
Abstract—This paper describes a functional hardware verifi-
cation methodology for ASIC intensive products. It spans the
ASIC, board, and system level, enabling simulation of the
design concurrent with ASIC and board development. The sim-
ulation strategy relies on rapid development of behavioural
models of ASICs to enable work to proceed in parallel and to
achieve the necessary simulation efficiency. The results from a
project on which the methodology was used are presented. The
process provided early visibility of over 200 issues in the system
of which 32 were critical to the successful conformance and
timely completion of the project.

I. GOALS - DESIGN/VERIFICATION PROCESS

This paper describes a functional design and verification
process for new products whose H/W complexity is largely
embodied in a set of newly developed ASICs. The goal was
to create a process that supports concurrent engineering of
ASICs, software and circuit boards together to achieve a
“right first time” product. Since the ASIC design interval
was the largest component of the project schedule's critical
path, design recycles had to be avoided at all costs.

The product on which the process was proven in required
the development of 8 ASICs ranging in size from 20 to 70K
gates (plus embedded RAM). A minimal system is com-
prised of 2 Line Interface Modules (LIM’s) and one Switch
Module (SM). The LIM consisted of 6 boards and a back-
plane. The most complex LIM circuit board contained 8
instances of 4 new ASICs. The SM contains 4 boards, and a
combination backplane-switch matrix. The most complex
board on the SM contained 20 instances of 2 new ASICs.

It has been common lore throughout the industry that
ASICs in most new products have experienced at least 1 iter-
ation. There are numerous reasons for reported chip itera-
tions that can be classified into 3 main categories:

• specifications not conforming to system intent
• errors in interpreting or implementing the specification
• changes to the product specification

Our methodology addresses the first point by providing a
simulation environment for a given ASIC that includes its
system environment while its peer ASICs are still in devel-
opment. This raises the confidence in the validity of a speci-
fication since it verifies complex interaction between
components. The method addresses the second cause by pro-

viding an independent implementation of each ASIC specifi-
cation as an executable model. The ambiguity of a natural
language is removed when a working system must be cre-
ated. Behavioural model generation is rapid and thorough in
its coverage of functional detail.

The third cause of chip iterations is much more difficult to
address since it brings in the dynamic nature of the product
marketplace, its perception by the marketing groups and the
corporate organizational and funding structure in which the
development group exists. Here, we can only claim that by
assisting in shrinking the system design interval we contrib-
ute to more rapid realization of the initial product concept. In
a dynamic market environment, the longer the development
interval, the less likely a stable product specification will
endure from concept to completion.

II. WHAT IS A BEHAVIOURAL MODEL?

The value of hardware emulation [1] and large scale simu-
lation in detecting design errors during product development
is well established. Recent work has shown how RTL (regis-
ter transfer level) models of ASICs can be totalized for this
purpose [2] [3]. The cornerstone of the hardware system
modelling methodology we describe here is the development
and exploitation of behavioural models for each ASIC, con-
currently with its implementation. We define a behavioural
model as one which is not synthesizable and distinct from an
RTL model in the same hardware description language as
summarized in Table I.

Because behavioural models can be rapidly developed and
simulate significantly faster than RTL models, they enable
an independent and thorough audit of the ASIC specifica-
tion. System simulations can then proceed concurrently with
the ASIC development, thus highlighting problems early in
the design process.

Table I: Behavioural vs RTL model

Behavioural RTL

View Black-box functional Implementation

Synthesis Non-synthesizable synthesizable

Timing Can be added, not derived Clock-true timing

Data Can use complex types Bits, bit vectors, integers

Language Full language Subset of language

Speed 10x RTL 10x gates

Effort 4-6 man-weeks 9 man-months

Structure Arbitrary Follows implementation

Accuracy
Passes >95% of ASIC conform-
ance tests

Passes 100% ASIC conformance
tests

Accelerating Concurrent Hardware Design with Behavioural Modelling and System
Simulation

Allan Silburt, Ian Perryman, Janick Bergeron†, Stacy Nichols, Mario Dufresne, Greg Ward
†AnalySYS Inc.
25 Loiselle St. Suite 201
Embrun, Ontario, Canada K0A 1W1

Bell Northern Research
P.O. Box 3511, Station C

Ottawa, Ontario, Canada K1Y 4H7

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

III. V ERIFICATION PROCESS AND TEAM ORGA-
NIZATION

An overview of the verification process showing the con-
current ASIC and board development along with simulation
efforts is shown in Figure 2 and Figure 3. Behavioural mod-
els were developed for each ASIC following the release of
its specification. These were carried out by specialists from a
core group who were to a great extent independent of the
ASIC design teams. They were able to rapidly implement the
specification as a behavioural model and iron out the many
details which were either ambiguous, incomplete, or incor-
rect in the paper specification. This modelling could be car-
ried out by one person and required about 1/8 of the effort
necessary to develop synthesizable RTL code.

In order to maximize code re-use and guarantee mutual
conformance, the methodology required that test benches
developed to test the behavioural model, would be entirely
re-used by the ASIC teams and vice versa. The behavioural
models were required to pass as close to 100% of the ASIC
test plans as possible to enable them to stand in for the
devices in system simulations while the RTL was under
development. Non-conformance was only allowed on tests
that required the exact internal structure such as scan and
built-in test modes.

Once the behavioural models were complete, the focus
shifted to System Simulation. This term is used widely in the
industry to refer to many types of modelling work. In the
context of this paper, system simulation refers to analyses
which spanned multiple ASICs, crossing circuit board
boundaries freely and stubbing out components whose func-
tionality was not essential to the behaviour under test. Suc-
cessful completion of these system tests gated the release of
each ASIC to its layout phase. Note that since the ASIC
schedules were not all exactly aligned, the behavioural mod-
els served an essential role in enabling these system simula-
tions to take place in the absence of a complete RTL chip set.

ASIC Design
RTL SynthesisLayout Samples

ASIC Behav.
Modeling

System
Simulation

Board
Simulation

Board Design

S
ystem

 B
uild

Figure 2: Progression of simulation effort
time

On this project, an ATM based product, architectural dif-
ferences between the LIM and SM led to significant differ-
ences in the verification and modelling methodologies used.
Because the LIM processes ATM cells as units, the behav-
ioural models were accurate at the cell level (i.e. the input/
output timing within a cell was accurate at the bit and clock
level, but the cell latency through an ASIC model did not
necessarily match its implementation). However, because the
SM operated on fractions of cells and on time slices, the
models had to be clock and bit level accurate to data latency
on the chip.

To allow seamless replacement of a behavioural model
with its corresponding RTL model, the former offered a pin-
true top-level interface identical to the RTL. Timing annota-
tions such as setup and hold checks or output settling times
could be added if required.

Beyond the top-level interface, a behavioural model was
not required to maintain any similarities with the RTL. They
typically were composed of a single module or entity/archi-
tecture, using instantiations only to ease maintenance when
functionality was replicated. The internal processing was
performed on high-level data types, constructed from the bit-
level input pins, processed in zero-time then formatted and
sequenced for the bit-level output pins. Packages were
developed for standard data structures and operations. Figure
1 shows an example of using a function of theATM_CELL
package in Verilog. A rich library of utilities such as these
simplified the development and maintenance of the models.

Behavioural models are inherently more efficient to simu-
late than RTL models because of the event-driven simulation
technology used and the RTL modelling style required by the
synthesis subset. RTL models are composed of many small
concurrent processes of two types:

1. combinatorial processes evaluated whenever one of
its input signals changes. These can be transient and
hence re-computed several times within the same sim-
ulation time slice or clock cycle.

2. sequential processes evaluated whenever the clock
changes. This occurs whether or not the inputs used to
compute the next values of the registers have changed
since the last clock cycle.

Except for the input and output data formatting sections,
behavioural models tend to be asynchronous, evaluating pro-
cesses only when required. They are composed of few (but
large) processes which require little overhead for complex
operations. This difference translates into better simulation
performance as shown in Section V.

ATM_CELL MY_CELL(); //Instantiate cell struct
initial
begin

MY_CELL.RANDOM;//random payload data
MY_CELL.CORRUPT_HEC;//force HEC error

end

Figure 1: Using the Verilog ATM_CELL package

System Design Specification

System

 Specification

ASIC A

 Test Plan

Behavioural
Model

RTL
Model

Gate
Model

Gate Synthesis

Layout

Simulation
PlanASIC B

 Test Suite

Delay
Annotation

Board 1

Board 2

 Specification Test Plan Test Suite

Simulator

Figure 3: Verification Process

After system simulation work was complete, circuit pack
simulation began. The emphasis shifted to debugging of the
board netlist data and programmable logic components.
Behavioural models for the ASICs were used primarily since
simulation efficiency was essential to making progress in
this effort. However, if CPU resources are available, RTL
models could be used.

IV. SIMULATION METHODOLOGY

A ASIC Verification

From the specification of each ASIC, a conformance test
plan was written to ensure that the implemented ASIC,
regardless of its internal details, conformed to its specifica-
tion. Each test case verified one or a few features of the
ASIC from the top-level pins only, treating the device as a
functional black box. A device or a model was declared to
conform if, and only if, it passed all of the tests.

Testing conformance from the top-level pins only, and not
at the block-level, enabled the use of a single set of test cases
to test any model of the device which offered a pin-true top-
level interface, regardless of its implementation. For the LIM
ASICs, each test case was implemented as a single regres-
sionable test bench whose output was a go/no-go flag.
Scripts were used to run the entire regression test suite on
either the behavioural, RTL, or gate level models and collect
simulation results.

For the SM ASICs, the system-level tests were developed
first and approximately 70% of the ASIC test cases were
derived from them. ASIC-specific test benches were devel-
oped only where coverage was not easily accomplished at

the system level. The exact timing-true nature of the SM
models enabled vectors to be captured and exported at an
ASIC boundary. These were re-run in isolated ASIC test
benches for improved simulation efficiency. This method
also enabled system simulation work on the SM to be carried
out in VHDL while RTL was written in Verilog. RTL code
was later instantiated in system tests using co-simulation to
bridge the language gap.

B Test Bench Tooling

In order to faithfully reproduce the environment in which
each ASIC or system would find itself, generators, monitors
and bus-functional models were required to emulate the
components to which the device under test would eventually
be physically connected.

Up front specification of protocols for data and control sig-
nals at all ASIC boundaries (e.g. microprocessor interface,
SONET processing, ATM cell encapsulation) enabled re-use
of hardware functional blocks and test bench code. A com-
mon set of test bench utilities which could be configured to a
particular chip interface was used throughout the project.

These utilities removed the test bench writers from the
low-level details of the protocols by providing a procedural
interface to all of their operations. For example, the proces-
sor utility providedread, write, andinterrupt handling pro-
cedures. In the ATM cell generator and monitor, only the
values of cell fields needed to be manipulated as the utilities
themselves took care of formatting/extracting the cell into/
from the low-level bit patterns and sequences required at
each ASIC interface. They also allowed the test benches to

be tolerant to changes in the low-level protocols as only the
utilities needed to be changed in the way they format the data
while keeping the procedural interface unchanged. Addi-
tional controls were provided to introduce (or notify of)
errors, such as parity, framing or cell length violations. Fig-
ure 4 shows the structure of a test bench using these utilities.
This approach enabled approximately 10 000 lines of com-

mon code to be re-used in test benches throughout the simu-
lation hierarchy. Many of the utilities are also being re-used
in other projects within BNR.

C Test Bench Coding Techniques

The ASIC and system-level test benches for the LIM had
to be self-adaptive to the cell latency through the models as
they were different for the behavioural, RTL, and the gate
levels (in transient cases).

Making a test bench self-adaptive requires a radical depar-
ture from conventional clock-by-clock test-vector and
expected-response testing techniques. In the latter, the pre-
cise time when expected data is captured from the outputs
becomes rigidly coded into test benches. With our method,
expected responses are timed to a window relative to the ini-
tiating stimulus that is only constrained as tightly as the chip
specification demands. Implicit timing derived from the
ASIC implementation and not necessarily required for sys-
tem conformance is not allowed to creep into the test bench
code.

For example, a specification may not state an exact
response time of the system to a protection switching event.
This time will depend on many details of the system state as
well as the precise implementation of each ASIC. An adap-
tive test bench simply ensures that the correct sequence of
events takes place within some bounding (worst case) times
that may be specified for the system.

Further simplification of test benches was accomplished
by encoding expected response and destination information
as data fill in regions of the cell not processed by the devices
in a particular test. For example the CLP bit in the ATM
header was at times used to flag a cell with a parity error
inserted. Sequence numbers and destination were coded into
payloads. Cell monitors could then easily ensure no cells
were lost or scrambled by the system.

SM test benches did not need to be self-adapting since all
models had accurate timing. However this required that test

Figure 4: Test Bench Structure

Device

Under Test

Cell

Generator

Cell

Monitor

Processor

Bus UtilityTest bench

Control

Control events
Signal wires

benches had to be modified whenever the latency changed as
the design progressed. This was accomplished using a few
generic parameters for tuning time intervals in the system
test suites.

D System Simulation

The goal of the system simulation effort was to supple-
ment the ASIC verification with additional functional cover-
age from a system feature viewpoint. This served to verify
that the low level components implemented the high level
features of the system as a whole. It required that simulations
be carried out with the same RTL code from which each
ASIC was to be synthesized. It was not practical to analyse
performance characteristics such as cell throughput or loss
ratios in this environment since simulation run times
required to obtain meaningful data would be excessive.
These parameters were simulated during initial system
design using more abstract models in a dedicated simulator.

A system test plan was developed that focused on features
and functions spanning multiple ASICs and the low level
chip to chip interactions they relied upon to work together.
To avoid unnecessary work, we attempted to minimize over-
lap of simulation feature coverage at the ASIC, board, and
system level. The features targeted for system simulation on
this product were:

• high level flow control
• fault detection and recovery mechanisms
• H/W S/W control sequences;
• full data path tests

These behaviours were not observable in isolated ASIC
tests.

System simulation was focused on ASIC to ASIC behav-
iour, and traversed many physical partitions that existed in
the product. The utilities developed to perform the system
test benches modelled only the interfaces to commercial
components on the circuit pack. This made the system simu-
lations immune to many of the component changes at the
early stages of the board design, allowing the two to proceed
concurrently.

The link level flow control system test case is illustrated in
Figure 5. In this test, multiple queues managed by the Q chip
must be regulated to match the link bandwidth by a message
passing scheme from each link. These messages are pro-
cessed through intermediate chips such as the MUX chip.
Many components, such as the microprocessor and control
bus hierarchy are abstracted away as well as physical parti-
tions such as backplane connectors. This simulation con-
tained 4 ASICs (8 instances total).

E Board Simulation

The board simulations concentrate on the additional
design data available with the circuit pack netlist. This con-
sisted of board interconnect, back plane interconnect, FPGA
and discrete component functionality. In contrast to system
simulation, all of the components were now instantiated with
either commercial and hand-crafted behavioural models or
hardware models. The most complex board on the LIM for

example contained 4 ASICs (8 instances), 2 different Hard-
ware models, and 10 commercial components (33 instances).
Simulation characteristics for this board are given in Section
V.

The methodology used is illustrated in Figure 6. Each cir-
cuit pack was tested as if it were installed in the backplane.
Other backplane slots were populated with bus functional
models of the other boards. These models were built largely
from the test bench utilities. The bus functional models gen-
erated and monitored data to/from the card under test.

Typical board simulation test cases consisted of card reset
and initialization and simple data path operations. Much
attention was paid to the control circuitry from the on board
processor to each ASIC. This path, which contained most of
the discrete (non-ASIC) functionality was not visible in sys-
tem simulations. However, the embedded S/W initialization
sequences were developed previously in the system simula-
tion environment and enabled embedded S/W development
and board simulation efforts to be accelerated. Typical of
tests performed at this stage were the verification of unique
and correctly ordered buses as well as correctly connected
and addressed interrupt lines.

V. PROCESS AND SIMULATION METRICS

During the course of the project, any time an issue was
found with any of the specified design units (classified as
ASIC, HW interface specification, circuit board or software)
it was recorded in a data base. Issues were classified accord-
ing to their severity by 3 levels. A Level 1 issue had to be

Cell Gen
Utility

LINK
Chip

Cell Mon
Utility

Mux
Chip

Queue
Chip

Cell Gen
Utility

Cell Mon
Utility

Other Links

Backplane

Processor Utility

(not modeled)

RAM

Figure 5: System Simulation Test Bench

Route
Chip

System Backplane

Device Under
Test

Bus Functional
Card A

Generator
and Monitor
Utilities

Bus Functional
Card B

Generator
and Monitor
Utilities

Figure 6: Circuit Pack Simulation Test Bench

addressed immediately. Its early detection was likely to have
averted a slip in the schedule of a major deliverable or a sig-
nificant specification non-compliance. Correction of the
problem at the time it was detected was typically straightfor-
ward and caused minimal impact on schedule due to the
early detection. At the other extreme, level 3 issues were
ones that were unlikely to have found their way into the
product or if so would have had minimal impact. Most com-
monly they were errors in the written specifications which
were not in agreement with RTL code or other forms of
design capture that were in progress at the time.

A summary of the issues found according to their severity
and the simulation effort which uncovered them is shown in
Table II.

Since simulation progressed from ASIC to system to board
level, the majority of issues were found at the early stages of
the concurrent efforts. The simulation burden (size and
speed) followed an increasing progression as shown in Table
III.

Since most of the H/W functional complexity of the prod-
uct is embodied in ASICs and they were simulated at such
and early stage, most of the issues were logged against these
components as illustrated in Table IV. Most of these would
likely have been caught later on during RTL coding had no
behavioural models been developed. However, there were a
handful of critical issues uncovered which may not have
been found until very late in the design cycle or not at all.
This was common in even the most heavily reviewed specs
and indicates that the enormous detail required to specify a
large ASIC can not be fully captured and verified by a natu-
ral language document and a manual review process.

Table II: Design Issues Found By Simulation

Level 1 Level 2 Level 3 Total

ASIC Behavioural
Modelling

18 51 101 170

System
Simulation

8 2 20 30

Board
simulation

6 5 5 16

Totals 32 58 126 216

Table III: Typical Test Bench Simulation Times And Process Sizes (seconds/MB)

Simulation Level Gates. RTL Behaviour

ASIC test bench 1900/85 1350/23 400/6.5

System test bench 9872/42 1054/24

Board test bench 44574/102 16500/76

Table IV:ISSUES FOUND BY SIMULATION

I/F Specs ASICs Board S/W Totals

BEHAVIOURAL
MODELLING

13 157 170

SYSTEM
SIMULATION

5 10 5 10 30

BOARD
SIMULATION

1 15 16

Totals 18 168 20 10 216

Board simulations primarily found issues on the function-
ality captured at the board level (connectivity and FPGA
function) as they were targeted to do. System tests also
uncovered problems with the early specifications for boot-
strap sequences in the low level software. Common interface
specifications which spanned multiple ASICs were also the
target of a number of issues that were uncovered.

VI. CONCLUSIONS

We have described a methodology for functional hardware
verification that spanned the ASIC, board and system level
enabling simulation of the design concurrent with ASIC and
board development. The simulation strategy relies on rapid
development of behavioural models of ASICs to enable
work to proceed in parallel and to achieve the necessary sim-
ulation efficiency. The effort provided the early visibility of
over 200 issues in the system of which 32 were critical to the
successful conformance and timely completion of the
project.

REFERENCES

[1] A. Mendelsohn, “Now you’re talking: verification strat-
egy shapes telephony,”Computer Design, vol. 33, no.
10, pp. 103-110, September, 1994.

[2] M. Hsu, “What you should expect the system simulation
engineer you’re going to hire to do”,Proc. VHDL Inter-
national Users Forum, pp.11.1 - 11.6, Nov. 1994

[3] E. Parrella and M. Tota, “Behavioral testbenches for
telecommunications chipset development”,Proc. VHDL
International Users Forum, pp.12.27-12.33, Nov. 1994

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

