electronic
mail. The difference is that in the present case a different script,
calledpostmessage, is used. Whilemailmessage takes a user’s elec-
tronic mail address as argument,postmessage takes the URL of a
remote program to receive a process the document.Postmessage
spawns a sub-process running thetelnet program which in turn con-
nects to the WWW server of the URL and sends the generated active

Fig. 4. The software modules used to communicate with external HUBs and
Internet-based services. There are two interfaces based on two Internet
protocols. One uses SMTP, the other HTTP. Postmessage and Mailmessage
are scripts that we wrote to send active messages from the tools through the
HUB using these interfaces.

tool

sendmail

 safe-tcl interpreter

NCSA Mosaic NCSA HTTPD

S
M

T
P

safe-tcl interpreter

mail classifier

tool
Framework ToolHUB

S
M

T
P

 In
te

rf
ac

e
H

T
T

P
 In

te
rf

ac
e

postmessage

mailmessage

H
T

T
P

H
T

T
P

H
T

T
P

message using thePOST command of the HTTP protocol.
Users may receive active messages from the HTTP interface in

three ways:

• As a reply to posting in a URL using thepostmessage script.
HTTP servers in general return a HTML document with informa-
tion about the result of the execution of the commands they
receive.

• As a reply to retrieving the contents of a URL when using Mosaic
to browse the WWW. Mosaic can receive commands to get the
contents of URLs not only from its the user interface but also from
other tools, via its HUB interface.

• Through the HTTP server running in their environment. In this
case, we adapted the same Enabled-Mail support software used to
dispatch active messages received by electronic mail to a HUBs to
interface with NCSA’shttpd server.

B. Scenario Implementation

In the Henry prototype, the component library runs the NCSA
httpd WWW server. Clients access it using Mosaic and retrieve the
design information as active messages (see Figure 5 for a diagram
with the information flow). The component catalog and order forms
are written in HTML, the WWW document format derived from
SGML. The library is simulated with directories containing different
implementations of various class projects in CMOS technology. The
designs and associated documents were produced by the students of a
VLSI design course who used the Henry System. Each directory con-
tains files in various formats, including FrameMaker documents,
Spice3 simulation decks and Magic layouts. As a result, each
project’s information package is an active document, with files of
various types containing hyperlinks between them. The active mes-

Fig. 5. Information Flow in Transactions with the Component Library. The
figure shows the flow of information between the Henry design environment
and an Electronic Component library, from selection and ordering to
installation into the local project database.

M
os

ai
c

D
at

ab
as

e
C

om
po

ne
nt

HTTP

toolTool

HUB

Database
Project

Active

Browser

S
af

e-
Tc

l

generate
Active Message

1) The designer con-
nects to the compo-

nent library and
browses its contents

2) when an order is placed, an active message
is generated with the requested information

ht
tp

d

In
te

rp
re

te
r

Message

File
Temp

3) The active message is acti-
vated on the client side. Data
is extracted into temporary

files. Tools receive commands
to open the files for browsing
and later install them into the
project database via the HUB.

order

browse request

catalog

files

co
m

m
an

ds

HTTP

net. However, trustability of design services seems to be much harder
to ensure than secure access to information. In a simulation service
as the one described, the simulation files could easily be duplicated
and made accessible to a third party without knowledge from the cli-
ent. Separating the design process into independent design services’
providers may be much harder to implement than the separation from
design and manufacturing of VLSI circuits we observe today. There
is incomparably much more knowledge in a VHDL simulation model
of a system than in the fabrication masks.

ACKNOWLEDGMENT

We thank Prof. Jan Rabaey and Ole Bentz for the interesting dis-
cussions and ideas for this project.

REFERENCES

[1] Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk
Nielsen, and Arthur Secret. The World Wide Web.Communications of
the ACM, 37(8):76–82, August 1994.

[2] N. Borenstein and N. Freed. MIME (Multipurpose Internet Mail
Extensions) Part One: Mechanisms for Specifying and Describing the
Format of Internet Message Bodies. Technical report, Bellcore,
Innosoft, September 1993. Internet RFC 1521.

[3] Nathaniel Borenstein. Email With a Mind of its Own: The Safe-Tcl
Language for Enabled Mail. Submitted to Proceedings of ULPAA’94,
1994.

[4] Nathaniel S. Borenstein. Computational Mail as Network Infrastructure
for Computer-Supported Cooperative Work. InCSCW’92 Proceedings,
pages 67–73, November 1992.

[5] Patrick W. Brown. Digital Signatures: Are They Legal for Electronic
Commerce?IEEE Communications, 32(9):76–80, September 1994.

[6] CAD Framework Initiative, Inc., 4030 W. Braker Lane, Suite 550,
Austin TX 78759.CFI Architecture Revision, version 0.06 edition,
March 1994.

[7] William H. Davidow and Michael S Malone.The Virtual Corporation:
Structuring and Revitalizing the Corporation for the 21st Century.
Harper Collins Publishers, New York, 1992.

[8] International Organization for Standardization. Information
Processing, Text and Office Systems, Standard Generalized Markup
Language (SGML). International standard 8879. International
Organization for Standardization, Geneva, Switzerland, 1st edition,
1986.

[9] Robert Neches, Anna-Lena Neches, Paul Postel, Jay M. Tanenbaum,
and Robert Frank. Electronic Commerce on the Internet. Technical
report, USC/Information Sciences Institute, May 1994. URL http://
info.broker.isi.edu/0h/fast/articles/EC-on-Internet.html.

[10] John K. Ousterhout.Tcl and the Tk Toolkit. Addison-Wesley, 1994.
[11] M. T. Rose and J. L. Romine.The Rand MH Message Handling System:

User’s Manual. Department of Information and Computer Science,
University of California, Irvine, January 1985.

[12] M’ario J. Silva. Active Documentation for VLSI Design. PhD thesis,
University of California, Berkeley, 387 Soda Hall, Berkeley, CA 94720-
1776, December 1994.

[13] M’ario J. Silva and Randy H. Katz. Active Documentation for VLSI
Design. In30th ACM/IEEE Design Automation Conference, pages 654–
660, 1993.

[14] SunSoft. The ToolTalk Service. Technical report, SunSoft, Inc.,
SunSoft, Inc, 2550 Garcia Avenue, Mountain View, CA 94043, October
1992.

[15] Jay M. Tenenbaum, Cathy Medich, Allan M. Schiffman, and William T.
Wong. CommerceNet: Spontaneous Electronic Commerce on the
Internet. In COMPCON’95, pages 38–43. IEEE Computer Society
Press, February 1995.

sage with the information for a component is formatted as an
Enabled Mail message containing 1) a MIME composite message,
whose elements are the individual design data and documentation
files to be installed and 2) a Safe-Tcl script.

The advantages in terms of speed and work required to retrieve
this information in an environment where this setup could be in real
use are obvious. Once the standard protocols and appropriate tools
are in place, we can replace paperwork and many commands in a
large number of tools with a few button-clicks and the filling of an
electronic form.

The implementation effort to prototype this scenario using the
software of the Henry System was rather small, around two weeks.
During the implementation process, the main limitation we encoun-
tered was the unavailability of a tool capable of sending a large file,
such as a simulation request, to a HTTP server. The form-based user
interface of Mosaic when user input request is required is also some-
what limited. In our view, this is one argument for organizing design
systems as an ensemble of tools capable of accessing the WWW
instead of having one single tool that centralizes all the data presenta-
tion and communications with Internet services.

VII. CONCLUSIONS ANDDIRECTIONS FORFUTUREWORK

Electronic commerce networks will soon be a reality for a large
number of electronic companies. New services will be offered to
electronic system designers, based on the Internet standards. It will
also radically change many of the functions currently performed by
designers, such as collaboration between design groups, component
procurement, and CAD systems and services outsourcing.

Based on our experience with the Henry System, we advocate
using an open hypermedia based architecture for the new generation
of design systems integrated with electronic commerce networks.
The existing implementation however would have to be extended
and improved to provide real services to electronic designers. Some
of the HUB’s message exchange services could be implemented
using Tooltalk, the inter-tool communication protocols currently
endorsed by CFI. This would also make integration with commercial
tools and frameworks more easy. Henry, currently does not include
software for handling standard CAD interchange formats, encryption
and authentication, or to process electronic orders.

Many issues still need to be addressed before electronic commerce
is widely accepted among designers. Although our experience tells
us that it is possible to add the capability to exchange commands
between most design and documentation tools, we are still far from
being able to offer an open hypermedia system for electronic design
with a single consistent and easy to use interface to all the tools. We
anticipate a whole new generation of CAD tools and automated
design methodologies for design process involving multiple frame-
works and the use of information available to designers on the Inter-
net. Interaction with design systems needs to be based on a new
paradigm supported on an information-centric user interface. In par-
ticular, design management tools will need to be adapted to interact
with designers through active documents and manage the design data
and process based on the messages exchanged between the tools.

Although good privacy and authentication can be provided with
current software, these are only the initial security issues that need to
be addressed. Currently most design environments are maintained
behind firewalls that isolate their databases from the Internet Our
current work is on the development of an agent system for secure
exchange of active messages. The communications agent will be able
to give access to information and computational services available
behind firewalls by enabling the execution of selected operations
described in Safe-Tcl by authenticated users. The new secure com-
munications system will be used for building information systems for
virtual enterprises collaborating and sharing data through the Inter-

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

