
A Performance and Routability Driven Router for FPGAs Considering

Path Delays

Yuh-Sheng Lee Allen C.-H. Wu

Department of Computer Science, Tsing Hua University,

Hsin-Chu, Taiwan 30043, R.O.C.

E-mail: fmr824329, chunghawg@cs.nthu.edu.tw

Abstract
This paper presents a new performance and routabil-

ity driven router for symmetrical array based Field Pro-
grammable Gate Arrays (FPGAs). The objectives of
our proposed routing algorithm are twofold: (1) im-
prove the routability of the design (i.e., minimize the
maximumrequired routing channel density) and (2) im-
prove the overall performance of the design (i.e., mini-
mize the overall path delay). Initially, nets are routed
sequentially according to their criticalities and routabil-
ities. The nets/paths violating the routing-resource
and timing constraints are then resolved iteratively by
a rip-up-and-rerouter, which is guided by a simulat-
ed evolution based optimization technique. The pro-
posed algorithm considers the path delays and routabil-
ity throughout the entire routing process. Experimental
results show that our router can signi�cantly improve
routability and reduce delay over many existing routing
algorithms.

1 Introduction
Because of their low manufacturing time and cost,

Field Programmable Gate Arrays (FPGAs) have be-
come the most popular Application-Speci�c Integrated
Circuit (ASIC) for fast system prototyping. One im-
portant class of many commercial FPGAs are RAM-
based FPGAs, such as Xilinx's, which consist of two-
dimensional arrays of Con�gurable Logic Blocks (CLB-
s), rows and columns of pre-de�ned routing channels,
and many programmable switches.

Since FPGA wiring segments are pre-fabricated,
routing FPGAs can be viewed selecting and activat-
ing a subset of programmable switches. This is very
di�erent from routing custom layouts, such as standard
cells or mask-programmed gate arrays, in which wiring
segments and vias can be drawn almost arbitrarily. Be-

�Supported by the National Science Council of R.O.C. under

contract no. NSC-84-0404-E-007-014

cause of the limited interconnect resources, a key prob-
lem in the detailed routing of FPGAs is that routing
of one connection may block another. Thus, common
routing approaches for custom layouts may not suitable
for FPGAs.

CGE [2] was the �rst work targeted to the detailed
routing of RAM-based FPGAs. It decomposes each net
into a number of two-terminal nets and route them in
minimum distance coarse paths. The main goal is to
distribute the connections among the channels so that
the maximum channel density is minimized. SEGA [8]
addresses the allocation of wiring segments to connec-
tions in a way that matches the lengths of the wiring
segments to the lengths of the connections. Conse-
quently, long connections do not su�er from long prop-
agation delay through multiple programmable switches.

Several graph-based approaches [13, 1] have been
proposed to solve the detailed routing of RAM-based F-
PGAs. In addition, a simulated-evolution based router
[3] has been developed for routing of RAM-based FP-
GAs. This approach reports signi�cant reductions on
the required routing tracks at the expense of longer
wiring delay. All of the above approaches focus main-
ly on minimizing the channel density to improve the
routability of the designs. One exception was proposed
in [4] which applies the limit-bumping algorithm to
distribute slacks for performance-driven routing of F-
PGAs.

In this paper, we present a new performance and
routability driven router TRACER-fpga PR for sym-
metrical array based FPGAs. The routing is performed
in two stages: initial routing and rip-up-and-reroute.
During the initial routing stage, nets are routed se-
quentially according to their criticalities and routabili-
ties. During the second stage, a two-phase rip-up and
rerouter is used to resolve routing-resource violation-
s and timing violations. The rip-up-and-rerouter re-
solves the violations using a simulated-evolution-based
optimization technique. This technique has been also
successfully applied to various CAD applications such
as placement and routing [5, 10]. Two new cost func-
tions for the selection of the nets to be ripped up have
been developed for the resolution of routing-resource
and timing violations. We have conducted a series
of experiments to demonstrate the e�ectiveness of our

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

router.
The rest of paper is organized as follows. Section

2 describes the graph model and problem formulation.
Section 3 presents the routing algorithm. In Section 4,
we present the experimental results. Finally, Section 5
provides concluding remarks.

2 Models and Problem Formulation
2.1 The FPGA Architecture

A typical RAM-based FPGA consists of three types
of components: (1) con�gurable I/O blocks (IOBs), (2)
con�gurable logic blocks (CLBs), and (3) interconnect
resources. A CLB pin can be connected to the wiring
segments (tracks) in each routing channel via the pro-
grammable switches in the connection box. Wiring seg-
ments may be merged to form a longer connection by
using the programmable switches in the switch boxes.

Ideally, both connection and switch boxes can be ful-
ly
exible. However, experimental results in [12] show
that when the
exibility of switch boxes equals three
(Fs=3) and the connection boxes are fully
exible so
that reasonable
exibility of routing resources can be
achieved. Thus, the architecture we are considering
in this study has the following features: (1) the con-
nection boxes are 100%
exibility, (2) the switch box-
es
exibilities are three, and (3) all wire-segments are
single-length segments.

2.2 The Graph Model
We model the interconnect resources as a graph in

which each vertex represents a wire-segment or a CLB
pin and each edge represents a programmable switch.
For example, in Figure 1 shows a CLB with three pin-
s, P1, P2 and P3, which are represented by vertices,
V P1, V P2 and V P3, respectively. The �gure also shows
a horizontal routing channel with three wire-segments
(W1, W2 and W3), a vertical channel with three wire-
segments (W4, W5 and W6), a connection box with �ve
switches, and a switch box with four switches. Each
wire-segment is mapped to a vertex. If there is a pass-
transistor switch connected to any two pins and/or
wire-segments, then an edge is added between the two
corresponding vertices.

CLB

IN1 OUT

Switch Matrix

Connection Box

W1

W2

W3

W4 W5 W6

P1 P2

(a)

IN2

P3

VP1 VP2

VW1 VW2 VW3

VW4

VW5

VW6

(b)

VP3

e1
e2

e3

e4
S1 S2

S3 S4

Figure 1: The graph model: (a) the interconnect struc-
ture, (b) the graph model.

2.3 Problem De�nition
The performance-driven FPGA routing problem is

de�ned as follows: Given a CLB netlist, its placemen-
t, and a timing constraint, perform routing for all nets

such that the maximum routing channel density is min-
imized subject to satisfying the timing constraint.

We formulate the routing problem as �nding a set of
disjointed subgraphs (trees) in which each tree connects
all terminals of a net. To be a solution to the routing
problem, all trees must be disjointed.

2.4 Considerations and General Approach
The primary consideration in FPGA routing is to

produce a routable design under the resource con-
straints. An un-routable design is an infeasible design
regardless how fast the timing can be achieved. In terms
of the overall performance improvement, conventional
methods usually impose higher weights on nets along
the critical paths during the routing process so that the
delays on these critical paths can be improved. Howev-
er, when critical paths are improved some non-critical
paths may have to be routed over a longer distance
which may violate the timing constraints or even re-
sult in an un-routable design. To guarantee a timing-
violation free FPGA design, path delays and routability
information have to be taken into account throughout
the entire routing process.

Conventional physical design approaches divide the
routing problem into two subproblems: global rout-
ing and detailed routing. However, this division leads
to suboptimality even if both subproblems are solved
optimally. Furthermore, decomposition of a multiple-
terminal net into two-terminal subnets also results in
poor routing quality. Therefore, the decomposition of
multiple-terminal nets should be avoided as much as
possible.

By taking into account the above considerations,
we use a one-step routing approach to solve the FP-
GA routing problem. The routing is performed in two
stages: initial routing and rip-up-and-rerouting.

During the �rst stage, we compute the slacks and
the routing densities of the paths based on a minimal
Steiner tree model. Nets are then routed sequentially
based on their criticalities and routing densities.

During the second stage, two types of con
icts,
routing-resource violations and timing violations, are re-
solved iteratively. Within an iteration, some nets are
ripped-up and rerouted under the routing-resource and
timing constraints. The selection of nets for ripping-
up is dependent on two factors: the criticalities of nets
and the routing densities of the regions associated with
these nets. The rip-up and reroute procedure is guided
by a simulated evolution optimization technique.

3 The TRACER-fpga PR
3.1 Path Enumeration, Slack Calculation,

and Routing Density Estimation
In the �rst step, TRACER-fpga PR generates all sig-

nal paths of a given CLB netlist. We use a breadth-�rst
search method to enumerate all paths in a design

In the second step, TRACER-fpga PR computes the
slacks for all paths. We use the Elmore delay model [11]
to approximate the signal delay in RC tree network-
s. To route an m-terminal net in minimum distance
is equivalent to �nding a minimum-length tree on the
graph i.e., a Steiner Tree Problem (STP). We use the
multiple-component growth wave expansion algorithm

[6] to �nd an approximation of the Steiner Tree. After
�nding the Steiner Tree of a net, the number of wire-
segments, connection boxes, and switch boxes through
which the net passes can be determined. Subsequently,
the RC tree networks of nets are constructed and wiring
delays of nets are computed. After computing the de-
lays of all nets, the path slacks are then computed.

In the third step, TRACER-fpga PR estimates the
routing-resource competition of each net, de�ned as the
routing density of the minimum rectangular region that
covers all the connecting nodes of the net. After ap-
plying the multiple-component growth wave expansion
algorithm to �nd an approximation of the Steiner Tree
for each net, the routing region for each net, and the
number of used wire segments in each region, the rout-
ing density of each region can be obtained.

3.2 Initial Routing
The initial router connects nets one at a time based

on their criticalities. The criticality of a net ni,
Crit(ni), is de�ned as follows:

Crit(ni) = �1 � (MS � Sla(ni)) + (1� �1) �Den(ni);

where �1 is a coe�cient, MS is the maximum slack
value of all nets, Sla(ni) is the slack of net ni, and
Den(ni) is the routing density of the region covering all
the connecting nodes of net ni. The net with a higher
criticality score means that the net is critical and/or
di�cult to route.

The initial router �rst sorts the nets in descending or-
der according to their criticality scores. It then uses the
multiple-component growth wave expansion algorithm
to �nd an approximation of the Steiner Tree. The initial
router connects one net at a time starting from the most
critical one. While connecting a net, the initial router
will consider the existence of already-routed nets and
�nd a non-blocking path for the net without violating
the routing-resource limitations. However, if there does
not exist such a non-blocking path, the router will try to
�nd a path with a minimal number of routing violation-
s. Consequently, some wiring segments and/or switches
may be occupied by more than one net. Those routing-
resource violations will be resolved by the rip-up and
rerouter. A pseudo code description of the algorithm is
as follows:

Algorithm:Multiple Component Growth
Let V = fv1; v2; ::; vng;
if jV j � 1, then Return;
Initialize component Gi (fvig,�), 1 � i � n;
r n;
while r > 1 do

do expansions on existing fGig
until two components meet;
let these two components be Gm and Gn, then
Gm Gm [Gn [S(Gm;Gn), Gn �, r r - 1;

endwhile

This algorithm is an extension of the classical Lee Al-
gorithm [7] for maze routing. Initially, every component
is just responsed as a pin vertex. A component is then
expanded by adding to it one or more adjacent vertices.
The choice of which vertices to be included during each
expansion is made in a breadth-�rst fashion.

In our implementation, the use of connection boxes
to change tracks is not allowed. Hence, during the ex-
pansion process the algorithm will check the legitimacy

of the spanning connection between two components.
This can be done by simply checking the intermediate
components along the spanning connection. If there is
an I/O-pin intermediate component, then it is not a le-
gal expansion. Otherwise, it is a legal one. For example,
in Figure 1(b) the expansion between V P1 and VW5 is
via e1, V W1, e2, V P2, e3, VW2, and e4. Because V P2
is an I/O-pin component, the expansion from VW1, e2,
V P2, e3, to VW2 is an illegal expansion.

S(Gm; Gn) denotes the procedure for connection ex-
pansions between two components. As the expansion
proceeds, a value is associated with the newly includ-
ed vertex to indicate the distance from the vertex to
the original unexpanded components. Whenever two
components are expanded into each other, a spanning
connection between these two original components is
found by backtracking. The two components along with
their connection are merged and treated as a single com-
ponent for later expansion. The process iterates until
there is only one component left, i.e., all pins have been
connected together.

3.3 Ripping-up and Rerouting
3.3.1 Resolution for Routing-Resource-Viola-

tions

Upon completion of the initial routing, if the result
is routing-resource violation free, then the design will
pass to the second phase of ripping-up and rerouting
for timing-violations resolution. Otherwise, the rip-up-
and-rerouter resolves the routing-resource-violations us-
ing a simulated-evolution based optimization technique.

The essential issue is how to select the nets to be
ripped up. It is intuitive that a net causing a lot of
violations is a good candidate for ripping up. However,
such a straightforward approach may lead to an inferior
solution. Simulated evolution provides a randomized
scheme that allows both good and bad nets to be ripped
up. A bad net has a greater chance to be ripped up
while a good net has a small but nonzero chance to be
ripped up. A simulated-evolution rip-up and reroute
procedure is shown as follows:

Algorithm: Rip-up and Reroute
while (Not Time Out && Not Feasible) do

Score every net;
Normalize net scores;
for each net ni

if (normized score(ni) � random number(0,1))
Rip up net ni;

for each ripped up net ni
Reroute net ni
using the multiple-component growth algorithm;

endwhile
if (Time Out) return(FAILURE);
return(SUCCESS);

end

A net is scored according to its connection length
and the number of violations it involves as follows:

score(ni) = �2 �

actual lengthi

estimated min lengthi
+

�1 � number violationsi;

where �2 and �1 are two coe�cients. The worse a net ni
is routed, the higher score(ni) becomes. Normalization
is done such that all normalized scores have values be-
tween 0.05 and 0.95 with the best net being scored 0.05
and the worst 0.95. The computation is as follows:

norm score(ni) = 0:05 +

0:9 �
score(ni)� lowest score

highest score� lowest score
:

To determine whether a net should be ripped up, a
random number between 0 and 1 is generated and com-
pared with its normalized score. If the random number
is smaller, the net is ripped up. The set of ripped up
nets is then rerouted one at a time starting with the
worst one. Rerouting is done using the same multiple
component growth algorithm except that the presence
of already routed nets is no longer ignored. This is ac-
complished by taking into account, in addition to the
distance, the con
icts over the usage of interconnect re-
sources during the calculation of expansion cost. That
is, an expansion into a vertex which has been occupied
by some other nets is only possible at a very high cost.
By expanding into an occupied vertex, we e�ectively
do not resolve the violation. Instead we hope that the
occupying nets will be ripped-up and rerouted during
later iterations.

After a feasible solution is found, a routing-resource
violation free routing solution is found. However, there
is no guarantee that all violations will be resolved.
To prevent TRACER-fpga PR from looping in�nitely,
we set a limit on the CPU time using the Time Out
function. If the routing is still infeasible after a user-
speci�ed period of time, TRACER-fpga PR will report
FAILURE and exit.

3.3.2 Resolution for Timing Violations

In the second phase, TRACER-fpga PR resolves the
timing violations of all paths. Upon the completion of
the �rst phase, the actual number of wire segments and
the number of switches each net has passed through are
known. Therefore, we can compute the actual wiring-
delay for each net, and thus the path delays as well as
the path slacks. Some paths/nets with negative slack
values are called timing violations which will be resolved
using the same simulated-evolution-based ripping-up-
and-rerouting procedure.

Again, the main issue is how to select the nets to
be ripped up. Let us �rst consider the two types of
nets that should be ripped up and rerouted in order to
resolve timing violations. The �rst type is nets along
a path violating the timing constraint These are good
candidates for ripping up because rerouting these nets
into a shorter routing distance results in a shorter net
and path delay. The other type is the nets with a large
positive slack, i.e., those nets that can tolerate more
routing delays under the timing constraint. By rerout-
ing these nets in detour fashion, some routing resources
in the congested area can be forced for reconnecting the
critical nets.

By taking into account the above considerations, a
net is weighted according to two factors: the delay sen-
sitivity of the net and the routing-density sensitivity of
the net, which is computed as follows:

Score(ni) = �3 �DS(ni) + (1 � �3) �RDS(ni);

where �3 is a coe�cient, DS(ni) is the delay sensitivity
of net i, and RDS(ni) is the routing-density sensitivity
of net ni.

The delay sensitivity of a net ni,DS(ni), is computed
in twofold as follows:
1. A net with a negative slack value:

DS(ni) =
t(ni)� t0(ni)

j Slack(ni) j
;

2. A net with a positive slack value (including a zero
value):

DS(ni) =
Slack(ni)

t(ni)� t0(ni)
;

where Slack(ni) is the slack of net ni, t(ni) is the actual
delay of net ni, and t0(ni) is the estimated minimum
delay of ni.

For a net ni with a negative slack value, a large delay
sensitivity value means that it is more e�ective for delay
reduction by rerouting this net in a shorter distance.
On the other hand, for a net ni with a positive slack
value, a large delay sensitivity value means that it is
e�ective to spare more routing resources for the critical
nets because this net can tolerate more wiring delays
by rerouting it in a more detour way.

The routing-density-sensitivity of a net ni, RDS(ni),
is computed twofold as follows:
1. A net with a negative slack value:

RDS(ni) =
Total Routing(ni)

Used Routing(ni)
;

2. A net with a positive slack value (including a zero
value):

RDS(ni) =
Used Routing(ni)

Total Routing(ni)
;

where Total Routing(ni) is the total number of rout-
ing resources in the region which covers all connecting
nodes of net ni, and Used Routing(ni) is the total num-
ber of used routing resources in the region which covers
all connecting nodes of net ni.

For a net ni with a negative slack value, a large
routing-density sensitivity value means that it has high-
er chance to reroute this net in a shorter distance. On
the other hand, for a net ni with a positive slack value, a
large routing-density sensitivity value means that it has
higher chance to reroute this net in a detour way, i.e.,
not pass through this dense region. Therefore, some
rerouting resources in this dense region can be made
available for some other critical nets.

4 Experimental Results
We have implemented TRACER-fpga PR in the C

programming language on a SUN Sparc10 workstation.
We have tested our proposed algorithm on the set of
benchmarks reported in SEGA [8]. In all experiments,
we set �1 = 0.75, �2 = 1, �3 = 0.75, and �1 = 50. In
addition, we set FS = 3 and FC = W (as in Reference
[8]), where W is the number of tracks (wire segments) of
each channel. FS denotes the
exibility of a switch box,
which is de�ned as the number of connections for each
wiring segment entering the switch box. FC denotes the

exibility of the connection box, which is de�ned as the
number of tracks to which each CLB pin can connect.

Table 1: Comparisons between SEGA, GBP, and
TRACER-fpga PR (Ours).

Circuits CGE/SEGA GBP Ours

name trks CPU trks CPU trks CPU

alu4 15 77s 14 97s 11 207s
apex7 13 23s 11 11s 8 30s
term1 10 9s 10 7s 7 16s

example2 17 54s 13 26s 10 51s

too large 12 40s 12 35s 9 75s
k2 17 161s 17 251s 14 349s
vda 14 64s 13 68s 11 98s

9symml 10 13s 9 9s 6 56s
alu2 11 31s 11 27s 9 66s

Table 2: Comparisons between SEGA and TRACER-
fpga PR (Ours).

Circuits SEGA Ours

name Trks Delay Trks Delay Trks Delay

alu4 15 1392 15 1096 11 1037

apex7 13 339 13 258 8 299
term1 10 129 10 103 7 136

example2 17 417 17 202 10 296

too large 12 390 12 282 9 476
k2 17 1278 17 1059 14 1483

vda 14 693 14 541 11 743
9symml 10 320 10 239 6 313
alu2 11 947 11 707 9 714

We conducted two set of experiments. In the �rst ex-
periment, we compared the maximum required routing
channel density of designs generated by CGE/SEGA
[2, 8],GBP [13], and TRACER-fpga PR. In all experi-
ments, we set the timing constraint to a large number so
that the experiment only focused on the maximumrout-
ing channel density minimization. Table 1 shows the
comparative results, indicating that TRACER-fpga PR
uses fewer routing tracks than that of both CGE/SEGA
(we picked the best results from CGE [2] and SEGA [8])
and GBP. Note that the routing solution of circuit z03
is not included in the table because our router runs in-
to a memory problem when performing routing on this
circuit (> two-million paths).

In the second experiment, we compared the maxi-
mum required routing channel densities and the worst
path delays generated by SEGA [8] and TRACER-
fpga PR. For each benchmark circuit, TRACER-
fpga PR was tried on two W values: (1) the minimum
W achieved by SEGA and (2) the minimumW achieved
by TRACER-fpga PR. Net delays are obtained directly
from the timing analyzer horowitz embedded in SEGA.
The path delays were then computed and the worst case
path delay was selected as the maximum path delay
of the design. Table 2 shows the comparative results.
The results indicate that under the sameW constraint,
TRACER-fpga PR outperforms SEGA in all cases. In
addition, under the minimumW constraint achieved by
TRACER-fpga PR, TRACER-fpga PR produces bet-
ter results six out of ten circuits compared to that of
SEGA.

5 Conclusions
We have presented a new performance and routabili-

ty driven router for symmetrical array based Field Pro-
grammable Gate Arrays (FPGAs). A two-phase rout-
ing algorithm has been developed which takes into ac-
count path delays and routability throughout the entire
routing process. Experimental results show that our
routing algorithm can signi�cantly reduce the number
of routing tracks. Furthermore, our router can produce
routing solutions with faster timing than those gener-
ated by SEGA under the same track constraint (W).
However, under more restricted track constraints (i.e.,
small number of tracks), our router produces design-
s with longer delays, in some cases, caused by routing
some nets in detour fashion to the relax dense routing
areas. Nevertheless, the track e�ciency makes it suit-
able for low-speed applications such as hardware emu-
lation.

References
[1] M. J. Alexander and G. Robins, \An Architecture-

Independent Uni�ed Approach to FPGA Routing," Proc.

of ACM/SIGDA Physical Design Workshop, 1994.
[2] S. Brown, J. Rose, and Z. G. Vranesic, \A Detailed

Router for Field-Programmable Gate Arrays," IEEE

Trans. on CAD, Vol. 11, No. 5, pp. 620-628, May 1992.
[3] C.-D. Chen, Y.-S. Lee, A. C.-H. Wu, and Y.-L. Lin,

\TRACER-fpga: A Router for RAM-Based FPGA's",
IEEE Trans. on CAD, Vol. 14, No. 3, March 1995.

[4] J. Frankle, \Iterative and Adaptive Slack Allocation for

Performance-driven Layout and FPGA Routing," Proc.

of 29th DAC, pp. 536-542, 1992.
[5] R. M. Kling and P. Banerjee, \ESP: Placement by Sim-

ulated Evolution," IEEE Trans. on CAD, Vol. 8, pp. 245-
256, March 1989.

[6] E. S. Kuh and M. Marek-Sadowska, \Global Rout-
ing," Layout Design and Veri�cation, T. Ohtsuki, editor,

North-Holland, 1985.
[7] C. Y. Lee, \An Algorithm for Path Connections and its

Applications," IRE Trans. on Electronic Computers, Vol.
EC-10, pp. 346-365, Sept. 1961.

[8] G. G. Lemieux and S. D. Brown, \A Detailed Rout-

ing Algorithm for Allocating Wire Segments in Field-

Programmable Gate ARRAYS," Proc. of ACM/SIGDA

Physical Design Workshop, pp. 215-226, 1993.
[9] F. D. Lewis and W. C.-C. Pong, \A Negative Reinforce-

ment Method for PGA Routing," Proc. of 30th DAC, pp.

601-605, 1993.
[10] Y.-L. Lin, Y.-C. Hsu, and F.-S. Tsai, \SILK: A Sim-

ulated Evolution Router," IEEE Trans. on CAD, Vol. 8,

No. 10, pp. 1108-1114, Oct. 1989.
[11] P. Pen�eld and J. Rubinstein, \Signal Delay in RC Tree

Networks," Proc. of 19th DAC, 1981.
[12] J. Rose and S. Brown, \Flexibility of Interconnection

Structures for Field-Programmable Gate Arrays," IEEE

J. of Solid-State Circuits, Vol. 26, No. 3, pp. 277-282,

1991.
[13] Y.-L. Wu and M. Marek-Sadowska, \Graph Based

Analysis of FPGARouting," Proc. of Euro-DAC, pp. 104-
109, 1994.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

