
Equivalence Checking of Datapaths

Based on Canonical Arithmetic Expressions

Zheng Zhou Wayne Burleson

Department of Electronic & Computer Engineering

University of Massachusetts at Amherst, MA 01003

fzhou,burlesong@ecs.umass.edu

Abstract| Numerous formal veri�cation systems have
been proposed and developed for Finite Sate Machine based

control units (notably SMV[19] as well as others). How-
ever, most research on the equivalence checking of datap-
aths is still con�ned to the bit-level. Formal veri�cation
of arithmetic expressions and synthesized datapaths, espe-
cially considering �nite word-length computation, has not
been addressed. Thus formal veri�cation techniques have

been prohibited from more extensive applications in numer-
ical and Digital Signal Processing.

In this paper a formal system, called Conditional Term
Rewriting on Attribute Syntax Trees (ConTRAST) is de-
veloped and demonstrated for verifying the equivalence be-
tween two di�erently synthesized datapaths. This result

arises from a sophisticated integration of attribute grammars,
which provide expressive data structures for syntactic and
semantic information about designed datapaths, and term
rewriting systems, which transform functionally equivalent
datapaths into the same canonical form. The equivalence

relation is de�ned as a congruence closure in the rewriting
system, which can be generated from arbitrary axioms, such
as associativity, commutativity, etc. in a certain algebraic
system. Furthermore, the e�ect of �nite word-lengths and
their associated arithmetic precision are also considered in
the de�nitionof equivalence classes. As a particular applica-

tion of ConTRAST, a formal veri�cation system is designed
to check equivalence under precision constraints. The re-
sults of initial DSP synthesis experiments are displayed,
where two di�erently implemented IIR �lters in direct II
and cascaded architectures are automatically compared un-

der given precision constraints.

Keywords|Design Veri�cation, High-Level Synthesis and
System-Level Design Aids

I. Introduction

The architectural model at register transfer level is rep-
resented in terms of control units (or FSMs) and datapaths,
which consist of a set of components, such as ALUs, multi-
plexors, latches and shifters. The datapath is speci�ed by a
block of arithmetic expressions in the behavioral domain.
Because of the close relationship between language con-
structs and synthesis algorithms, semantically equivalent
descriptions that di�er syntactically may result in di�er-

ent designs. So the behaviors of a datapath can be opti-
mized by applying a set of transformation rules on its cor-
responding arithmetic expressions [12] [20]. An arithmetic
expression can be represented in many di�erent forms. For
example, even just applying a single commutativity axiom

of the form x+y = y+x on the expression a1+a2+���+an�1,
we have 2n�1 di�erent forms.

The wide variety of descriptions of a datapath demand
that EDA tool designers provide a canonical intermedi-
ate representation for preserving the original behavior of
the input HDL speci�cation, while allowing the addition
of synthesis results through various re�nements, bindings,
optimizations and mappings. Equivalence-checking is an
essential problem in the development of such a canonical
representation, and conversely, canonical forms are directly
applied to verify equivalence.

In computational theory, a fundamental problem is to
decide if two expressions are equivalent, and its com-
putability varies with its actual de�nition [11]. Its related
problems have been widely discussed, such as Simple Word

Problem [17], Common Subexpression Problems [10], and
Conuence of Rewrite Systems [9].

In digital computation, equivalence between two datap-
aths is not completely identical to the equivalence between
two arithmetic expressions, since real numbers may not be
exactly expressed in a limited wordlength such that basic
algebraic properties do not exist. In formal hardware veri�-
cation, however, the equivalence-checking problem has not
been solved, even neglecting the issue of �nite wordlength
in datapaths. Related previous works are reviewed below.

1. at the lower level: equivalence is decided by enu-
merating all possible values in a canonical representa-
tion, which is derived from some particular expansion,
such as Shannon expansion-based Binary Decision Di-
agrams (BDDs) [4], Multi Terminal BDDs (MTB-
DDs) [8] and Algebraic Decision Diagrams (ADDs) [3],
Reed-Muller expansion-based Function Decision Dia-
grams (FDDs) [15], monomial expansion-based Binary
Moment Diagrams (BMDs) [5], and linear expression-
based Edge-valued BDDs (EVBDDs) [18]. Except
BMDs, the space complexity of these approaches is ex-
ponential even for representing simple arithmetic ex-
pressions, such as a1�b1. Moreover, the e�ect of �nite
word-length on numerical quantization and arithmetic

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

Constructor
Syntax−Tree

Attribute
Yacc

Rewriting Rules

exp1 A Set of Equations An Ordering

Rewrite Rule
Generator

Evaluation
Attribute

Yes/No

Checker

AST
Equivalence Constraints

exp2

Parsing Rules

Syntax−Tree
Rewriting System

normal_exp1 normal_exp2

Fig. 1. Overview of ConTRAST

operations is ignored.
2. at the higher level: an architectural implemen-
tation is described in the form of Control-Dataow
graphs (CDFGs)[12]. The syntactic variances on
arithmetic expressions can be minimized by using
the most parallel form, such as a pure dataow
graph. Chaiyakul's Assignment Decision Diagrams
were based on this idea [7].

To �nd an e�cient method for representing and manip-
ulating arithmetic expressions, we move out of the scope
of these enumeration-based or graph isomorphism-based
approaches to explore a symbolic representation based on
attribute grammars [16] and term rewriting systems [9].
Thus a new formal approach, called Conditional Term

Rewriting on Attribute Syntax Trees (ConTRAST), has
been developed[22]. Its architecture is shown in Fig. 1. Its
basic idea and main feature will be discussed in this paper.

In ConTRAST, two powerful computation approaches:
attribute grammars and term rewriting systems, are inte-
grated in a sophisticated way:

1. an attribute grammar is used to represent arithmetic
expressions, the attributes can be used as a repository
for storing semantic information during compilation
and design information of corresponding datapaths in
synthesis.

2. a term rewriting system is designed to translate se-
mantically equivalent expressions that di�er syntac-
tically into the same canonical form. The equiva-
lence relation is de�ned as a congruence closure in the
rewriting system, which can be generated from the
application-related axioms and partial orderings.

To easily embed ConTRAST with other presently used

design and veri�cation tools, speci�c symbolic processing
facilities, such as LISP or uni�cation functions, etc. are
NOT used in its term rewriting system. Instead, the only
facilities used are common UNIX utilities: Lex and Yacc.
1. Make a Yacc speci�cation �le, which de�nes a Con-
text Free Grammar (CFG) of arithmetic expressions,
and speci�es how the attributes are calculated;

2. Use the LALR parser generated from Yacc to ful�ll
the uni�cation and substitution tasks, thus determin-
ing which rewrite rules should be called.

The paper is organized as follows. In section 2 we de�ne
the equivalence on arithmetic expressions, exhibit di�erent
de�nitions and the computability of their corresponding
decision problems, and decide a proper equivalence rela-
tion for specifying equivalent datapaths in real designs. In
section 3 attributed syntax trees are introduced to describe
expressions or datapaths and their particular attributes
and attribute evaluation rules are discussed. Then sec-
tion 4 shows how to construct a conditional-term rewriting
system on attributed syntax trees, and provides essential
theorems that ConTRAST is terminating and conuent,
which ensure that any rewriting will terminate in a canon-
ical form. In section 5, we demonstrate the power of this
formal system on a simple but novel example { automati-
cally checking the functional equivalence of two di�erently
implemented IIR �lters under given precision constraints
based on canonical arithmetical expressions. Finally, a
simple summary about this representation is presented,
and possible integration with SMV is suggested.

II. Equivalence Relations and Their

Computability

Similar to word problems[17] in abstract algebra, the
general problem for checking equivalence between arith-
metic expressions is unsolvable. So a proper de�nition
should be determined �rst based on its computability.
If de�ned as semantic equivalence, i.e., two expressions

have equivalent mathematical meaning, the complexity of
equivalence checking is very sensitive to the arithmetic sys-
tem to be used[14]. For example, (N;+;�) is undecidable,
but (R;+;�) is decidable. So automatically deciding se-
mantic equivalence between two arithmetic expressions is
not feasible in practice.
For syntactic equivalence, i.e., two expressions can be

matched as two strings, the complexity is O(n2)[1], but
such equivalence is not powerful enough to cover the design
space generated by synthesis transformations.
If the equivalence relation is de�ned as a congruence clo-

sure on a set of equations, i.e., an equality t1 = t2 logi-
cally follows from a set of equations E = fs11 = s12; s21 =
s22; :::; sk1 = skkg, its complexity is very sensitive to the
de�nition of operators [6]. For example, associative � is
undecidable, but commutative � is EXPSPACE-complete.
By adding a (strict) partial order on the set of constants

and operation symbols in equations, we have a congruence

closure in a rewriting system, i.e., an equality t1 = t2 log-
ically follows a set of rules: R = fs1 ! s2; :::; sl ! smg.
Since the reduction order � provides strong guidance to
the deduction mechanism and drastically limits the search
space of equivalent consequences that need to be com-
puted, many unsolvable problems above become decidable.
Moreover, term rewriting systems have been developed and
used in many AI systems. So we conclude that the equiva-
lence between two arithmetic expressions should be de�ned
and checked based on this de�nition.

A. Attribute syntax trees(ASTs) for arithmetic expressions

To represent possibly very large size equivalence classes
of arithmetic expressions, and to store complicated design
information on each construct of expressions, we select
attribute grammars as data structures for arithmetic ex-
pressions such that the attributes can be used for storing
semantic information during compilation and design infor-
mation of corresponding datapaths in synthesis. For exam-
ple, based on an unambiguous CFG in [2], an arithmetic
expression can be partially represented as a syntax tree,
and precision information can be attached to each node in
the syntax tree, thus resulting in an AST. As an example,
�(a � b � c) + b � c and its ASTs are given in Fig. 2.

An attribute can represent anything the user wants, and
can be passed up and down to derive other properties. In
ConTRAST, all attributes are simply classi�ed based on
their possible usages:

1. Basic attributes are the information needed to distin-
guish expressions in a symbolic representation such
that algebraic equivalence can be determined. For
example, v:Id is a unique identi�er for a node v;
v:Signature denotes the equivalence classes of v, and
v:Sym represents the token appearing at this node, etc.

2. Auxiliary attributes are application-related informa-
tion such as precision, latency, and cost, etc. These

are used for high-level synthesis and veri�cation. For
example, to verify arithmetic transformations in digi-
tal �lter design under given precision constraints, the
attributes: v:WLength, v:FLength and v:Err, are at-
tached to each node to represent the wordlength, frac-

x

+

x

c x

c

a

b

(a)

{ Val = 8,
 Err = 0.042,
 Sign = ’0’ }

{ Val = 2,
 Err = 0.01,
 Sign = ’1’ }

{ Val =4,
 Err = 0.001,
 Sign = ’1’ }

{ Val= 16,
 Err = 0.168,
 Sign = ’1’ }

{ Val = 24’,
 Err = 0.126,
 Sign = ’1’ }

{Val = 8,
 Err = 0.042,
 Sign = ’1’ }

{ Val = 2,
 Err = 0.01,
 Sign = ’0’ }

{ Val =3,
 Err = 0,
 Sign = ’0’ }

+

x

xa

b c

(b)

{ Val =3,
 Err = 0,
 Sign = ’0’}

{ Val =4,
 Err = 0.001,
 Sign = ’0’ }

{ Val= 16,
 Err = 0.168,
 Sign = ’1’ }

{ Val = 24’,
 Err = 0.126,
 Sign = ’1’ }

{Val = 8,
 Err = 0.042,
 Sign = ’0’ }

{ Val = 2,
 Err = 0.01,
 Sign = ’0’ }

Fig. 2. Attribute syntax trees(ASTs) of �(a� b� c)+ b� c, where Err
is an attribute for storing accumulated roundo� error. (a). an
uncanonical form: ((�c)�(�b))+((�b)�c)�a, (b). the canonical
form under the lexicographic path ordering: ((b � c)+ (�(a � (b �
c))))

tional length and roundo� errors.

The evaluation procedures of attributes or values on each
node are speci�ed in the form of subroutines, which de-
pend on which attribute is manipulated, and what direc-
tion is followed. For example, to determine the equivalence
class of an expression at node v, at �rst we need to invoke
a rewriting system to transform it into the normal form,
then use the following procedure (TABLE I) on the basic
attribute v:signature.

TABLE I

Procedure Classifying

Step 1 if ((v:Lo== NIL) && (v:Hi == NIL))
v:signature= h1(v:sym);

else v:signature= h2(v:sym; s1; s2);
/* calculating the signature of v from v:sym
and v's subexpressions */

Step 2 if (v:signature== NIL) create new class(v);
else find old class(v);

Step 3 Return the signature of v.

To analyze the worst-case e�ect of �nite wordlength, we
have a procedure (in TABLE II) to calculate v:Val and
v:Err.

TABLE II

Procedure Rounding

Step 1 if (v:Val< 2) L = v:WLength;
else L = v:FLength;

Step 2 Temp = v:Val� 2L�1;
Step 3 ITemp = floor(Temp);

/* the largest integer not greater than v:Val */
Step 4 RND = jTemp� ITempj;
Step 5 if (RND >= 0:5) ITemp = ITemp+ 1;

Step 6 v:Val = (ITemp=2L�1);
v:Error =MAXfv:Error; RNDg;

III. Term Rewriting on ASTs

To achieve a canonical representation of ASTs, we use a
novel conditional term rewriting technique with LR parsing
algorithms: if a string of grammar symbols, e.g. Ai+Bi on

a stack can be reduced to an equivalence class represented

by Ai+1, and attributes on Ai, Bi and + satisfy the con-

dition of a rewrite rule, then Ai + Bi is replaced with the

normal form [22].

In general, a rewrite system (E;�) can be generated
from a set of equations E and an ordering function �

given by users. In the current implementation of Con-
TRAST, the equations are speci�ed as axioms in an alge-
braic �eld: Commutative law, Associative law, Distributive
law, Identity law, and Inverse law. The ordering function
is lexicographic path ordering (lpo)[9], which is based on
well-founded orderings of vocabularies.

To ensure that any rewriting will terminate in a normal
(or canonical) form, the rewriting system must have two
essential properties: termination, i.e., there are no in�nite
derivations; and conuence, i.e., any two equivalent terms
can be reduced to the same term. The problem of deciding
conuence is decidable for a �nite and terminating rewrite
system. A well-known su�cient condition is based on the
patterns of rewrite rules: left-linear, i.e., no variable occurs
more than once on any LHS of rules; and non-overlapping,
i.e., no substitution can make two rules to have a uni�ed
LHS. Based on properties of lpo and our de�ned unam-
biguous CFG, we have the following results, which have
been proved in [22]:

Theorem 1: ConTRAST is terminating on the set of
ASTs.
and

Theorem 2: CoNTRAST is left-linear and nonoverlap-
ping, so it is conuent.
Thus all equivalent arithmetic expressions de�ned by ax-

ioms can be transformed into a canonical expression, so
the rewriting system in ConTRAST provides a solid base
for developing formal veri�cation systems. Compared with
other canonical representations such as BDDs,ADDs,etc.,
ConTRAST uses an essentially di�erent methodology, i.e.,
applying term rewriting on attribute grammars, instead of
implicitly enumerating all values with a graph. Such dif-
ferences are summarized in TABLE III. A more detailed
discussion is given in[23].
The expressive power can be reected by the space com-

plexity for word-level operations such as x, x + y, x � y,
x2 and cx. Since ConTRAST is based on ASTs other than
decision diagrams, and the results of those operations are
de�ned by evaluation procedures on attributes, instead of
implicitly enumerating all values with a graph, its space
complexity is linear. But the size of attributes on a node
is de�nitely larger than other approaches.

The time complexity for ensuring canonical forms is pri-
marily determined by the complexity of Apply algorithms,
which were provided for operations: + and � on BDDs,
EVBDDs, *BMDs, and ConTRAST. The time complexity
of ConTRAST is dependent on the ordering on a set of
terms. For the present lpo, it is O((jG1j � jG2j)

3), where
jGj denotes the size of an AST. Unlike decision diagrams
in BDDs, EVBDDs, and *BMDs, the size of an AST is not
larger than the size of the given expressions.

IV. Example: equivalence-checking on two

filter designs

In [21], a fourth-order digital �lter H(z) is de�ned as
follows.

H(z) =
0:001836(1+ z�1)4

(1� 1:499z�1 + 0:8482z�2)(1� 1:5548z�1 + 0:6493z�2)

Using algebraic transformations, numerous implementa-
tions are possible, however,they di�er in terms of numerical

properties due to �nite wordlength e�ects. Two implemen-
tations are constructed: (1) the direct II architecture (Fig.
3(a)) and the cascaded architecture (Fig. 3(b)). The equiv-
alence between these two implementations can be checked
under di�erent precision constraints. In Fig. 4 even if all
variables and coe�cients are represented using the IEEE
double-precision standard, two contradictory results arise
when the precision constraints are 0:001 and 0:00001.
This example looks somewhat simplistic, but it shows

the potential applications of ConTRAST on higher
level DSP descriptions and formal veri�cation of �nite
wordlength e�ects. As more sophisticated methods of
precision analysis and wordlength speci�cations are intro-
duced, more interior properties of di�erent synthesis strate-
gies will be veri�ed through ConTRAST, thus more com-
plicated examples can be displayed, such as in [24].

V. Conclusion and Future Work

In this paper we introduced a formal veri�cation ap-
proach, ConTRAST, for checking functional equivalence
of di�erently designed datapaths based on a canonical rep-
resentation for arithmetic expressions. The internal data
structures are attributed syntax trees(ASTs), which pro-
vide expressive data structures for syntactic and semantic
information about designed datapaths. The canonical rep-
resentations and attribute evaluations are automatically
performed in a particularly designed membership condi-
tional term rewriting system, which has been built from
a LR parser with Lex and Yacc, without using particular
symbolic processing facilities such as LISP, or uni�cation
functions.
Based on ConTRAST, a DSP design veri�cation tool

called Fixed-Point Veri�er (FPV) has been developed[24].
Similar to present DSP hardware design tools, FPV allows
users to describe �lters in the form of arithmetic expres-
sions and to specify arbitrary �xed-point wordlengths on
various signals. However, unlike simulation-based veri�ca-
tion methods like Cadence/Alta's Fixed Point Optimizer
and Mentor's DSPstation, FPV can automatically perform
correctness-checking and equivalence-checking for a given
�lter design under the e�ect of �nite word length.
The power of ConTRAST is based on the following fea-

tures:
1. The canonical representations for equivalent arith-
metic expressions are de�ned in terms of congruence
closure in a rewriting system, thus providing an ef-
�cient internal representation for huge equivalence
classes, and making formal veri�cation on numerical
and DSP architectures feasible.

2. The equivalence on arithmetic expressions can be re-
de�ned according to application conditions and con-
straints, thus allowing formal veri�cation to be applied
for practical engineering problems, which arise in syn-
thesis, such as equivalence under precision constraints.

3. The rewriting ordering in ConTRAST can be changed

TABLE III

Features of BDDs, FDDs, ADDs, EVBDDs, BMDs and ConTRAST

BDD FDD ADD EVBDD *BMD ConTRAST

Terminals 0, 1 0, 1 distinguished 0 integers, id, num
elements or reals

Non- fxi
, fxi

fxi
, @f

@xi

fxi
, fxi

subexps in fxi
, f _xi

subexps in

terminals linear exps any exps

Weights 0, 1 0, 1 0, 1 integers integers, arbitrary
or reals attributes

Function f Bn
! B Bn

! B Bn
! D Bn

!W Bn
!W Dn

! D

Describedy

Decompo- Shannon Reed-Muller Shannon linear monomial CFG
sition expansion expansion expansion expression expansion

Apply Yes No No Yes Yes Yes
operations

Application bit-level bit-level semi-bit- bit-level& bit-level& high-level
Levels level word-level word-level

y B denotes a Boolean space. W denotes a word space, a subspace of integers or real numbers that could be represented in a word of size n.

D denotes an abstract space.

(a)

+ +T T

V(n)

x2(n)x1(n)

a3 = 0.007344a4 = 0.001836

−b4 = 0.5507 −b3 = −2.2921

++ +TT
Y(n)

x4(n)x3(n)

a0 = 0.001836a1 = 0.007344a2 = 0.011016

−b2 = 3.8281 −b1 = −3.0538

H(z) =
0.001836 + 0.00734 z + 0.011016 z + 0.007344 z + 0.001836 z−1 −2 −3 −4

1 − 3.0536 z + 3.8281 z − 2.2921 z + 0.5507 z−1 −2 −3 −4

(b)

++ +TT
x4(n)x3(n)

a11 = 0.0857

−b21 = 0.8482 −b11 = −1.499

V(n)

Y1(n) ++ +TT
x4(n)x3(n)

−b22 = 0.6493 −b12 = −1.5548

a12 = 0.0857a22 = 0.04285 a02 = 0.04285a01 = 0.04285a21 = 0.04285
Y(n)

H1(z) H2(z)

H(z) =

−1 20.04285 (1 + z)

−1 −2
1 − 1.499 z + 0.848 z

−1 20.04285 (1 + z)

−1 −21 − 1.5548 z + 0.6493 z
1 2= H (z) H (z)

Fig. 3. Fourth-order digital �lter: (a) direct II architecture, (b) cascaded architecture

from the present lexicographic path ordering (lpo) into
other design information-related orderings, thus the
rewriting procedure here can possibly be converted
into an optimization procedure, in which the normal
form becomes the optimal form.

This research explored a novel combination of two pow-
erful computation techniques: attribute grammars in com-
piler design and term rewriting systems in theorem prov-
ing. Moreover, this paper enlightened a new methodology
in formal hardware veri�cation, and created an extensive

application space. To achieve widespread use, proper com-
binations of ConTRAST with other formal methods, such
as ADDs[3], SMV[19] and SFG-tracing[13], require more
comprehensive theoretical research. Some further exten-
sions on ConTRAST being pursued at UMASS include:

1. Integration of ADDs and ConTRAST: Since
ADDs can be regarded as a hierarchical representa-
tion of if�then�else conditions, the symbolic control
table of a control unit can be e�ciently and canoni-
cally expressed in the form of ADDs. By representing

Fig. 4. Experimental results using ConTRAST on two digital �lter implementations with di�erent precision constraints

control units in ADDs, and representing datapaths in
ConTRAST, a canonical representation is possible for
higher level descriptions.

2. Integration of SMV and ConTRAST: It is well
known that SMV is very e�cient for verifying tempo-
ral properties at the bit level. Since ConTRAST can
solve equivalence-checking at the word level, a suitable
integration of these two approaches will allow the user
to verify a complicated module at the word level, i.e.,
using SMV to verify control units, and ConTRAST
to verify datapaths. A timely example would be the
Pentium FPU.

In addition, possible extensions of ConTRAST in high
level synthesis will be explored by replacing the present
lpo with cost-minimized scheduling, power-minimized ob-
jective functions, or fault-secure scheduling.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The De-
sign and Analysis of Computer Algorithms. Addison-
Wesley,Reading,Mass., 1974.

[2] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Princi-
ples,Techniques, and Tools. Addison-Wesley, 1986.

[3] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi. Algebraic decisiondiagrams and their
applications. Technical report, University of Colorado, 1993.

[4] R. E. Bryant. Graph-based algorithms for boolean functions.
IEEE Trans. on Computers, C-35(8):677{691, 1986.

[5] R. E. Bryant and Y.A. Chen. Veri�cation of arithmetic functions
with binary moment diagrams. Technical Report CMU-CS-94-
160, Carnegie Mellon University, 1994.

[6] E. Cardoza, R. Lipton, and A.R. Meyer. Exponential space
complete problems for petri nets and communtative semigroups.
In ACM Symp. on Theory of Computing, 1976.

[7] V. Chaiyakul, D. Gajski, and L. Ramachandran. High-level
transformations for minimizing syntactic variances. In 30th De-
sign Automation Conference, pages 413{418, 1993.

[8] E.M. Clarke, K.L. McMillan, X. Zhao, M. Fujita, and J. Yang.
Spectral transforms for large boolean functionswith applications
to technologymapping. In 30th ACM/IEEE Design Automation
Conference, pages 54{60, 1993.

[9] N. Dershowitz. Rewrite systems. In Handbook of Theoretical
Computer Science, pages 243{320. Elsevier Science Publishers
B.V., 1990.

[10] P.J. Downey, R. Sethi, and R.E. Tarjan. Variations on the com-
mon subexpression problem. Journal of the ACM, 27(4):758{
771, 1980.

[11] J. Ferrante and C.W. Racko�. The Computational Complexity
of Logical Theories, volume 718 of Lecture Notes in Mathemat-
ics. Springer-Verlag, 1979.

[12] D.D. Gajski, N.D. Dutt, A.C. Wu, and S.Y. Lin. High-Level
Synthesis: Introduction to Chip and System Design. Kluwer
Academic Publishers, 1992.

[13] M. Genoe, L. Claesen, E. Verlind, F. Proesmans, and H. De
Man. Illustration of the sfg-tracing multi-level behavioral ver-
i�cation methodolgy, by the correctness proof of a high to low
level synthesis application in CATHEDRAL-II. In Proc. ICCD-
91, pages 338{341, 1991.

[14] N. Immerman. Decision problems for �rst-order logical lan-
guages. Personal Mail, 1993.

[15] U. Kebschull, E. Schubert, and W. Rosenstiel. Multilevel logic
synthesis based on functional decision diagrams. In European
Design Automation Conference, pages 43{47, 1992.

[16] D.E. Knuth. Semantics of context-free languages. Mathematical
Systems Theory, 2:127{163, 1968.

[17] D.E. Knuth and P.B. Bendix. Simple word problems in univer-
sal algebras. In ed. J. Leech, editor, Computational Problems
in Abstract Algebras, pages 263{297. Pergamon Press, Oxford,
England, 1970.

[18] Y.T. Lai and S. Sastry. Edge-valued binary decision diagrams
for hierarchical veri�cation. In 29th ACM/IEEE Design Au-
tomation Conference, pages 608{613, 1992.

[19] K.L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[20] M. Potkonjak and J. Rabaey. Optimizing resource utilization
using transformations. IEEE Trans. on CAD, 13(3):277{292,
1994.

[21] F.J. Taylor. Digital Filter Design Handbook. Marcel
Dekker,Inc., 1983.

[22] Z. Zhou and W. Burleson. A canonical representation of al-
gebraic expressions in high-level synthesis. Technical Report
TR-94-CSE-9, ECE Dept., U. of Mass. at Amherst, 1994.

[23] Z. Zhou and W. Burleson. Selecting canonical representations
for formal veri�cation of arithmetic computations. Technical
Report TR-94-CSE-10, ECE Dept., U. of Mass. at Amherst,
1994.

[24] Z. Zhou and W. Burleson. Formal veri�cation of arithmetic
expressions with applications in dsp synthesis. Submitted to
Conference on Computer-Aided Veri�cation (CAV'95), 1995.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

