
Interfacing Incompatible Protocols using

Interface Process Generation y

Sanjiv Narayan Daniel D. Gajski

Viewlogic Systems Inc. Dept. of Computer Science

Marlboro, MA 01752 Univ. of California, Irvine, CA 92717

Abstract

During system design, one or more portions of the
system may be implemented with standard components
that have a �xed pin structure and communication pro-
tocol. This paper described a new technique, interface
process generation, for interfacing standard compo-
nents that have incompatible protocols. Given an HDL
description of the two protocols, we present a method
to generate an interface process that allows the two
protocols to communicate with each other.

1 Introduction

System design maps the functionality of the system
to a set of system components (chips, logic blocks on
a chip, memories, processors etc.). As the complex-
ity of systems being designed today increases, time-
to-market pressures often result in a signi�cant reuse
of standard components, i.e., existing designs, o�-
the-shelf components etc. During system design, one
or more portions of the system being designed may
bound to (i.e., implemented by) these standard com-
ponents, while other portions of the system may be
custom designed. The pin structure and the com-
munication protocols of these standard components
are �xed and cannot be changed. Consequently, com-
munication among system components with di�erent
communication protocols is possible only if proper in-
terfaces are introduced.

Consider two standard components A and B that
communicate data between them using two �xed pro-
tocols Pa and Pb respectively, as shown in Figure 1. If
the two protocols are compatible with each other, we
simply need to connect the appropriate ports on both
the standard components to ensure that they are able
to communicate with each other. However, if the pro-
tocols Pa and Pb are incompatible, an interface process

yThis work at U.C. Irvine was supported by the Semi-
conductor Research Corporation (grant #93-DJ-146).

Interface
process

behavior
 B

behavior
 A

PbPa

 Standard
Component A

 Standard
Component B

Figure 1: Interfacing standard components.

needs to be inserted between the two standard compo-
nents. The interface process, shown with dashed lines
in the �gure, is a process which facilitates data trans-
fer between two standard components by interfacing
their two incompatible protocols.

Another circumstance where interface processes
may be required is when tight pin constraints on two
system components during system design may cause
the number of data pins in each of the system compo-
nents to be di�erent. An unequal number of data pins
will lead to incompatible communication protocols for
which an interface process will be required for proper
communication.

2 Previous Work

While several research e�orts have looked into the
interaction between interface timing constraints and
synthesis, only three approaches have examined pro-
tocol compatibility between standard components in
detail. We will describe these approaches briey.

Synthesis of interface transducers between custom
chips and system buses was presented in [1, 2]. A
transducer is de�ned as the glue logic that connects
two circuit blocks. Timing diagrams of the two in-
compatible interfaces were speci�ed as inputs. The
output was a logic speci�cation of the transducer cir-
cuit. First, separate event graphs are generated from
the timing diagrams of the two interfaces. Next, the
two event graphs are combined into a single graph
by either explicitly specifying merge labels that con-
nect nodes in the two event graphs or by examin-
ing the data dependencies between the two interfaces.
A skeletal circuit is �rst generated using a template
matching strategy for each output in the transducer
circuit, and then optimized. Any timing constraint
violations and race conditions in the circuit are cor-
rected by adding appropriate logic circuitry. The main
advantage of the transducer synthesis method is that
it incorporates detailed timing constraints between
events in the two interfaces. Second, the output of

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

transducer synthesis is a logic circuit { no hardware
needs to be synthesized.

An approach to the synthesis of protocol converters
was presented in [3, 4]. A protocol converter is a logic
circuit that matches the control signals on each of the
two protocols to enable data transfers between them.
Protocol conversion assumes that the datapath of the
converter is given. The protocols being interfaced are
speci�ed using Verilog-based �nite-state machines. A
cross product of the two state machines is obtained
and optimized to obtain the state-machine description
of the converter. This approach can potentially lead to
a very large number of states in the protocol converter.

A method for the design of system interface mod-
ules was proposed for the SIERA design environment
in [5]. SIERA [6] seeks to minimize the system design
e�ort by providing a library of modules containing de-
tailed I/O structure and protocols (speci�ed as event
graphs). Inter-module communication is abstracted to
a level where the designer need only instantiate the ap-
propriate system modules from the library and spec-
ify their interactions in terms of the interconnection
of the source and destination ports using high-level
primitives in a special-purpose language, IDL. First, a
control ow graph is constructed from the user speci�-
cation of the interconnection of the modules. Schedul-
ing and allocation are applied to the control ow graph
to generate the interface controller, and a datapath to
implement the data transfers between the data lines of
the two protocols. Next, the event graphs for the two
protocols are obtained from the module library and
interconnected based on data dependencies between
the operations in the two protocols. From this event
graph, a protocol controller is synthesized to respond
to the control signals of the two module protocols.
The main advantage of this approach is that it frees
the designer from the burden of considering any low-
level details (such as I/O control signals and timing
constraints), since such information is stored in the
module library.

3 Problem de�nition

Interface process generation de�nes an inter-
face process between two communicating processes
with �xed but incompatible protocols. An interface
process responds appropriately to the control signals
of both protocols and sequences the data transfers be-
tween them. In other words, the interface process
translates one protocol into another.

Interface Process Generation addresses several is-
sues in solving protocol incompatibility. Firstly, other
than specifying the two incompatible protocols, the
designer should not have to specify extra information
that is required by the tool that attempts to resolve
the incompatibility. In the Transducer Synthesis ap-
proach, the designer may be required to specify ex-
plicit merge labels in order to combine their corre-
sponding event graphs. In addition, the names of the
data lines in the two protocols must be identical. The
Protocol Converter approach assumes that the datap-
ath for the protocol converter is already designed and
requires the designer to specify a third state machine

called a \C-machine" which describes the set of legal
sequence of operations between the two FSMs repre-
senting the protocols. In the System Interface Module
approach, the designer is required to specify details
of the interface module such as the sequence of data
transfers and interconnection of data ports.

Secondly, the interface process generated should be
simulatable with the behavioral descriptions of the
components it connects. This will provide the designer
with the capability to simulate the system speci�ca-
tion and verify the functional correctness of the system
once the incompatible interfaces have been resolved.
In the Transducer Synthesis approach described in
Section 2 the generated logic is not simulatable with
the timing diagrams of the two interfaces that it con-
nects. Similarly, in the case of the Protocol Converters
and System Interface Modules, the capability to simu-
late the design after protocol incompatibility has been
resolved is lacking.

Finally, it will often be the case that the two proto-
cols being interfaced have di�erent data widths (i.e.,
the number of data lines or pins) are di�erent in
two protocols. Any method that interfaces proto-
cols should be able to handle data-width mismatches.
The Transducer Synthesis and Protocol Converter
approaches cannot handle data width mismatches.
While the System Interface Module approach allows
data width mismatches, it requires the designer to ex-
plicitly specify the interconnection of source and des-
tination ports and the transfer of data between them.

4 Interface process generation

We now describe a technique for generating inter-
face processes that meets the above requirements. The
inputs for interface process generation are HDL de-
scriptions of the two �xed protocols detailing the num-
ber of control and data lines and the sequence of data
transfers over those lines. The output is an HDL de-
scription of the interface process and information re-
lated to the connection of ports of the two protocols.

We will illustrate interface process generation with
the example of two processes, A and B, in Figure 2(a)
that have been mapped to standard components. The
two processes have �xed protocols, Pa and Pb, the
HDL descriptions of which are given in Figure 2(b).
Behavior A reads a 64K�16 memory,modeled by vari-
able MemV ar in process B. Protocol Pa has 8 ad-
dress, 16 data and 4 control lines, while protocol Pb

has 16 address, 16 data and 1 control line. The vari-
ables AddrV ar and DataV ar used in protocol Pa and
MemV ar in protocol Pb are local to the correspond-
ing processes and provide (receive) the relevant data
values assigned to (read from) the data lines. For ease
of identi�cation, all port names have a \p" su�x.

A protocol typically consists of a set of atomic op-
erations. There are �ve types of atomic operations:

1. waiting for an event on an input control line,
2. assigning a value to an output control line,
3. reading a value from input data lines,
4. assigning a value to an output data line, and
5. waiting for a �xed time interval.

(a)

(b)

MADDRp
MDATAp

RDp

16

16

8 address lines,
 16 data lines,
4 control lines

16 address lines,
 16 data lines,
 1 control line

A B

Standard
Component

Standard
Component

Pa Pb

8

16

port ADDRp : out
 bit_vector(7 downto 0);
port DATAp : in
 bit_vector(15 downto 0);
port ARDYp : out bit;
port ARCVp : in bit;
port DREQp : out bit;
port DRDYp : in bit;

ADDRp <= AddrVar(7 downto 0);
ARDYp <= ’1’;
wait until (ARCVp = ’1’);
ADDRp <= AddrVar(15 downto 8);
DREQp <= ’1’;
wait until (DRDYp = ’1’);
DataVar <= DATAp;

ADDRp
DATAp

ARDYp

ARCVp

DREQp
DRDYp

port MADDRp : in
 bit_vector(15 downto 0);
port MDATAp : out
 bit_vector(15 downto 0);
port RDp : in bit;

wait until (RDp = ’1’);
MAddrVar := MADDRp ;
wait for 100 ns;
MDATAp <= MemVar (MAddrVar);

Figure 2: Representing protocols: (a) Two components

A and B with �xed protocols, (b) HDL representation.

4.1 Representing protocols as ordered re-

lations

The �rst step in interface process generation is rep-
resenting each of the two protocols as an ordered set
of relations. A relation de�nes a set of assignments
to output control and data lines and the reading of
values from input data lines, upon the occurrence of
a certain condition. The condition could be an event
on an input control line or a �xed delay with respect
to some previous event.

Figure 3(a) shows how the set of relations can be
derived from the HDL description of protocol Pa. The
�rst two assignment statements are not preceded by
any condition. Hence, the �rst relation, labeled A1,
consists of a default \true" condition and followed by
assignments to ports ADDRp and ARDY p. The next
statement wait until (ARCVp = '1') represents a
condition which must evaluate to true before the pro-
tocol can perform any other operation. The second
relation, labeled A2, thus consists of the condition
(ARCV p = `1') and the subsequent assignments to
the data port ADDRp and control port DREQp. Fi-
nally, the third relation, labeled A3, consists of the
condition (DRDY p = '1') and the assignment of the
value read from the data port DATAp to the vari-
able DataV ar. In a similar manner, two relations are
constructed for protocol Pb as shown in Figure 3(b).

4.2 Partitioning relations into blocks

Having derived the set of relations for the two pro-
tocols, we now need to group the relations in the
two protocols into a set of relation groups. A rela-
tion group is an ordered subset of the set of relations
that represents a unit of data transfer between the two
processes. The relation groups are created in such a
manner that the size of the data \generated" by the
relations in the group from one protocol is identical to
that expected by the relations in the group from the
other protocol.

(a)

(b)

A1

Protocol
 Pb

Protocol
 Pa

(c)

B1

B2

A1

A2

A3

ADDRp <= AddrVar(7 downto 0);
ARDYp <= ’1’;
wait until (ARCVp = ’1’);
ADDRp <= AddrVar(15 downto 8);
DREQp <= ’1’;
wait until (DRDYp = ’1’);
DataVar <= DATAp; [(DRDYp = ’1’) :

 DataVar <= DATAp]

[(ARCVp = ’1’) :
 ADDRp <= AddrVar(15 downto 8)
 DREQp <= ’1’]

[(true) :
 ADDRp <= AddrVar(7 downto 0)
 ARDYp <= ’1’]

[(RDp = ’1’) :
 MAddrVar := MADDRp]
[(100 ns) :
 MDATAp <= MemVar(MAddrVar)]

wait until (RDp = ’1’);
MAddrVar := MADDRp;
wait for 100 ns;
MDATAp <= MemVar(MAddrVar);

A2

A3

(8 bits)

(8 bits)

(16 bits)

B1

B2

(16 bits)

(16 bits)

Relation
Group G1

Relation
Group G2

Figure 3: Deriving and partitioning of relations: (a) de-

riving relations for protocol Pa, (b) deriving relations for

protocol Pb, (c) partitioning relations of two protocols into

relation groups G1, G2.

Figure 3(c) shows how the relations of the two pro-
tocols are partitioned into relation groups. The re-
lations of both protocols are listed with the number
of bits transferred by the operations in each relation
enclosed within parentheses. Relation B1 of protocol
Pb reads 16 bits of data from MADDRp. Scanning
the list of relations for Pa, we see that both relations
A1 and A2 together output 16 bits of data. Thus, the
�rst relation group, G1, consists of the relations A1,
A2 and B1. The ordering of relations belonging to two
protocols within a relation group is determined by the
data dependencies between the relations. B1 can read
the 16-bit address only when A1 and A2 have gener-
ated it. Therefore, A1 and A2 precede B1 in relation
group G1:

G1 = (A1 A2 B1)

Continuing in a similar manner, we create another
relation group, G2, by merging relations A3 and B2.
Since the 16-bit data is generated by the operations
in relation B2 and read by the operations in A3, B2

precedes A3 in relation group G2, i.e.:

G2 = (B2 A3)

4.3 Generating the interface process

Having combined the relations into a set of relation
groups, G = fG1; G2g, we now generate the interface
process to make the two protocols compatible. The
set of operations in the relation groups taken in order
represents the sequence of atomic operations across
the two protocols. The interface process can be ob-
tained by simply inverting each operation in the re-
lation group. \Inverting" an atomic operation means
replacing it with its exact dual or complementary op-
eration.

wait for 100 ns wait for 100 ns

assign control line

waiting for event

assign data line

read data line

fixed delay

HDL equivalentAtomic operation

Cp <= ’1’

var <= Dp

Dp <= var TempVar := Dp

Dp <= TempVar

Cp <= ’1’wait until (Cp = ’1’)

wait until (Cp = ’1’)

Dual operation in
Interface Process

Figure 4: Duals of atomic protocol operations.

Figure 4 shows the corresponding dual operation for
each of the �ve atomic protocol operations. For exam-
ple, waiting for an event on an input control port, Cp
is represented in the interface process by its dual, i.e.,
an assignment to the control signal Cp. The atomic
operation which assigns a value to a control line Cp
has, as its dual in the interface process, an opera-
tion that waits for the same control line to attain that
value. Assignments to a data port by a protocol are
represented as reading the value from the data port
into a local variable, internal to the interface process.
Reading the value from a data port by a protocol is
represented in the interface process by an assignment
to the data port from an internal variable.

The delay operation is its own dual. To see when
a delay operation is included in the interface process,
consider an atomic operation o1, which represents a
delay in one protocol and operation o2, which waits for
an event on an input control line in the other protocol.
If o1 is followed by o2 in the same relation group, then
the dual of the delay operation o1 is included in the
interface process. This ensures that operation o2 in
the other protocol does not execute prematurely. For
example, in Figure 3(c), relation group G2 consists of
relations B2 and A3. According to the de�nition of
the relations in Figure 3, we can observe that the con-
dition (100 ns) in relation B2 is followed by a wait for
condition (DRDY P = '1') in relation A3. To make
sure that protocol Pa does not read the data lines
DATAp before Pb can output the data on the lines,
the delay operation must be included in the interface
process.

The interface process, IP , is obtained by inverting
the operations in the relation groups determined in
the previous step:

IP = (G0

1
) (G0

2
)

= (A0

1
A0

2
B0

1
) (B0

2
A0

3
)

Replacing each operation in the above relations by
the corresponding duals, we obtain the interface pro-
cess of Figure 5(a). For example, consider relation A1,
which consists of the operations representing the �rst
two statements of protocol Pa in Figure 3(a):

ADDRp <= AddrVar(7 downto 0);
ARDYp <= '1';

A0

1
is the dual of these two operations, resulting in the

following statements:

TempVar1(7 downto 0) := ADDRp;
wait until (ARDYp = '1');

where, TempV ar1 is a variable internal to the inter-
face process. These statements are the �rst two of
the interface process, shown in Figure 5(a). Note that
in the interface process, the wait statement above is
swapped with the assignment to TempV ar1 to ensure
that TempV ar1 is not loaded with a new value before
the control signal ARDY p is set to '1'. When the dual
operations are generated for any relation, any result-
ing wait statement precedes all other operations in the
interface process.

Any internal variables required by the interface pro-
cess are declared within the process. Port declarations
for each control and data line of both protocols are
added to the interface process with the direction re-
versed (i.e., an \in" port of a protocol is declared as
an \out" port in the interface process, and vice versa).
Finally, the control and data ports on each of the two
processes are connected with the corresponding ports
on the interface process.

(a)

ADDRp

DATAp

ARDYp

ARCVp

DREQp
DRDYp

MADDRp
MDATAp

RDp

8
16

16
16

(b)

ADDRp

DATAp

ARDYp

ARCVp

DRDYp

MADDRp

MDATAp

8

16

16

Interface Process

Interface Process

BA

 /* (group G1)’ */
wait until (ARDYp = ’1’);
TempVar1(7 downto 0) := ADDRp ;
ARCVp <= ’1’ ;
wait until (DREQp = ’1’);
TempVar1(15 downto 8) := ADDRp ;
RDp <= ’1’ ;
MADDRp <= TempVar1;
 /* (group G2)’ */
wait for 100 ns;
TempVar2 := MDATAp ;
DRDYp <= ’1’ ;
DATAp <= TempVar2 ;

wait until (ARDYp = ’1’);
TempVar1(7 downto 0) := ADDRp ;
ARCVp <= ’1’ ;
wait until (DREQp = ’1’);
TempVar1(15 downto 8) := ADDRp ;
RDp <= ’1’ ;
MADDRp <= TempVar1;
wait for 100 ns;
DRDYp <= ’1’ ;

DREQp

RDp

Figure 5: (a) Interface process with dual of operations in

blocks G1 and G2, (b) interface process after interconnect

optimization.

4.4 Interconnect optimization

The interface process generated in the previous step
requires that all data and control lines of both pro-
tocols be connected to it, as shown in Figure 5(a).
In some cases, it may be possible to connect some of
the control and data ports of the two communicating
processes directly, e�ectively bypassing the interface

process entirely. This has two advantages. First, it
simpli�es the interconnect in the system by reducing
the number of nets in the system. Second, operations
related to these ports in the interface process can be
deleted altogether. This will result in a more e�cient
interface process, both in terms of size and perfor-
mance, when hardware is synthesized.

The �rst type of interconnect optimization at-
tempts to reduce the data lines connected to the in-
terface process. Assume that two data ports, D1 and
D2, belonging to the two protocols have the same
size. If the interface process writes to port D1 ev-
ery time it reads a value from port D2, and there is
no delay (i.e., \wait" statement) between the opera-
tions, then the data ports on the two protocols can be
connected directly. All writes to port D1 and reads
from D2 can be eliminated from the interface process.
Consequently, the variable generated for temporarily
holding the value transferred between the ports can
be eliminated. In Figure 5(a), the ports MDATAp
and DATAp have an identical size of 16 bits, with
no delay between reading of a value from MDATAp
and writing it to DATAp; consequently, these ports
can be connected directly. In addition, the temporary
variable TempV ar2 and statements in the interface
process for reading and writing to these ports can be
eliminated.

The second type of optimization examines the con-
trol ports of the two protocols. Consider two control
ports, C1 and C2, from each of the two protocols. If,
every time the interface process waits for a particu-
lar value on C1 it updates C2 with the same value,
and there exist no data read/write operations after
the wait statement for C1, then the ports C1 and C2

can be connected directly.

The optimized interface process generated for pro-
tocols Pa and Pb is shown in Figure 5(b). The data
ports MDATAp and DATAp, are connected directly.
No control optimization was applicable in this exam-
ple.

Algorithm 4.1 : Generate Interface Process
/* generate relations for each protocol */
Ra = CreateRelations(Pa)
Rb = CreateRelations(Pb)

/* partition relations into relation groups */
G = GroupRelations(Ra, Rb)

/* add dual of each operation in G */
for each relation group Gi 2 G loop

for each relation Rj 2 Gi loop
for each atomic operation ok 2 Rj loop

AddDualStatement(IP , ok)
end loop

end loop
end loop

CreateAndOptimizePorts(IP , Pa, Pb)

4.5 Summarizing Interface Process Gen-

eration

Algorithm 4.1 summarizes the steps involved in in-
terface process generation. Given the HDL description
of a protocol, CreateRelations generates the set of
relations that represent the protocol. The procedure
GroupRelations partitions the set of relations Ra and
Rb into a set of relation groups represented by G. For
each atomic operation of a relation in a relation group
taken in order, the procedure AddDualStatement
adds the corresponding dual statement, as determined
from Figure 4, to the interface process, IP . Once the
statements for the interface process have been gener-
ated, CreateAndOptimizePorts generates the set of
ports between the two protocols and the interface pro-
cess, and optimizes them if possible.

5 Experiments

The Interface Process Generation approach has
been implemented (in approximately 9,000 lines of C)
and integrated into the SpecSyn system design frame-
work [7]. We tested our interface process generation
technique by interfacing several pairs of incompati-
ble protocols. For each pair, the two protocols were
speci�ed with VHDL sequential statements. For each
experiment, Figure 6 shows the number of data, con-
trol and address ports on each of the two protocols
(Pa and Pb) and the generated interface process, the
number of bits required for storing temporary vari-
ables in the interface process and the number of ports
in the two protocols that were directly connected after
interconnect optimization.

2−phase to
 4−phase

16−bit to 8−bit
 Handshake

 RP Program Bus to
Memory Expansion Bus

32 data
 2 control

32 data
 2 control

4 control

16 data
 2 control

 8 data
 2 control

24 data
 4 control

−

22 address
32 data
 2 control

22 address
16 data
 1 control

48 data
 3 control

22 addrs

Protocol Pb ports

Protocol Pa ports

Interface Process ports

Interface Process storage − 16 bits 32 bits

32 data
Directly Connected
Ports After Interconnet
Optimization

Figure 6: Experiments with Interface Process Generation

The 2-phase and 4-phase protocols, shown in Fig-
ure 7(a) were adapted from [2]. The two protocols
are used for handshaking between two processes that
need to exchange data, which in this case is sent from
a process with the 4-phase protocol to the process with
the 2-phase protocol. The 2-phase protocol initiates
an operation whenever a rising transition on REQ2p is
detected. The data on the 32-bitDATA2p port is read
into a local variable, DataV ar, following which the
acknowledge signal ACK2p is asserted. The 4-phase
protocol is identical to the 2-phase protocol except
that it requires that the two control signals, REQ4p
and ACK4p to return to logic `0' before another oper-
ation can be initiated. The interface process generated

is shown in Figure 7(b). The two data ports were di-
rectly connected after interconnect optimization, and
thus, no internal variables were required by the inter-
face process.

(a)

(b)

wait unit (REQ4p = ’1’);
REQ2p <= ’1’;
wait until (ACK2p = ’1’);
ACK4p <= ’1’ ;
wait until (REQ4p = ’0’) ;
ACK4p <= ’0’ ;

ACK2p

REQ2p REQ4p

ACK4p

DATA2p DATA4p

4 phase
protocol

2 phase
protocol

32

Interface Process

wait until (REQ2p = ’1’);
DataVar2 := DATA2p;
ACK2p <= 1;

port DATA4p : out bit_vector(31 downto 0);
port REQ4p : out bit;
port ACK4p : in bit;

variable DataVar4: bit_vector(31 downto 0);

DATAp <= DataVar;
REQ4p <= ’1’;
wait unitl (ACK4p = ’1’);
REQ4p <= ’0’;
wait until (ACK4p = ’0’);

DATA2p

DATA4p
32

32

ACK4p

REQ2p
ACK2p

REQ4p

2 phase protocol

4 phase protocol

port DATAp : in bit_vector(31 downto 0);
port REQ2p : in bit;
port ACK2p : out bit;

variable DataVar2 : bit_vector(31 downto 0);

Figure 7: Interfacing 2-phase and 4-phase protocols: (a)

protocol descriptions, and (b) interface process.

In the second experiment, we interfaced two hand-
shake protocols with mismatched data widths of 16
and 8 bits respectively. A 16-bit temporary variable is
synthesized for the interface process to store the data
read from the 16-bit protocol, and send it to the 8-bit
protocol in 2 transfers of 8-bits each.

Finally, we interfaced the 32-bit program bus (2
control lines) of the RP RISC controller and digital
signal processor [8] with the 16-bit wide memory ex-
pansion bus (1 control line). Thus, a single instruction
fetch over the program bus results in 2 accesses to the
program memory over the memory expansion bus. A
32-bit temporary variable was required in the interface
process to assemble the data fetched from the memory
before transmitting it over the program bus. After in-
terconnect optimization, the two 22-bit address ports
were connected through directly.

6 Conclusion

In this paper we examined the e�ects on communi-
cation of binding portions of system speci�cations to
o�-the-shelf components. We described a new tech-
nique for interfacing two �xed, incompatible proto-
cols by generating an interface process between them.
Once the interface process has been generated, hard-
ware for it can be obtained using HDL based synthesis
tools.

We believe that the Interface Process Generation
technique is signi�cant and unique for several reasons.
Firstly, it is the �rst approach to solving protocol in-
compatibility in the behavioral domain. This allows
simulation of the interface process with the HDL de-
scriptions of the two incompatible protocols (or even

with HDLs models of the components being inter-
faced) to check system functionality. Second, other
than the HDL description of the two protocols, the
designer is not required to specify any additional infor-
mation that are required by previous approaches (such
as merge labels, extra state machines, interconnection
of ports, sequences of data transfers etc.). Finally, the
Interface Process Generation approach can interface
protocols with di�erent data widths, a capability not
addressed by previous approaches.

We plan to extend the Interface Process Generation
technique in several directions. One of the limitations
of the Interface Process Generation method is that the
timing information supported takes the form of non-
overlapping delays between protocol operations. Since
only an HDL description of the interface is generated,
minimum and maximum timing constraints between
events are not supported. Currently, these constraints
can be passed on to the synthesis tool that will syn-
thesize the hardware for the interface process. We are
researching ways of incorporating detailed designer-
speci�ed timing constraints directly in the generation
of an interface process. Second, optimizations that can
be applied to interface processes generated to make
two protocols compatible need to be studied. An ex-
ample of such an optimization might be the minimiza-
tion of the number and size of variables used by the
interface process to reduce the size of the hardware
that will implement the interface process. Finally, we
are examining ways by which more complex protocols
that have multiple modes of operations (master, slave,
etc.) can be interfaced using the interface process gen-
eration technique.

References

[1] G. Borriello and R. Katz, \Synthesis and optimiza-
tion of interface transducer logic," in Proc. of the
ICCAD, 1987.

[2] G. Borriello, A New Interface Speci�cation
Methodology and its Applications to Transducer
Synthesis. PhD thesis, Univ. of California, Berke-
ley, 1988.

[3] J. Akella and K. McMillan, \Synthesizing convert-
ers between �nite state protocols," in Proc. of the
ICCD, 1991.

[4] J. Akella, I/O Performance Modeling and In-
terface Synthesis in Concurrently Communicating
Systems. PhD thesis, Carnegie Mellon Univ., 1991.

[5] J. Sun and R. Brodersen, \Design of system inter-
face modules," in Proc. of the ICCAD, 1992.

[6] J. Sun, M. Srivastava, and R. Brodersen, \SIERA:
A CAD environment for real-time systems," in 3rd
Physical Design Workshop, 1991.

[7] D. Gajski, F. Vahid, and S. Narayan, \A system-
design methodology: Executable-speci�cation re-
�nement," in Proc. of European Design & Test
Conf. 1994.

[8] \RSP Engineering Report." Rockwell Intl., 1991.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

