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Abstract

A method for the e�cient computation of accu-

rate reduced-order models of large linear circuits is de-

scribed. The method, called MPVL, employs a novel

block Lanczos algorithm to compute matrix Pad�e ap-

proximations of matrix-valued network transfer func-

tions. The reduced-order models, computed to the re-

quired level of accuracy, are used to speed up the anal-

ysis of circuits containing large linear blocks. The lin-

ear blocks are replaced by their reduced-order models,

and the resulting smaller circuit can be analyzed with

general-purpose simulators, with signi�cant savings in

simulation time and, practically, no loss of accuracy.

1 Introduction

Electronic circuits often contain large linear sub-

networks, for example, when large interconnect net-

works are automatically extracted from layout, or

when circuits contain models of distributed elements,

such as transmission lines, ground planes, or three-

dimensional structures. The direct use of time-domain

nonlinear di�erential-equation integration, as imple-

mented in SPICE-like simulators, would be ine�cient

or even prohibitive for such large problems.

A signi�cantly more e�cient way to analyze such

circuits is to replace the linear subnetwork with a

reduced-order model that approximates su�ciently

well its external behavior. This way, the linear part

of the problem is handled by an e�cient method dedi-

cated to the analysis of linear circuits, and the problem

left for the nonlinear simulator to solve becomes sub-

stantially smaller. This approach results in important

computational savings and can tackle problems of sizes

that are out of the reach of conventional simulators.

Such a method was implemented in AWESpice [1]

where the Asymptotic Waveform Evaluation (AWE)

algorithm [2, 3] was used to approximate the linear

subcircuit. In AWESpice, the moments of the sub-

circuit are �rst generated through an e�cient recur-

sive procedure. Then, moment matching is applied

to compute Pad�e approximations to all entries of the

linear subcircuit admittance matrix. Finally, this ap-

proximated admittance matrix is used in a modi�ed

SPICE simulator to represent the large linear subnet-

work. The moment-matching phase of the AWE al-

gorithm, however, has inherent numerical limitations,

discussed in [4], which restrict its applicability to sub-

circuits that can be modeled accurately using only a

relatively small number of poles.

In this paper, we introduce a new algorithm called

MPVL (Matrix Pad�e Via a Lanczos-type process),

for the accurate and e�cient computation of reduced-

order models of large linear circuits. The MPVL al-

gorithm represents a generalization of the recently in-

troduced PVL (Pad�e Via the Lanczos process) algo-

rithm [4, 5]. Similar to AWESpice, the new algorithm

constructs a Pad�e approximation to the matrix-valued

transfer function that characterizes the linear subcir-

cuit. The MPVL algorithm, however, like its prede-

cessor PVL, uses a numerically robust Lanczos-type

process, instead of the numerically unstable moment

generation, and therefore, it does not su�er from the

numerical limitations of AWE. In particular, MPVL

can compute Pad�e approximations of arbitrary lin-

ear network transfer-functions, up to any order, as

required by the desired level of accuracy. Further-

more, the Pad�e approximation computed by MPVL is

di�erent from the one used by AWESpice. Instead of

computing individual Pad�e approximations for each

entry of the matrix-valued transfer-function, MPVL

computes a single matrix-valued Pad�e approximation.

The resulting reduced-order model can be easily and

naturally integrated in the nonlinear simulation.

The paper is organized as follows. In Section 2,

we discuss the use of reduced-order models to replace

linear blocks within nonlinear circuits. In Section 3,

we review the block Lanczos algorithm, and we list

some of its properties. In Section 4, we establish the

connection of the block Lanczos algorithm with the

matrix Pad�e approximation of transfer functions. In
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Figure 1: Circuit partitioning

Section 5, we discuss reduced-order modeling based

on the block Lanczos process. In Section 6, we report

the results of numerical experiments with the new al-

gorithm for an illustrative example. In Section 7, we

make some concluding remarks.

2 The Use of Reduced-Order Models

Using any circuit-equation formulation technique,

such as modi�ed nodal analysis or sparse tableau [6],

a circuit can be described by a system of �rst-order

di�erential equations:

d

dt
q̂(z; t) + f̂(z; t) = 0: (1)

Here, z = z(t) is the vector of circuit variables at

time t, the term f̂(z; t) represents the contribution of

nonreactive elements such as resistors, sources, etc.,

and the term d
dt
q̂(z; t) represents the contribution of

reactive elements such as capacitors and inductors.

From now on, we assume that a linear subnetwork

L can be separated from the circuit, as shown in Fig-

ure 1. We partition the circuit variables as follows:

z =

2
4xNy
xL

3
5 ; (2)

where xL denotes the variables exclusive to the lin-

ear subnetwork L, xN are the variables exclusive to

the remainder N of the circuit, and y represents the

variables shared by the two blocks. Using (2) and a

suitable reordering of the equations, the equations (1)

can be rewritten in the following form:

d

dt

0
@
2
4q

��
xN
y

�
; t

�

0

3
5+

�
0

C

�
�

�
y

xL

�1
A

+

2
4 f

��
xN
y

�
; t

�

0

3
5+

�
0

G

�
�

�
y

xL

�
= 0:

(3)

In (3), the vector-valued functions q and f represent

the contributions of resistive and reactive elements

from the nonlinear partition of the circuit, and the

matrices C and G represent, respectively, the contri-

butions of resistive and reactive elements in the linear

partition. Furthermore, in (3), without loss of general-

ity, we assume that the vectors q and f have the same

length, and that the matrices C and G are square

and of the same size; this can always be achieved by

padding q, f , C, or G with additional zeros, if nec-

essary. Note that there are three types of equations

in (3). The leading equations involve only quantities

from the nonlinear partition, while the trailing equa-

tions involve only quantities from the linear partition.

The remaining equations connect quantities from both

partitions, and in the sequel we denote by m the num-

ber of these connecting equations.

The system (3) can be solved using nonlinear or-

dinary di�erential equation solvers, such as the ones

used in SPICE-like simulators. When the cardinality

of xL is large, however, signi�cant computational sav-

ings can be achieved by �rst replacing the linear sub-

network with a reduced-order model, which, within

approximation error, maintains the same behavior at

the interface. The rest of the paper describes a method

for the computation of such reduced-order models.

The equations referring to the linear subnetwork

in system (3) can be separated through the introduc-

tion of a new m-dimensional vector, u = u(t), of cir-

cuit variables, which represent interface signals. In-

deed, (3) is equivalent to the coupled system

d

dt
q

��
xN
y

�
; t

�
+ f

��
xN
y

�
; t

�
+

�
0

Im

�
u = 0;

C
d

dt

�
y

xL

�
+ G

�
y

xL

�
=

�
Im
0

�
u:

(4)

Here, Im denotes the m � m identity matrix. In the

case of a nodal formulation, the variables y and u

would represent, respectively, the voltages and the

currents in the wires that connect the linear and the

nonlinear partitions of the circuit. We now set

x =

�
y

xL

�
; B =

�
Im
0

�
; and L =

�
Ip
0

�
;

where p denotes the length of the vector y. Note that

LT is the matrix that selects the y subvector from x,

i.e., y = LTx. The linear subnetwork is then described

by the system

C
d

dt
x+Gx = Bu;

y = LTx:

(5)



The system (5) describes an m-input p-output linear

network, which can also be analyzed in terms of its

p � m matrix of Laplace-domain transfer functions.

To this end, we �rst apply the Laplace transform to

the equations in (5), and we get

sCX +GX = BU;

Y = LTX:
(6)

Here, X, U, and Y denote the Laplace transform of

x, u, and y, respectively. Next, we perform the sub-

stitutions (similar to the ones used in [4])

A = � (G+ s0C)
�1
C; R = (G+ s0C)

�1
B; (7)

where s0 is a frequency shift, s = s0 + �, chosen such

that the matrix G + s0C is nonsingular. From (6),

we then obtain Y = LT (I�A�)
�1
RU, and the

transfer-function matrix is given by

H(�) = Y(�)(U(�))�1 = LT (I �A�)
�1
R:

Our goal is to approximate the function H(�) with a

reduced-order model that is still su�ciently accurate

in the domain of interest.

The function H(�) is scalar-valued when the linear

subnetwork L has only one input and one output, i.e.,

L is a one-port. The computation of Pad�e approxi-

mants to such scalar functions H(�) by means of the

Lanczos process was described in detail in [4]. How-

ever, in general, the interface between the nonlinear

and the liner subnetworks is more complicated than a

one-port, and then the linear subnetwork is described

by an p � m matrix of transfer functions. One way

to construct a reduced-order model of such a linear

system is to use the superposition property of linear

networks and, as in AWESpice, obtain a Pad�e approx-

imation separately for each pair of inputs and out-

puts. However, in this case, the computational cost of

macromodeling and the number of macromodel state

variables increase rapidly with the size of the inter-

face. Moreover, by computing the individual transfer

functions separately without sharing information, op-

timality is lost in some sense. We now introduce a

superior approach that is based on the computation

of a matrix Pad�e approximation to the entire matrix-

valued transfer function simultaneously. This method

is based on the novel block Lanczos algorithm [8].

3 A Block Lanczos Algorithm

The block Lanczos algorithmwe use is a generaliza-

tion of the classical Lanczos algorithm [7]. Here, we

only state the algorithm in its simplest form; a more

sophisticated version that incorporates de
ation and

look-ahead techniques is described in detail in [8].

The algorithm generates two sequences of Lanc-

zos vectors v1;v2; : : : ;vk and w1;w2; : : : ;wk that,

for each k = 1; 2; : : :, build bases for the spaces

spanned by the �rst k vectors of the block Krylov

sequences R;AR;A2R : : :, and L;ATL;
�
AT

�2
L; : : :,

respectively. The vectors are generated to be biorthog-

onal:

wT
i vj =

�
�j ; if i = j,

0; if i 6= j,
for all i; j = 1; 2; : : : ; k:

We set

Vk = [v1 v2 � � � vk ] ; Wk = [w1 w2 � � � wk ] :

Here, the initial matrices Vm and Wp are obtained

by biorthogonalizing the initial block R and L by a

modi�ed Gram-Schmidt-type process. In particular,

we have

R = Vm� and L =Wp�; (8)

where � = [�ij ]i;j=1;2;:::;m and � = [�ij ]i;j=1;2;:::;p are

upper triangular matrices. The Lanczos vectors can

be generated by (m+p+1)-term recurrences that can

be compactly written in matrix formulation as follows:

AVk = VkTk + [0 � � � 0 v̂k+1 � � � v̂k+m ] ;

ATWk =Wk
~Tk + [0 � � � 0 ŵk+1 � � � ŵk+p ] :

(9)

The matrices

Tk = [ tij ]i;j=1;2;:::;k and ~Tk = [ ~tij ]i;j=1;2;:::;k

are banded matrices, where Tk has m subdiagonals

and p superdiagonals, and ~Tk has p subdiagonals and

m superdiagonals. These matrices are|up to a diag-

onal scaling|the transpose of each other:

~TT
k = DkTkD

�1

k ; Dk = diag (�1; �2; : : : ; �k) :

In (9), v̂k+1; � � � ; v̂k+m and ŵk+1; � � � ; ŵk+p are aux-

iliary vectors. In the kth step of the block Lanczos

Algorithm 1 below, we compute the new vectors vk
and wk and a new pair of auxiliary vectors v̂k+m and

ŵk+p, and we update the remaining auxiliary vectors

v̂k+1; � � � ; v̂k+m�1 and ŵk+1; � � � ; ŵk+p�1.

Algorithm 1 (A block Lanczos algorithm [8])

0) Set v̂i = ri, i = 1;2; : : : ;m.

Set ŵi = li, i = 1; 2; : : : ; p.

For k = 1; 2; : : : ; kmax do :

1) Compute tk;k�m = kv̂kk2 and ~tk;k�p = kŵkk2.

If tk;k�m = 0 or ~tk;k�p = 0, then stop.



2) (Computation of vk and wk .) Set

vk =
v̂k

tk;k�m
; wk =

ŵk

~tk;k�p
; �k = wT

k
vk:

If k � m, set �kk = tk;k�m.

If k � p, set �kk = ~tk;k�p.

3) (Computation of v̂k+m and ŵk+p.)

Set im = maxf1; k �mg and ip = maxf1; k � pg.
Set v = Avk and w = ATwk .

For i = ip; ip + 1; : : : ; k, set

tik =
wT
i
v

�i
and v = v � vitik:

For i = im; im + 1; : : : ; k, set

~tik =
vT
i
w

�i
and w = w �wi

~tik:

Set v̂k+m = v and ŵk+p = w.

4) (Update of v̂k+i, 1 � i < m.) For i = 1;2; : : : ;m� 1 do :

If k + i � m, set

�k;k+i =
wT
k
v̂k+i

�k
and v̂k+i = v̂k+i � vk�k;k+i:

If k + i > m, set km = k �m+ i,

tk;km =
~tkm ;k�km

�k
and v̂k+i = v̂k+i � vk tk;km :

5) (Update of ŵk+i, 1 � i < p.) For i = 1; 2; : : : ; p� 1 do :

If k + i � p, set

�k;k+i =
vT
k
ŵk+i

�k
and ŵk+i = ŵk+i �wk�k;k+i:

If k + i > p, set kp = k � p+ i,

~tk;kp =
tkp ;k�kp

�k
and ŵk+i = ŵk+i �wk

~tk;kp :

We remark that, in Algorithm 1, a breakdown, trig-

gered by division by 0, will occur if one encounters

�n = 0 in steps 3-5. Furthermore, division by a

nonzero yet small number �n � 0 may result in nu-

merical instabilities. However, we stress that these

problems can be remedied by using a so-called look-

ahead variant of this algorithm; we refer the reader

to [8] for details.

4 Matrix Pad�e Approximation

Recall that the Laplace-domain transfer function of

the linear subnetwork is given by the p � m matrix-

valued functionH(�). We now describe how the block

Lanczos algorithm can be used to generate a reduced-

order approximation to H(�)

The transfer function can be expanded in an in�nite

Taylor series

H(�) = LT (I �A�)
�1
R =

1X
j=0

LTAjR �j ; (10)

where the coe�cient matrices, Mj = LTAjR, repre-

sent the moments of the circuit response. Using the

�rst relation in (9) and the fact that Tk is banded,

one can show that

AjR = VkT
j

k

�
�

0

�
; j = 0; 1; : : : ; q0 � 1; (11)

where q0 = bk=mc. Similarly, from the second relation

in (9), one can deduce that

�
AT

�j
L =Wk

~T
j
k

�
�

0

�
; j = 0; 1; : : :; q00 � 1; (12)

where q00 = bk=pc. On the other hand, by (10), each

momentMj can be written as follows:

Mj = LTAjR =
�
LTAj0

��
Aj00

R

�
; (13)

where j = j0 + j00. If j � q0 + q00 � 2, we can �nd j0

and j00 with 0 � j0 � q0 � 1 and 0 � j00 � q00 � 1, and

from (11){(13) it follows that

Mj = [�T 0 ]
�
~TT
k

�j0

WT
kVkT

j00

k

�
�

0

�

for all j � q0 + q00 � 2. Using
�
~TT
k

�j0

= DkT
j0

kD
�1

k ,

we get

Mj = [ �T 0 ]DkT
j
k

�
�

0

�
; j = 0; 1; : : : ; q0 + q00 � 2:

It can be shown that this last relation also holds for

j = q0+q00�1, and we set q = q0+q00 = bk=mc+bk=pc.

Hence, the expression

[�T 0 ]Dk (I � �Tk)
�1

�
�

0

�
=

q�1X
j=0

Mj �
j +O(�q)

has the same �rst q matrix Taylor coe�cients asH(�),

and consequently,

Hk(�) = [�T 0 ]Dk (I � �Tk)
�1

�
�

0

�

is just a matrix Pad�e approximant of H(�).

5 Reduced-Order Models

We now show how the block Lanczos algorithm can

be used to construct reduced-order models for the lin-

ear subnetwork L. By applying the substitutions (7)

to the time-domain system of equations (5), we obtain

�A
d

dt
x + (I+ s0A)x = Ru;

y = LTx:

(14)



We set x = Vkd, where d is a \short" column vector

of size k, typically, k � N . This is in fact the only

approximation that we are making: we constrain x

to the k-dimensional subspace spanned by the right

Lanczos vectors v1;v2; : : : ;vk. By premultiplying the

�rst equation in (14) with the matrixWT
k , we obtain

�WT
k
AVk

d

dt
d+WT

kVkd+ s0W
T
kAVkd =WT

k
Ru;

y = LTVkd:

We observe that, from properties of the block Lanczos

algorithm, WT
kAVk = DTk, by the biorthogonality

of the Lanczos vectors,WT
kVk = D, and from (8), we

have

R = Vk

�
�

0

�
and L =Wk

�
�

0

�
:

By inserting these relations into the above expression,

we obtain the time-domain reduced-order model of the

linear subnetwork

�Tk

d

dt
d+ (I + s0Tk)d = Dk

�
�

0

�
u;

y = [ �T 0 ]Dkd:

(15)

The transfer function corresponding to equations (15)

represents a matrix Pad�e approximant of the original

linear subnetwork transfer function.

In other words, we can approximate the original

system (4) with a smaller system in which the linear

subnetwork is approximated by a reduced-order model

whose transfer function is a matrix Pad�e approxima-

tion of the original system. The smaller system is as

follows:

d

dt
q

��
xN
y

�
; t

�
+ f

��
xN
y

�
; t

�
+

�
0

Im

�
u = 0;

�Tk

d

dt
d + (I + s0Tk)d = Dk

�
�

0

�
u;

y = [ �T 0 ]Dkd:

This system approximates the original system (3), yet

it has a signi�cantly reduced number of state variables.

6 An Illustrative Examples

As an example, we discuss the modeling of a low-

noise ampli�er designed for a radio-frequency applica-

tion and implemented in an advanced BiCMOS pro-

cess. The netlist, extracted from the actual layout

with all the parasitics included, consists of 51 MOS-

FET devices, 26 bipolar transistors, 35 resistors, 6 in-

ductors, and 381 capacitors. The size of the linearized

circuit matrices is 414.

The ampli�er is a two-port and therefore can be

considered to have two independent inputs and out-

puts. The two-port is fully characterized by a 2 � 2

matrix-valued transfer-function that in fact contains

only three independent entries. The MPVL algorithm

was employed to compute a reduced-order model of

the transfer-function matrix, and MPVL converged af-

ter 48 iterations. This corresponds to 2� 24 matched

matrix moments. Figures 2-4 plot the magnitudes

of gain, normalized input impedance, and normalized

output impedance of the ampli�er. The graphs pro-

duced by MPVL in 48 iterations are indistinguishable

from the true frequency response of the circuit as pre-

dicted by complex small-signal analysis (not shown on

the graphs) for all three circuit characteristics.

Figure 2 shows that the ampli�er gain obtained

from the 48 iterations of the MPVL algorithm is

indistinguishable from the results of the basic PVL

algorithm which required only 40 iterations. This

phenomenon is predictable. The MPVL algorithm

approximates simultaneously the gain, the input

impedance, and the output impedance of the ampli-

�er, while PVL only considers the gain. PVL matches

2�40 moments of the gain function. MPVL, however,

matches a total of 4�48 moments of the two-port even

if only 48 are directly related to the gain. The addi-

tional information obtained from the remainder of the

moments is su�cient for the algorithm to converge in

48 instead of the 80 iterations that would otherwise be

necessary to match the same number of gain moments.

Figure 2 also shows the gain predicted after 40 iter-

ations of the MPVL algorithm when it has obviously

not converged yet.

Figure 3 shows that, surprisingly, the input

impedance computed with MPVL converges faster

than the one computed with PVL. After 30 iterations

MPVL predicts the correct input impedance, while

PVL has not converged yet. Recall, however, that at

this point MPVL matches a total of 4 � 30 system

moments.

The output impedance of the ampli�er, shown in

Figure 4, requires 34 PVL iterations. As in the gain

case, MPVL required several more iterations to con-

verge.

This example shows the advantages of the MPVL

algorithm over using PVL repeatedly for each entry of

the transfer-function matrix. One run of the MPVL

algorithm for 48 iterations produced equal and better
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results than three runs of PVL with 40, 30+, 34 it-

erations respectively. Similarly, the number of state

variables of the reduced-order model is only 48 com-

pared with more than 40 + 30 + 34 that would have

been required otherwise. This advantage is only ex-

pected to grow when subnetworks with more inputs

and outputs are considered.

7 Conclusions

This paper introduces MPVL, a new algorithm for

the computation of reduced-order approximatemodels

of linear networks with multiple inputs and outputs.

MPVL uses a block Lanczos process to compute a ma-

trix Pad�e approximation of the linear network matrix-

valued transfer function. The algorithm generalizes

the recently published PVL algorithm that is handling

one pair of inputs and outputs of the linear network

at a time and computes a scalar Pad�e approximation

of the corresponding transfer function. The reduced-

order approximate model generated with MPVL can
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be naturally and easily used as replacement of a large

linear subnetwork in a nonlinear circuit simulation, for

substantial savings in total simulation time.
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