
Verification of Arithmetic Circuits
with Binary Moment Diagrams�

Randal E. Bryant, Yirng-An Chen
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract—Binary Moment Diagrams (BMDs) provide a canon-
ical representations for linear functions similar to the way Binary
Decision Diagrams (BDDs) represent Boolean functions. Within
the class of linear functions, we can embed arbitrary functions
from Boolean variables to integer values. BMDs can thus model
the functionality of data path circuits operating over word-level
data. Many important functions, including integer multiplication,
that cannot be represented efficiently at the bit level with BDDs
have simple representations at the word level with BMDs. Fur-
thermore, BMDs can represent Boolean functions with around the
same complexity as BDDs.

We propose a hierarchical approach to verifying arithmetic cir-
cuits, where componentmodulesare first shownto implement their
word-level specifications. The overall circuit functionality is then
verified by composing the component functions and comparing
the result to the word-level circuit specification. Multipliers with
word sizes of up to 256 bits have been verified by this technique.

1. Introduction

Binary Decision Diagrams (BDDs) have proved successful for rep-
resenting and manipulating Boolean functions symbolically [2] in a
variety of application domains. Building on this success, there have
been several efforts to extend the BDD concept to represent functions
over Boolean variables, but having non-Boolean ranges, such as inte-
gers or real numbers [1, 5, 9]. Many tasks can be expressed in terms of
operations on such functions, including integer linear programming,
matrix manipulation, spectral transforms, and word-level digital sys-
tem analysis. To date, the proposed representations for these functions
have proved too fragile for routine application—too often the data
structures grow exponentially in the number of variables.

In this paper we propose a new representation called Multiplicative
Binary Moment Diagrams (*BMDs) that improve on previous meth-
ods. *BMDs incorporate two novel features: they are based on a
decomposition of a linear function in terms of its “moments,” and they
have weights associated with their edges which are combined multi-
plicatively. These features have as heritage ideas found in previous

�This research is sponsoredby the Wright Laboratory,AeronauticalSystems Center, Air
Force Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA)
under grant number F33615-93-1-1330.

0

y z F

0 0 8
0 1 -12
1 0 10
1 1 -6

Function

8 -12

z

10 -6

z

y

MTBDD

8 -20

z

2 4

z

y

BMD

Figure 1: Example Function Decompositions. MTBDDs are based
on a pointwise decomposition (left), while BMDs are based on a linear
decomposition (right).

function representations, namely the Reed-Muller decomposition used
by Functional Decision Diagrams (FDDs) [8], and the additive edge
weights found in Edge-Valued Binary Decision Diagrams (EVBDDs)
[9].

*BMDs are particularly effective for representing digital systems at
the word level, where sets of binary signals are interpreted as encoding
integer values. Common integer encodings have efficient representa-
tions as *BMDs, as do operations such as addition and multiplication.
*BMDs can also represent Boolean functions as a special case, with
size comparable to BDDs.

*BMDs can serve as the basis for a hierarchical methodology for
verifying circuits such as multipliers. At the low level, we have a set
of component modules such as add steppers, Booth steppers, and carry
save adders described at both the bit level (in terms of logic gates)
and at the word level (as algebraic expressions). Using a methodology
proposed by Lai and Vrudhula [9], we verify that the bit-level imple-
mentation of each block implements its word-level specification. At
the higher level (or levels), a system is described as an interconnection
of components having word-level representations, and the specifica-
tion is also given at the word-level. We then verify that the composition
of the block functions corresponds to the system specification. By this
technique we can verify systems, such as multipliers, that cannot be
represented efficiently at the bit level. We also can handle a more ab-
stract level of specification than can methodologies that work entirely
at the bit level.

2. The *BMD Data Structure

*BMDs represent functions having Boolean variables as arguments
and numeric values as results. Their structure is similar to that of
Ordered BDDs, except that they are based on a “moment” decom-
position, and they have numeric values for terminal values and edge
weights. As with OBDDs we assume there is some total ordering of
the variables such that variables are tested according to this ordering
along any path from the root to a leaf

1

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

2.1. Function Decompositions

To illustrate ways of decomposing a function, consider the function
F over a set of Boolean variables y and z, yielding the integer values
shown in the table of Figure 1. BDDs are based on a pointwise
decomposition, characterizing a function by its value for every possible
set of argument values. By extending BDDs to allow numeric leaf
values, the pointwise decomposition leads to a “Multi-Terminal” BDD
(MTBDD) representation of a function [5] (also called “ADD” [1]),
as shown on the left side of Figure 1. In this drawing, the dashed line
from a vertex denotes the case where the vertex variable is 0, and the
solid line denotes the case where the variable is 1. Observe that the
leaf values correspond directly to the entries in the function table.

Exploiting the fact that the function variables take on only the values
0 and 1, we can write a linear expression for function F directly from
the function table. For variable y, the assignment y = 1 is encoded
as y, and the assignment y = 0 is encoded as 1 � y. Expanding and
simplifying the resulting expression yields:

F (x; y) =

2
64

8 (1 � y) (1 � z) +

�12 (1 � y) z +

10 y (1 � z) +
�6 y z

3
75

= 8 � 20z + 2y + 4yz

This expansionleads to the BMD representation of a function, as shown
on the right side of Figure 1. In our drawings of graphs based on a
moment decomposition, the dashed line from a vertex indicates the
case where the function is independent of the vertex variable, while
the solid line indicates the case where the function varies linearly.
Observe that the leaf values correspond to the coefficients in the linear
expansion.

Generalizing from this example, one can view each vertex in the
graphical representation of a function as denoting the decomposition
of a function with respect to the vertex variable. The different repre-
sentations can be categorized according to which decomposition they
use.

Boolean function f can be decomposed in terms of variable x in
terms of an expansion (variously credited to Shannon and to Boole):
f = x ^ fx _ x^ fx. In this equation we use ^ and _ to represent
Boolean sum and product, and overline to represent Boolean comple-
ment. Term fx (respectively, fx) denotes the positive (resp., negative)
cofactor of f with respect to variable x, i.e., the function resulting
when constant 1, (resp., 0) is substituted for x. This decomposition is
the basis for the BDD representation.

For expressing functions having numeric range, the Boole-Shannon
expansion can be generalized as:

f = (1 � x) � fx + x � fx (1)

where �, +, and � denote multiplication, addition, and subtraction,
respectively. Note that this expansion relies on the assumption that
variable x is Boolean, i.e., it will evaluate to either 0 or 1. Both MTB-
DDs and EVBDDs [9] are based on such a pointwise decomposition.
As with BDDs, each vertex describes a function in terms of its de-
composition with respect to the variable labeling the vertex. The two
outgoing arcs denote the negative and positive cofactors with respect
to this variable.

-5

z

2

y

2

12

z

4

5

y

3

x

8 -20

z

2 4

z

y

12 24

z

15

y

x

BMD *BMD

Figure 2: Example of BMD vs. *BMD. Both represent the function
8� 20z+ 2y+ 4yz+ 12x+ 24xz+ 15xy. *BMDs have weights on
the edges that combine multiplicatively.

The moment decomposition of a function is obtained by rearranging
the terms of Equation 1:

f = fx + x � (fx � fx)

= fx + x � f _x (2)

where f _x = fx � fx is called the linear moment of f with respect
to x. This terminology arises by viewing f as being a linear function
with respect to its variables, and thus f _x is the partial derivative of f
with respect to x. Since we are interested in the value of the function
for only two values of x, we can always extend it to a linear form.
The negative cofactor will be termed the constant moment, i.e., it
denotes the portion of function f that remains constant with respect to
x. Each vertex of a BMD describes a function in terms of its moment
decomposition with respect to the variable labeling the vertex. The two
outgoing arcs denote the constant and linear moments of the function
with respect to the variable.

The moment decomposition of Equation 2 is analogous to the Reed-
Muller expansion for Boolean functions: f = fx � x^ (fx� fx).
The expression fx�fx is commonly known as the Boolean difference
of f with respect to x, and in many ways is analogous to our linear
moment. Other researchers [8] have explored the use of graphs for
Boolean functions based on this expansion, calling them Functional
Decision Diagrams (FDDs). By our terminology, we would refer to
such a graph as a “moment” diagram rather than a “decision” diagram.

2.2. Edge Weights

The BMD data structure encodes numeric values only in the termi-
nal vertices. As a second refinement, we adopt the concept of edge
weights, similar to those used in EVBDDs. In our case, however,
edge weights combine multiplicatively, and hence we call these data
structures *BMDs. As an illustration, Figure 2 shows representations
of the function 8�20z+2y+4yz+12x+24xz+15xy. In the BMD
representation, leaf values correspond to the coefficients in the linear
expansion. As the figure shows, the BMD data structure misses some
opportunities for sharing of common subexpressions. For example,
the terms 2y + 4yz and 12x+ 24xz can be factored as 2y(1 + 2z)
and 12x(1 + 2z), respectively. The representation could therefore
save space by sharing the subexpression 1 + 2z. For more complex
functions, one might expect more opportunities for such sharing.

The *BMD shown in Figure 2 indicates how *BMDs are able to
exploit the sharing of common subexpressions. In our drawings of

0 1

x0

2

x1

4

x2

8

x3

0 1

x0

2

x1

4

x2

-8

x3

0 1

x0

2

x1

4

x2

-2

x3

Unsigned Two's Complement Sign-Magnitude

Figure 3: Representations of Integers. All commonly used encod-
ings can be represented with linear complexity.

*BMDs, we indicate the weight of an edge in a square box. Unla-
beled edges have weight 1. In evaluating the function for a set of
arguments, the weights are multiplied together when traversing down-
ward. Several rules for manipulating edge weights can be formulated
that guarantee the resulting graph form is canonical. For representing
functions with integer ranges, we require that the edge weights for the
two branches leaving a vertex be relatively prime. We also require
that weight 0 only appear as a terminal value, and that when a node
has one such branch, the other branch has weight 1. This property
is maintained by the way in which the *BMDs are generated, in a
manner analogous to BDD generation methods. For the remainder of
the presentation we will consider only *BMDs, The effort required to
implement weighted edges is justified by the savings in graph sizes.

3. Representation of Numeric Functions

*BMDs provide a concise representation of functions defined over
“words” of data, i.e., vectors of bits having a numeric interpreta-
tion. Let ~x represent a vector of Boolean variables: xn�1; . . . ; x1; x0.
These variables can be considered to represent an integerX according
to some encoding, e.g., unsigned binary, two’s complement, BCD,
etc. Figure 3 illustrates the *BMD representations of several com-
mon encodings for integers. An unsigned number is encoded as a
sum of weighted bits. The *BMD representation has a simple lin-
ear structure with the different weights forming the leaf values. For
representing signed numbers, we assume xn�1 is the sign bit. The
two’s complement encoding has a *BMD representation similar to
that for unsigned integers, but with bit xn�1 having weight �2n�1.
For a one’s complement encoding (not shown), the sign bit has weight
�2n�1 + 1. Sign-magnitude integers also have *BMD representa-
tions of linear complexity, but with the constant moment with respect
to xn�1 scaling the remaining unsigned number by 1, and the linear
moment scaling the number by �2. In evaluating the function for
xn�1 = 1, we would add these two moments effectively scaling the
number by �1.

3.1. Word-Level Operations
Figure 4 illustrates the *BMD representations of several common

arithmetic operations on word-level data. Observe that the sizes of the
graphs grow only linearly with the word size n. Word-level addition
can be viewed as summing a set of weighted bits, where bits xi and
yi both have weight 2i. Word-level multiplication can be viewed as
summing a set of partial products of the form xi2iY . In representing
the function cX (in this case c = 2), the *BMD expresses the function
as a product of factors of the form c

2ixi = (c2i)xi . In the graph,
a vertex labeled by variable xi has outgoing edges with weights 1

x0 2

x1

0 1

y0

2

y1

4

y2

4

x2

1

x0

3

x1

15

x2

255

x3

2XX + Y X ⋅ Y

0

y0

1

x0

y1

2

x1

y2

4

x2

Figure 4: Representations of Word-Level Sum, Product, and Ex-
ponentiation. The graphs grow linearly with word size.

0 1

z

y

x

w

0

z

y

x

1 -1

z

-1

y

-1

x

w

0

z

y

x

1 -2

z

-2

y

-2

x

w

AND OR EXCLUSIVE-OR

Figure 5: Representations of Boolean Functions. Representations
as *BMDs are comparable in size to BDDs.

and c2i
� 1 both leading to a common vertex denoting the product of

the remaining factors. Interestingly, the sizes of these representations
are hardly sensitive to the variable ordering—they remain of linear
complexity in all cases. We have found that variable ordering is much
less of a concern when representing word-level functions with *BMDs
than it is when representing Boolean functions with BDDs.

These examples illustrate the advantage of *BMDs over other
methods of representing word-level functions. MTBDDs are totally
unsuited—the function ranges are so large that they always require
an exponential number of terminal vertices. EVBDDs have linear
complexity representing word-level data and for representing “addi-
tive” operations (e.g, addition and subtraction) at the word level. On
the other hand, they have exponential size when representing more
complex functions such as multiplication, and exponentiation.

4. Representation of Boolean Functions

In verifying arithmetic circuits, we abstract from the bit-level rep-
resentation of a circuit, where each signal is binary-valued, to a word
level, where bundles of signals encode words of data. In performing
this transformation we must represent both Boolean and word-level

y2

x2

Cout

y1

x1

y2

-2

y1

-2

x1

-2

y2

x2

S 2

x0

y1

-2

x0

-2

y1

x1

S 1

0

y0

1 -2

y0

x0

S 0

Figure 6: Bit-Level Representation of Addition Functions. The
graph represents all four outputs of a 3-bit adder.

functions. Hence we require our data structure to be suitable for
representing Boolean functions as well.

Boolean functions are just a special case of numeric functions hav-
ing a restricted range. Therefore such functions can be represented as
*BMDs. Figure 5 illustrates the *BMD representations of several com-
mon Boolean functions over multiple variables, namely their Boolean
product and sum, as well as their exclusive-or sum. As this figure
shows, the *BMD of Boolean functions may have values other than 0
or 1 for edge weights and leaf values. Under all variable assignments,
however, the function will evaluate to 0 or to 1. As can be seen in the
figure, these functions all have representations that grow linearly with
the number of variables, as is the case for their BDD representations.

Figure 6 shows the the bit-level representation of a 3-bit adder. It
represents the 4 adder outputs as a single *BMD having multiple roots,
much as is done with a shared BDD representation. The complexity
of this representation grows linearly with the word size. Observe
the relation between the word-level representation (Figure 4, left)
and the bit-level representation of addition. Both are functions over
variables representing the adder inputs, but the former is a single
function yielding an integer value, while the latter is a set of Boolean
functions: one for each circuit output. The relation between these two
representations will be discussed more fully in our development of a
verification methodology.

In all of the examples shown, the *BMD representation of a Boolean
function is of comparable size to its BDD representation. In general
this will not always be the case. Enders [6] has characterized a number
of different function representations and shown that *BMDs can be
exponentially more complex than BDDs, and vice-versa. The two
representations are based on different expansions of the function, and
hence their complexity for a given function can differ dramatically.
In our experience, *BMDs generally behave almost as well as BDDs
when representing Boolean functions.

5. Algorithms

Our algorithms for constructing and manipulating *BMDs follow
the same paradigm as BDD-based Boolean manipulation algorithms.
Each function is denoted by a “weighted pointer” of the form hw ; v i,
where w denotes a branch weight and v denotes a vertex. A terminal
vertex having value w is denoted by the weighted pointer hw;�i. In
this paper, we give a brief overview of the algorithms. A more de-
tailed description of the algorithms for constructing and manipulating
*BMDs is given in [3].

A single graph is maintained in “strong canonical form,” i.e., as a
multi-rooted DAG with a unique weighted pointer to each function
represented. Testing two functions for equivalence then becomes a
simple task of comparing the pointer weights and destinations for
equality. A vertex is added to the graph only after transformations are
applied to ensure a canonical representation. In particular, suppose the
program needs to create a vertex for a function f expressed relative to
variable x by moments represented by weighted pointers hw0; v0i and
hw1; v1i. We would first test ifw1 = 0, in which casef is independent
of x, and hence we can also represent it as hw0; v0i. This reduction
rule is similar to that used in FDDs and in zero-suppressedBDDs [10].
Otherwise, we would compute w = gcd(w0; w1) and create a vertex
v labeled by variable x and having moments represented by pointers
hw0 �w; v0i and hw1 �w; v1i. Function f is then represented by
weighted pointer hw ; v i.

*BMDs are constructed by starting with base functions correspond-
ing to constants and single variables, and then building more complex
functions by combining simpler functions according to some opera-
tion. In the case of BDDs this combination is expressed by a single
algorithm that can apply an arbitrary Boolean operation to a pair of
functions. In the case of *BMDs we require algorithms tailored to
the characteristics of the individual operations. These algorithms are
referred to collectively as “Apply” algorithms. Apply algorithms have
been implemented for addition, multiplication, and exponentiation of
a constant. Boolean operations can be expressed in terms of addition
and multiplication and hence do not require additional algorithms.

The apply algorithms proceed by traversing the argument graphs
to recursively apply the operation to the subgraphs. To reduce the
number of recursive calls, a hash table is maintained keyed by the ar-
guments to previous calls. This enables the program to reuse previous
computations. Unlike with BDDs, however, there is no polynomial
bound on the number of recursive calls when applying an operation to
two *BMDs. Although there are a limited number of possible vertex
combinations in the arguments, many different argument weights may
be encountered. *BMDs are therefore more susceptible to problems
with “exponential blowup” than are BDDs.

6. Verification Methodology

Figure 7 illustrates schematically an approach to circuit verification
originally formulated by Lai and Vrudhula [9]. The overall goal is
to prove a correspondence between a logic circuit, represented by a
vector of Boolean functions ~f , and the specification, representedby the
word level function F . The Boolean functions can correspond to the
outputs of a combinational circuit in terms of the primary inputs, or to
the outputs of a sequential circuit operated for a fixed number of steps,
in terms of the initial state and the input values at each step. Assume
that the circuit inputs (and possibly initial state) are partitioned into
vectors of binary signals ~x1

; . . . ; ~xk (in the figure k = 2). For each

x1 z

x2

f

F
ENC

ENC

ENC

X1

X2

?
=

Bit Level

Word Level

Circuit

Specification

Figure 7: Formulation of Verification Problem. The goal of verifi-
cation is to prove a correspondence between a bit-level circuit and a
word-level specification

set of signals ~xi, we are given an encoding function ENCi describing
a word-level interpretation of the signals. An example of such an
encoding function would be as a 16-bit two’s complement integer. The
circuit implements a set of Boolean functions over the inputs, denoted
by the vector of functions ~f(~x1

; . . . ; ~xk). Typically this circuit is
given in the form of a network of logic gates. Furthermore, we are
given an encoding function ENCo defining a word-level interpretation
of the output. Finally, we are given as specification a word-level
function F (X1; . . . ;Xk). The task of verification is then to prove the
equivalence:

ENCo(~f(~x
1
; . . . ; ~xk)) = F(ENC1(~x

1); . . . ;ENCk(~x
k)) (3)

That is, the circuit output, interpreted as a word should match the
specification when applied to word interpretations of the circuit inputs.

*BMDs provide a suitable data structure for this form of verification,
because they can represent both bit-level and word-level functions
efficiently. EVBDDs can also be used for this purpose, but only
for the limited class of circuit functions having efficient word-level
representations as EVBDDs. By contrast, BDDs can only represent
bit-level functions, and hence the specification must be expanded into
bit-level form. While this can be done readily for standard functions
such as binary addition, a more complex function such as binary to
BCD conversion would be difficult to specify at the bit level.

6.1. Hierarchical Verification
For circuits that cannot be verified efficiently at the bit level, such as

multipliers, we propose a hierarchical verification methodology. The
circuit is partitioned into component modules based on its word-level
structure. Each component is verified against a word-level specifica-
tion. Then the word-level functions of the components are composed
and compared to the overall circuit specification.

Figure 8 illustrates the design of two different 4-bit multipliers.
Each box labeled i; j in the figure represents a “cell” consisting of an
AND gate to form the partial product xi ^ yj , and a full adder to add
this bit into the product. The vertical rectangles in the figure indicate
a word-level partitioning of the circuits, yielding the component inter-
connection structure shown on the upper right. All word-level data in
the circuit uses an unsigned binary encoding. Considering the design
labeled “Add-Step”, each “Add Step i” component has as input the
multiplicand word X, one bit of the multiplier yi, and a (possibly 0)
partial sum input word PIi. It generates a partial sum word POi,
where the functionality is specified as POi = PIi + 2i � yi �X .

Verifying the multiplier therefore involves two steps. First, we must
prove that each component implements its specification. Second, we
must prove that the composition of the word-level functions matches
that of integer multiplication, i.e.,

0 + 20
� y0 �X + 21

� y1 �X + 22
� y2 �X + 23

� y3 �X

=
�P

i=0;3 2i � yi
�
�X

= X � Y

Observe that upon completing this process, we have truly verified that
the circuit implements unsigned integer multiplication. By contrast,
BDD-based approaches just show that a circuit is equivalent to some
(hopefully) “known good” realization of the function. For such a
simple example, one can readily perform the word-level algebraic
manipulation manually. For more complex cases, however, we would
like our verifier to compose and compare the functions automatically.

6.2. Component Verification
The component partitioning allows us to efficiently represent both

their bit-level and word-level functions. This allows the test of Equa-
tion 3 to be implemented directly. As an example, consider the adder
circuit having bit-level functions given by the *BMD of Figure 6,
where this *BMD is derived from a gate-level representation of the
circuit using Apply operations, much as would be done with BDDs.
The word-level specification is given by the left-hand *BMD of Figure
4. In generating the *BMD from the specification we are also incor-
porating the requirement that input words X and Y have an unsigned
binary encoding. Given that the output is also to have an unsigned
binary encoding, we would use our Apply algorithms to convert the
bit-level circuit outputs to the word level as:

P = 20
� S0 + 21

� S1 + 22
� S2 + 23

�Cout

We would then compare the *BMD for P to the one shown on the
left-hand side of Figure 4.

6.3. Abstracting Carry Save Adders
In verifying actual multiplier circuits, we often encounter “carry

save adders” (CSAs), requiring an extension to the methodology. For
example, the multiplier design labeled “Diagonal” in Figure 8 is similar
to the Add-Step design, but where the carry output from each cell is
directed to the cell diagonally up and right, rather than directly up.
This modification requires an additional stage of full adders (FAs) to
generate the final result, but it also shortens the critical path length.
Circuit C6288 of the ISCAS benchmarks has this form, with 16-bit
input word sizes and with each full adder realized by 9 NOR gates.

In forming a word-level partitioning of the circuit, shown in the
lower right of Figure 8, we see that all but the first and last components
have two partial sum inputs and two partial sum outputs. Each “CSA
Step i” componentcan be represented at the word level as having input
words SIi and CIi and output words SOi and COi. The full adders
take the form of a carry save adder, reducing three input words to
two. The word-level functions realized by a carry save adder do not
have a simple description in terms of operations such as addition and
multiplication. Thus we cannot directly abstract their behavior up to
the word level.

To verify circuits containing CSAs we exploit the fact that the
correctness of the overall circuit behavior does not depend on the

0, 0 p0

1, 0 p1

2, 0 p2

3, 0 p3

0, 1

p4

1, 1

p5

2, 1

p6

3, 1

p7

0, 2

1, 2

2, 2

3, 2

0, 3

1, 3

2, 3

3, 3

FA

FA

FA

0, 0 p0

1, 0 p1

2, 0 p2

3, 0 p3

0, 1

p4

1, 1

p5

2, 1

p6

3, 1

p7

0, 2

1, 2

2, 2

3, 2

0, 3

1, 3

2, 3

3, 3 Add
Step

0

Add
Step

1

y0 y1 y2 y3

X

Y

Add
Step

2

Add
Step

3

Add
Step

0

y0

CSA
Step

1

y1 y2

CSA
Step

2

y3

X

CSA
Step

3

Y

Add

Add-Step Diagonal Add-Step

Diagonal

Figure 8: Multiplier Circuits Different Levels of Abstraction Each square contains an AND gate and a full adder. The vertical rectangles
indicate the word-level partitioning yielding the representations shown on the right.

individual CSA output functions, but rather on their combined values.
A CSA has the property that the sum of its two outputs is equal to the
sum of its three inputs, perhaps weighting some inputs or outputs by
powers of two. We can give a word-level specification for CSA Step
i as:

SOi + 2i+1
�COi = SIi + 2i �CIi + 2i � yi �X

Rearranging terms, we can view output SOi as dependent on COi:

SOi = SIi + 2i �CIi + 2i � yi �X � 2i+1
� COi (4)

In verifying component CSA Step i we verify this equivalence using
the *BMD representation of component output COi.

In composing the word-level functions, we replace functionCOi by
the unsigned integer Ci represented by a vector of Boolean variables
~c
i. That is, function Ci becomes input CIi+1 to the following stage,

while function

SIi + 2i �CIi + 2i � yi �X � 2i+1
�Ci

becomes inputSIi+1. In doing this, we effectively abstract the detailed
value, treating word COi as an arbitrary unsigned binary-encoded
integer. Verifying that the final output functions match the word-level
specificationX �Y indicates that the overall circuit behavior is correct.

One way to view the methodology described above is that at the
componentlevel we treat the carry outputs as existentially quantified—
for the particular carry functions implemented by the CSA, Equation
4 must hold. On the other hand, we treat these values as universally
quantified when composing the word-level component functions—for
any values of the carry output word, the circuit realizes a multiplier as
long as the sum output satisfies Equation 4. Such a methodology is
conservative—if the verifier succeeds we are guaranteed the circuit is
correct, but if it fails it may simply indicate that the overall behavior
depends on the detailed sum and carry output functions rather than on
their relative values. All of the multiplier circuits containing CSAs

Circuit CPU Time (Min.) Memory (MB)
16 64 256 16 64 256

Add-step 0.04 0.9 18.8 0.7 1.1 6.5
CSA XOR cells 0.06 1.2 21.8 0.8 1.3 9.0
CSA NOR cells 0.06 1.3 22.7 0.8 1.3 9.5

Booth 0.1 2.5 33.3 0.8 1.6 14.4
Bit-Pair 0.1 1.6 29.6 0.8 1.9 13.9

Table 1: Verification Results for Combinational Multipliers. Re-
sults are shown for three different word sizes.

we have encountered to date can be successfully verified despite this
conservatism.

6.4. Experimental Results
Table 1 indicates the results for verifying a number of multiplier

circuits. Performance is expressed as the number of CPU minutes and
the number of megabytes of memory required on a SUN Sparcstation
10. Observe that the computational requirements are quite reasonable
even up to circuits with 256-bit word sizes, requiring up to 653,056
logic gates. We know of no other automated verification of a circuit of
such size, regardless of logic function. The design labeled “CSA NOR

cells” is based on the logic design of ISCAS ’85 benchmark C6288,
a 16-bit version. Our verification of this circuit requires less than 4
seconds.

These results are especially appealing in light of prior results on
multiplier verification. A brute force approach based on BDDs cannot
get beyond even modest word sizes. Ochi et al [12] have successfully
built the OBDDs for a 15-bit multiplier, requiring over 12 million
vertices. Increasing the word size by one bit causes the number of
vertices to increase by a factor of approximately 2.7, and hence even
more powerful computers will not be able to get much beyond this
point.

Burch [4] has implemented a BDD-based technique for verifying
certain classes of multipliers. His method effectively creates multiple

copies of the multiplier and multiplicand variables, leading to BDDs
that grow cubically with the word size. This approach works for
multipliers, such as ours, that form all possible product bits of the
form xi ^ yj and then sum these bits. Burch reports verifying C6288
in 40 minutes on a Sun-3 using 12 MBytes of memory. The limiting
factor in dealing with larger word sizes would be the cubic growth
in memory requirement. Furthermore, this approach cannot handle
multipliers that use multiplier recoding techniques, although Burch
describes extensions to handle some forms of recoding.

Jain et al [7] have used Indexed Binary Decision Diagrams (IBDDs)
to verify several multiplier circuits. This form of BDD allows multiple
repetitions of a variable along a path from root to leaf. They were able
to verify C6288 in 22 minutes of CPU time on a SUN-4/280, generating
a total of 149,498 graph vertices. To our knowledge, this is the best
result on verifying this circuit at a bit level. They were also able to
verify a multiplier using Booth encoding, but this required almost 4
hours of CPU time and generated over 1 million vertices in the graphs.

7. Conclusions

*BMDs provide an efficient representation for functions mapping
Boolean variables to numeric values. They can represent a number of
word-level functions in a compact form. They also represent Boolean
functions with complexity comparable to BDDs. They are therefore
suitable for implementing a verification methodology in which bit-
level circuits are compared to word-level specifications. By exploiting
circuit hierarchy, we are able to verify circuits having functions that
are intractable to represent at the bit level.

Verification of multipliers and other arithmetic circuits using
*BMDs seems quite promising. We are currently developing a a
comprehensive verification system based on our hierarchical method-
ology. We have devised a simple notation “ACV” (for Arithmetic
Circuit Verifier) that allows the user to describe circuits hierarchically.
For each module in the hierarchy, one gives a structural definition as an
interconnection of logic gates and other modules. One can also declare
encodings of the inputs and outputs, as well as give a specification in
terms of arithmetic and Boolean operations. We are implementing a
program that will accept descriptions in this language and either verify
their correctness or supply a “counterexample,” i.e., an input pattern
for some module causing a mismatch between the specified and actual
behavior.

Our method shows some promise for verifying floating point hard-
ware, although difficult obstacles must be overcome. Using a version
that represents rational-valued functions, we can efficiently represent
the word-level functions denoted by standard floating point formats.
This fact follows from our ability to represent integer formats plus ex-
ponentials. Floating point hardware, however, only computes approx-
imations of arithmetic functions. Thus, verification requires proving
equivalence within some tolerance, rather than the strict equivalence
of the current methodology. It is unclear whether such a test can be
performed efficiently.

Some of the applications proposed for EVBDDs and MTBDDs
may work well with *BMDs. Among these are matrix operations and
spectral transforms. Applications requiring efficient equation solving,
such as integer linear programming, on the other hand, are probably
not good candidates.

All of the applications described so far assume the underlying sys-
tem is described in terms of binary-valued variables. In fact, *BMDs

provide a canonical representation for multivariate linear functions.
This could prove useful for applications in symbolic algebra. Inde-
pendent of this work, Minato has devised a canonical representation
for multi-variate polynomial functions [11]. Although he describes
his approach as an extension of zero-suppressed BDDs [10], the rep-
resentation is closely related to *BMDs. For a function variable x,

he introduces vertex labels representingx; x2
; x

4
; x

8
; . . . ; x2k . A term

x
m with m < 2k+1 is then represented according to the binary repre-

sentation of m. With this representation, the connection to symbolic
algebra becomes even more intriguing.

References

[1] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E.
Macii, A. Pardo, and F .Somenzi, “Algebraic decision diagrams
and their applications,” International Conference on Computer-
Aided Design, November, 1993, pp. 188–191.

[2] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation,” IEEE Transactions on Computers, Vol. C-35,
No. 8 (August, 1986), pp. 677–691.

[3] R. E. Bryant, and Y.-A. Chen, “Verification of arithmetic func-
tions with binary moment diagrams,” Technical Report CMU-
CS-94-160, Carnegie Mellon University, May, 1994.

[4] J. R. Burch, “Using BDDs to verify multipliers,” 28th Design
Automation Conference, June, 1991, pp. 408–412.

[5] E. Clarke, K.L. McMillan, X. Zhao, M. Fujita, and J. C.-Y. Yang,
“Spectral transforms for large Boolean functions with application
to technology mapping,” 30th ACM/IEEE Design Automation
Conference, Dallas, TX, June, 1993, pp. 54–60.

[6] R. Enders, “Note on the complexity of binary moment diagram
representations,” unpublished paper, Siemens AG, Munich Ger-
many, 1994.

[7] J. Jain, J. Bitner, M. Abadir, J. A. Abraham, and D. S. Fussell,
“Indexed BDDs: Algorithmic advances in techniques to repre-
sent and verify Boolean functions,” submitted for publication,
1994.

[8] U. Kebschull, E. Schubert, and W. Rosentiel, “Multilevel logic
based on functional decision diagrams,” European Design Au-
tomation Conference, 1992, pp. 43–47.

[9] Y.-T. Lai, and S. Sastry, “Edge-valued binary decision diagrams
for multi-level hierarchical verification,” 29th Design Automa-
tion Conference, June, 1992, pp. 608–613.

[10] S.-i. Minato, “Zero-suppressed BDDs for set manipulation in
combinatorial problems,” 30th Design Automation Conference,
June, 1993, pp. 272–277.

[11] S.-i. Minato, “Implicit manipulation of polynomials using zero-
suppressed BDDs,” unpublished manuscript, 1994.

[12] H. Ochi, K. Yasuoka, and S. Yajima, “Breadth-first manipulation
of very large binary-decision diagrams,” International Confer-
ence on Computer-Aided Design, November, 1993, pp. 48–55.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

