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Abstract | The paper describes a veri�cation method

for arithmetic circuits based on residue arithmetic. In the

veri�cation, a residue module is attached to the speci�cation

and the implementation, and these outputs are compared

by constructing BDD's. For the BDD construction without

node explosion, we introduce a residue BDD whose width is

less than or equal to a modulus. The method is useful for

multipliers including C6288.

I. Introduction

With the development of VLSI technology, formal hard-

ware veri�cation becomes important. At present, circuits

with medium size can be veri�ed formally with methods

using BDD's (Binary Decision Diagrams) [1], [2], [3].

For a class of logic functions, the size of a BDD is propor-

tional to the polynomial of the number of primary inputs.

For other logic functions (including multiplication), the size

of a BDD is proportional to the exponential of the input

size. Several methods have been studied for 16 � 16 bit

multipliers (including C6288 in the ISCAS benchmark) [4],

[5] and for larger multipliers [6]. These methods, however,

work for limited types of multipliers.

This paper describes a novel method to verify arithmetic

circuits based on residue arithmetic, where a number m is

represented by a k-tuple of residues with p1, p2, ..., and pk
[7]. Using the residue representation, an arithmetic circuit

can be veri�ed with each modulus p1, p2, ..., and pk. A

residue module for each pi is attached to the circuit and

the speci�cation, and these outputs are compared by con-

structing BDD's. It can be seen that the size of the BDD's

for outputs is proportional to the number of primary inputs

n and the modulus pi.

The problem in the construction is that the intermediate

BDD's may include node explosion. The paper introduces a

method to convert an intermediate BDD to a residue BDD

the size of which is less than or equal to the polynomial of

n and p.

II. Preliminary

A. Logic Function and BDD

A logic function with n variables is a function from

f0,1gn to f0,1g. Logical operations NOT ( ), AND (^)
and OR (_) are de�ned in the usual manner.

A BDD is a 5-tuple ((V [ f 0 , 1 g, E0 [ E1), X , idx),

where (V [ f 0 , 1 g, E0 [E1) is a directed acyclic graph

(DAG), X is a sequence of variables and idx is a function

from V to X. idx(v) is called an index of v. V is a set of

internal nodes. E0 (E1) is a set of 0-edges (1-edges) each

of which is in V � (V [ f 0 ; 1 g). A node in V has two

emanating edges; one is a 0-edge and the other is a 1-edge.

For an edge (v, v0), if idx(v) is the i-th variable in X then

idx(v0) should be j-th variable with j > i. X speci�es

variable ordering.

For each node v in V [ f 0 , 1 g, a logic function fv is

de�ned as follows: f
0

def
= 0, f

1

def
= 1, fv

def
= (idx(v) ^

fv0) _ (idx(v) ^ fv1), where (v; v0) 2 E0 and (v; v1) 2 E1.

The width of a BDD is the maximum number of nodes

with the same index.

Let X = (xn�1, xn�2, ..., x0) be a sequence of variables.

A BDD is called levelized if idx(v) = xi then idx(v0) =

idx(v1) = xi�1 where v is a node in the BDD, (v; v0) 2 E0

and (v; v1) 2 E1. Note that v0 may be equal to v1.

Logic operations on BDD's can be de�ned as in [1], and

the BDD for a logic formula is constructed using the logic

operations on BDD's as in [2] and [3].

B. Residue Arithmetic

(a)modp is the residue of a with a modulus p, and is one

of 0, 1, 2, ..., and p � 1. A residue representation of a

number a with respect to p1, p2, ..., and pk is a k-tuple

of residues of a with each pi, i.e. ((a)modp1 , (a)modp2 , ...,

(a)modpk). For the uniqueness, pi and pj should not have

a common divisor other than 1 if i 6= j.

This representation can uniquely express p1�p2� :::�pk
numbers, and the addition, subtraction and multiplication

operations can be processed on each residue independently

because of the following property :

(x � y)modp = ((x)modp � (y)modp)modp

where x and y are numbers and � is an operation [7].
With residue representation, a large number can be ma-

nipulated as a k-tuple of small numbers. For example, the

product of 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,

47 and 53 becomes 32589158477190044730 (> 264).

III. Logic Functions Depending on Only the

Residue of an Input

We show properties of BDD's representing logic func-

tions for outputs of an arithmetic circuit with a residue

module, where these functions depend on only the residue

of an input.

A. Logic Functions with One Operand

De�nition 1: Let f be a logic function with n variables, p

be an integer. Let xn�1, xn�2, ..., and x0 be input variables
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Fig. 1. Property of a residue BDD.

of f , and xi correspond to 2
i. f depends on only the residue

of an input if and only if

f (x) = f ((x)modp)

Since each variable of f corresponds to an integer, a num-

ber is associated to a path on the BDD for f in a natural

manner, i.e. the summation of numbers each of which cor-

responds to an indexed variable of the node whose 1-edge

is selected in the path. The number associated to a path

is also associated to the end node of the path.

From the de�nition, the following properties can be

proved.

Lemma 1: Let f and g be logic functions with n variables

depending on only the residue of an input with a modulus

p. Then f , f ^ g and f _ g are also logic functions with n

variables depending on only the residue of an input with p.

Theorem 1: Let f be a logic function with n variables

depending on only the residue of an input with p. Then

the width of the BDD for f is less than or equal to p.

Proof: We can use a levelized-BDD in this proof with-

out loss of generality.

The proof follows the refutation. Let xn�1, xn�2, ..., and

x0 be input variables. We assume that the width of a BDD

is greater than p with an index xi.

From this assumption, there are two di�erent nodes vi1
and vi2 indexed as xi with the same residue (Fig. 1).

Since vi1 and vi2 are not equivalent logically, there exist

paths pi1 and pi2 from vi1 and vi2 respectively associated

with the same index on the edges to the di�erent leaves as

shown in Fig. 1.

Paths from the root to the leaves including these paths,

however, show the contradiction. Since the residues of

them are the same, the leaves for them should be should be

the same from the de�nition. Thus the width of the BDD

is less than or equal to p. 2

We do not use any assumption on the order of variables,

and the theorem can be shown for any variable ordering.

B. Logic Functions with Two Operands

Here we consider logic functions with two operands,

where each operand denotes an integer.

De�nition 2: Let f be a logic function with 2n variables.

f depends on only the residue of inputs if and only if

f (x; y) = f ((x)modp; (y)modp)

The following corollary holds for any variable ordering.

Corollary 1: Let p be an integer. If f is a logic function

with 2n variables depending on only the residue of inputs

with p, then the width of the BDD for f is smaller than or

equal to p2.

IV. Residue BDD

As shown in the former section, the width of the BDD for

a logic function depending on only the residue of an input

with p is less than or equal to p (or p2 for two operand

function). The construction of such BDD's, however, may

include node explosion, since the width of the BDD's for

intermediate functions may be greater than p. Here we

show a conversion method from an intermediate BDD to a

BDD whose width is less than or equal to p. We also show

that the converted BDD's can be used in the construction

of the �nal BDD's.

A. De�nition of Residue BDD

Let f be a logic function with n variables, i.e. f (xn�1,

xn�2, ..., x0), and xi correspond to 2i. Variables are or-

dered as xn�1, xn�2, ..., x0 in the construction of BDD's.

We associate a number and a residue for each path on

a BDD as shown before. The number is the summation of

numbers each of which corresponds to an index xi of a node

whose 1-edge is selected. Note that variables not appearing

in the path is assumed to be 0. From the semantics of

BDD's, there exists a choice of 1 for variables not appearing

in the path.

De�nition 3: Let j1 and j2 be numbers associated to

nodes vi1 and vi2 respectively. A BDD is a residue BDD

with p if it satis�es the following condition: for any v1 and

v2, if idx(v1) = idx(v2) and j1 � j2(modp) then v1 = v2.

From the above de�nition, the following property can be

shown.

Lemma 2: The width of a residue BDD with p is less

than or equal to p.

Note that the BDD for a logic function depending on

only the residue of an input is a residue BDD, but usual

BDD's are not residue BDD's.

We show a conversion method from a BDD to a residue

BDD. In the conversion, we have only to traverse each BDD

node, to keep the �rstly traversed node for each variable

and each residue, and nodes with the same index and the

same residue are merged to the �rstly traversed one.

A recursive procedure for the conversion is shown in

Fig. 2. Arguments of the procedure are a pointer ptr1 to a

node of the BDD, a residue k of the path to the node and

a modulus p. If ptr1 points a leaf, then the procedure re-

turns ptr1. Otherwise, the procedure traverses the 0-edge

of the node pointed by ptr1 with the same residue and the

1-edge of that with (k + 2i)modp, where 2i corresponds to

the index of the node pointed by ptr1.

Procedures check and register are used for maintenance

of the �rstly traversed node with the same index and the



BDD_pointer rsd_bdd(ptr1, k, p)

BDD_pointer ptr1;

int k, p;

{

int index, new_k;

BDD_pointer ptr2, low, high;

if (ptr1 == FALSE || ptr1 == TRUE)

return(ptr1);

index = ptr1->index;

ptr2 = check(index, k);

if (ptr2 != NULL) { return(ptr2); }

new_k = (k + get_num(index)) % p;

low = rsd_bdd(ptr1->low, k, p);

high = rsd_bdd(ptr1->high, new_k, p);

ptr2 = gen_node(index, low, high);

register(index, k, ptr2);

return(ptr2);

}

Fig. 2. A converter to a (default 0) residue BDD.

same residue. Get num denotes a procedure to obtain a

number corresponding to an index. Gen node denote a

procedure to generate a new BDD node.

The converted BDD is unique and the function repre-

sented by the converted BDD is also unique. We denote

[f ]modp for the converted function.

This conversion procedure can easily be extended to ma-

nipulate BDD's for logic functions with two operands. The

maximum width of a converted BDD is less than or equal

to p2 for a modulus p.

As mentioned above, the conversion procedure assumes

0 for variables not appearing in the path, i.e. 0-default

traversal. It is easy to make a procedure assuming 1 for

variables not appearing in the path (1-default traversal).

There may exist other traversal methods. A residue BDD

generated with 0-default traversal is not the same as the

one with 1-default traversal. This corresponds to the loss

of information by restricting the width of BDD's.

If we use a levelized-BDD in the traversal, we need no as-

sumption. The conversion, however, is too restrictive, since

any BDD becomes the BDD representing a logic function

depending on only the residue of an input.

In the following, we consider 0-default traversal, but the

properties can be shown for 1-default traversal.

B. Properties of Residue BDD

Here we show properties of residue BDD's generated by

the above conversion method.

Lemma 3: Let xi and xj be input variables.

1. [xi]modp = xi
2. [xi ^ xj]modp = xi ^ xj
3. [xi _ xj]modp = xi _ xj
Proof: The above properties can be shown from the

fact that the width of each BDD is 1. 2

Lemma 4: Let f , g and h be logic functions with n vari-

ables, and � be a logic operation. If f = g � h then

[f ]modp = [[g]modp � [h]modp]modp

Proof: Let v be a node in the BDD for [f ]modp with

an index xi, and j be a residue of a path to v. In this

proof, a node v is identi�ed as the function represented by

a sub-DAG starting from v. Since v is a result of g � h,
there exist v1 in the BDD for g and v2 in the BDD for h,

and v is the result of � on BDD's starting from v1 and v2.

Note that there should be paths to v1 and v2, where the

choices of 0-edge or 1-edge for each index on paths are the

same and the residues for these paths are the same.

Since v is �rstly traversed in the BDD for f , v1 and v2
are also �rstly traversed in the BDD's for g and h respec-

tively. Thus v1 and v2 are included in the BDD's for [g]modp
and [h]modp, and v is in the BDD for [g]modp � [h]modp.
Moreover, since v is �rstly traversed, v is in the BDD for

[[g]modp � [h]modp]modp.

On the other hand, it is easy to see that a node v0 in

the BDD for [[g]modp � [h]modp]modp is also in the BDD for

[f ]modp. 2

Lemma 5: Let f be a logic function depending on only

the residue of an input with p. Then [f ]modp = f .

Proof: From the assumption on f , f (x) = f ((x)modp),

where x is a sequence of xn�1, xn�2, ..., x0. When we �x

up the upper k bits of x to a constant, then

f (an�1; an�2; :::;an�k; xn�k�1; :::;x0) =

f ((an�1an�2:::an�k)modp; xn�k�1; :::;x0)

Thus the paths with the same residue reach to the same

node. 2

From Lemma 5, the following theorem can be proved.

Theorem 2: Let f be a logic function depending on only

the residue of an input with p. Then we can use residue

the BDD's for intermediate results in the construction of

the BDD for f .

Proof: The theorem is shown by applying Lemmas 4

and 5 recursively in the construction of the BDD for f . 2

From the theorem, the BDD for f can be constructed

using BDD's each of whose width is less than or equal to

a modulus p. It is easy to extend the theorem for logic

functions with two operands, where the width is less than

or equal to p2.

V. Verification of Arithmetic Circuits Using

Residue BDD

Here we show a veri�cation method for arithmetic cir-

cuits using residue BDD's.

A. BDD Construction Using Residue BDD

The following is a procedure to construct a BDD from a

logic formula using residue BDD's.

1. Construct the constant 0-leaf and the BDD's for pri-

mary input variables.

2. Parse a logic formula and sort logical operations in

the formula.

3. Process the logic operations on BDD's and convert

the result BDD to a residue BDD with the obtained

order.

4. Convert the �nal BDD's to levelized-BDD's, and then

convert the levelized-BDD's to residue BDD's.



B. Veri�cation of Arithmetic Circuits

Here we consider equivalence check of a speci�ed logic

function and the logic function implemented by a logic cir-

cuit. As mentioned above, we verify the circuit with a

modulus p1, a modulus p2, ..., and a modulus pk, where pi
and pj have no common divisor other than 1. If the circuit

is equivalent to the speci�cation for any pi, then the circuit

is equivalent to the speci�cation.

We attach a residue module to a speci�cation and an

implementation, then construct the BDD's for outputs of

the modi�ed speci�cation and the modi�ed implementation

using residue BDD's.

Note that there are several methods converting to residue

BDD's depending on traversal methods. If we try to verify

with all traversal methods, then the veri�cation is perfect.

Otherwise the di�erence in two functions may not be de-

tected, since residue BDD's lose the original information.

We now try to clarify the limitation of the residue BDD

based veri�cation. At present, 0-default traversal and 1-

default traversal seem to cover almost all errors.

In the following, we show veri�cation of multipliers. We

compare an adder array type multiplier, an O(logn) multi-

plier (a Wallace-tree type multiplier) and C6288. We have

implemented and evaluated our programs in C on SUN

SS10/51 (50 MHz SuperSPARC, 1MB SuperCache, 64 MB

Main Memory).

In our experiment, we use generators for adder-array and

Wallace-type multipliers and a generator for a residue func-

tion with p. In the construction of a BDD, primary inputs

are ordered as an�1, an�2, ..., a0, bn�1, bn�2, ..., b0, and

the maximum size of BDD nodes is restricted to 1,500,000.

Table I shows CPU time (in seconds) to construct out-

put BDD's and the number of nodes for primary outputs

for each modulus. The execution time is evaluated with

a procedure using 0-default traversal in the conversion to

residue BDD. The execution time with a procedure using

1-default traversal is almost the same.

We checked these functions with 10 modulus: 2, 3, 5, 7,

11, 13, 17, 19, 23 and 29. The product of these numbers

is 6469693230, which is greater than 232 (= 4294967296).

These functions are shown to be the same.

The execution time and the number of nodes become

large when the modulus becomes large. This is because

the node size is proportional to n � p2 for the number of

primary inputs n and a modulus p.

We made several erroneous C6288 circuits inserting a

gate error, where some logic gate is changed to another

logic gate, and compared the correct and erroneous circuits.

In the experiment, all errors are detected and the di�erence

is usually detected with rather small residue such as 7 or 11.

There are errors which cannot be detected with 0-default

traversal.

VI. Concluding Remarks

We propose a residue BDD and its theoretical frame-

work. The width of a residue BDD is less than or equal to

a modulus p; thus, a residue BDD has no node explosion.

TABLE I

The comparison of 16-bit multiplier.

mod. time (sec.) Output
AA WA C6288 nodes

29 5517 3985 4266 25713
23 2198 1754 1700 15931
19 1197 917 887 12323
17 849 634 636 5278
13 351 241 216 4479
11 225 158 137 3840
7 83 54 37 800
5 48 35 22 596
3 30 23 14 207
2 12 11 6 2

AA: Adder Array Type; WA: logn Type
Maximum node is restricted to 1,500,000

We also show a veri�cation method based on residue

arithmetic and apply the method to verify multipliers in-

cluding C6288. Veri�cation requires several thousand sec-

onds of CPU time, but we believe the execution time prob-

lem can overcome with coding e�ort and by using parallel

computing environment.

From our experiment, we have found that the di�erence

between a correct and erroneous circuits can be detected

with small modulus.

Residue BDD's are interesting from the theoretical point

of view. The class of residue BDD's are sub-classes of

BDD's whose nodes are proportional to the polynomial of

the size of variables.

Further studies are needed on the limitation of residue

BDD's and an application of residue BDD's to sequential

circuit veri�cation.
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