
Advanced Veri�cation Techniques Based on Learning�

Jawahar Jain Rajarshi Mukherjeey Masahiro Fujita

Fujitsu Laboratories of America, 77 Rio Robles, San Jose CA 95134

Abstract

Design veri�cation poses a very practical problem during

circuit synthesis. Learning based veri�cation techniques prove

to be an attractive option for verifying two circuits with inter-
nal gates having simple functional relationships. We present a

veri�cation method which employs a learning technique based

on symbolic manipulation and which can more e�ciently learn
indirect implications. The method can also learn some useful

functional implications. We also present a framework in which

an indirect implication technique is integrated with an OBDD
based veri�cation tool. We present highly e�cient veri�cation

results on some ISCAS circuits as well as on some very hard

industrial circuits.

1 Introduction

Ordered Binary Decision Diagrams (OBDDs) [3] are now

increasingly employed as one of the primary tools for solving
the problem of combinational design veri�cation [6, 9] and ana-

lyzing Boolean functions. However, owing to the intractability

of typical Boolean function analysis problems, building OB-
DDs for all classes of circuits is not an easy task. We �nd

that many industrial circuits cannot be veri�ed, or require

demandingly large resources, even if we order variables using
a dynamic ordering method [13]. Therefore, it is necessary

to augment OBDD-based design veri�cation algorithms with

a sophisticated methodology such that building of complete
OBDDs is obviated.

Also, notice that the veri�cation problems that typically

arise in industry are often somewhat \simpler" since the two
designs being compared have many simple internal relation-

ships. For such cases veri�cation has been speeded up by
exploiting some of these relationships [1, 2, 4, 8]. However,

the currently available techniques can be either ine�cient for

analyzing large designs or are not general enough to detect
useful relations that are more involved; for example, impli-

cations that can relate a set of gates with another such set.

Further, they lack the capability or a reasonable framework to
successfully use logical relations if only a limited set of such

implications could be derived between two circuits. Thus, the

problem of veri�cation can greatly bene�t on either extremes:
with BDDs as well as with learning based techniques if the

above drawbacks can be ameliorated where possible and as a

result the two methods integrated such that one can choose
the bene�ts of both.

One possible solution is through functional learning (hence-

forth referred to as FL), a technique based on OBDDs pro-
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posed in [10]. Implications are discovered by constructing the

OBDDs for various internal gates (functions) in terms of other
internal gates. Through symbolic manipulation between such

OBDDs and by application of the law of contrapositum and

some simple and well known properties of OBDDs, we can
easily learn indirect implications. Our theoretical and exper-

imental results show that such techniques, apart from being

more general, also typically perform better than other known
learning techniques. Due to the capability of OBDDs to model

and manipulate general functions, they can be easily used to

derive more involved internal relationships as well. Impor-
tantly, FL can be naturally extended to verify logic circuits

when analyzing internal relationships alone will not su�ce in

proving functional equivalence. In such cases, our method al-
lows more e�cient construction of an OBDD to model the

given equivalence problem, leading to a more complete com-

binational veri�cation method than by using only OBDDs or
only (weaker) learning techniques.

In this paper we discuss various issues in detecting inter-

nal correspondences using learning techniques. We also briey
outline conceptual arguments as to why FL can be more ef-

�cient than other learning methods such as recursive learn-

ing [7] (henceforth referred to as RL). We then discuss how
a viable framework can be created for the general veri�cation

problem based on integration of learning techniques and OB-

DDs (or other e�cient representation schemes).

The organization of the paper is as follows: In Section 2 we
review the application of learning techniques in veri�cation.

In Section 3 we discuss a basic framework of the FL technique

and the types of learning that can be obtained by FL but are

impossible or very di�cult to get using other known learning

techniques. In Section 4 we briey discuss the learning algo-

rithm, and in Section 5 we discuss how FL and OBDDs can
be integrated. We present our results in Section 6 and some

concluding remarks in Section 7.

2 Learning Techniques and Veri�cation

Berman et. al. [1] proposed the �rst method of using in-

ternal equivalent points to establish the equivalence of two

circuits. In [1] a decomposition found using the min/cut algo-

rithm breaks down the problem of verifying the whole circuit

into much smaller and simpler problems. Cerny and Mauras

presented Mauras [4] made further observations to establish
cross-relations between two appropriate cuts in the two cir-

cuits. Both of these were useful ideas but needed to be devel-

oped further to obtain useful veri�cation tools.

A useful technique for utilizing internal equivalent points
for logic veri�cation was presented in [8] through the use of RL.

However, in RL, or some other known learning techniques such
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as static learning in SOCRATES [14], which are frequently
used in ATPG tools, �nding such relationships can become

computationally very ine�cient for large designs. The time
complexity of RL is exponential in the number of levels of re-

cursion. Unfortunately, here the \base" of the exponent can

be extremely large. Thus, the method is often impractical for
recursion levels greater than 4, making it cumbersome on large

designs [5]. In contrast, the time complexity of FL does not

necessarily grow exponentially with the number of \levels" of
learning in most practical cases (the time complexity is expo-

nential only if the BDD sizes grow exponentially). Hence it is

reasonable to expect that FL will have a greater applicability
to larger industrial designs where a relatively large number

of levels of learning are needed. Another useful ATPG-based

technique to carry out design veri�cation using internal equiv-
alences and observability don't cares has been presented in [2].

But in some cases the internal relationship between circuits

cannot be captured by ATPG. Therefore, this method also
has scope for further improvement.

Importantly, other existing learning techniques are limited

in the types of relationships that they can practically discover

between a set of functions. They can learn Constant-Value
Relationships; i.e. a constant Boolean value b 2 f0; 1g at a

given gate implies another constant Boolean value at another

gate. However, they cannot detect more involved relation-
ships between a set of functions and another set of functions,

a limitation that can be overcome by FL due to the use of

OBDDs. For example, we can very conveniently �nd if a gate
fi = b; b 2 f0; 1g implies that some set of gates must assume

an identical value. Or we may learn the implications that arise

when a simple or complex set of clauses is always true. A sim-
ple example is learning the set of gates that maintain the same

Boolean value whenever fi ^ fj = 1. Note, fi and fj in the

above examples need not correspond to any gate in the given
circuit. For the application of learning techniques when a set

of clauses must be iteratively re�ned, for example, as in many

�xed point computation algorithms, FL provides a complete
framework to learn and use such functional implications.

Our experience shows that the sizes of the OBDDs that are

built during learning are quite small; hence, there is no mem-

ory explosion. Use of dynamic ordering [13] makes it practical
for most combinational circuits encountered in real life. An

advantage over traditional topology driven learning methods is

that our approach is not limited by the peculiarities of a given
circuit structure but only by its underlying functionality; a

common advantage of symbolic manipulation methods.

In other words, FL encodes the topological structure of a

circuit as an OBDD. Thus, it bridges the gap between struc-
ture (topology) based and symbolic manipulation based tech-

niques. FL is a complete method for learning in digital cir-

cuits, i.e. given su�cient time, all the internal equivalences
and unidirectional implications can be identi�ed by FL alone.

Our results show that FL based veri�cation can be a highly po-

tent veri�cation technique. In this context note that although
learning alone may not be su�cient for veri�cation within rea-

sonable time resources, the knowledge acquired in this process

is still very useful. Consider verifying output pair F1 and F2,
in circuits C1 and C2. To verify any such output pair, we begin

by composing OBDD for F1�F2, and dynamically pruning the

OBDD during its construction by the successive use of learning
conditions as explained in Section 5. Thus, the method can

intuitively be more e�ective than the traditional OBDD ap-
proaches as each time an intermediate OBDD is constructed, it

can be simpli�ed (modi�ed) using the set of learnings derived

earlier through the use of some learning technique; the �nal
result remains unchanged but can potentially be obtained us-

ing lesser space-time resources if during this successive graph

modi�cation, we use only the modi�cations whose introduc-
tions prune the argument graph size. Our techniques thus

extend the range of applications of OBDDs as well as their

application in combinational veri�cation even further.

3 On Functional Learning

Due to its ability to learn functional relations as well as

constant-valued learnings, FL [10] proves to be a superset of
the previous learning techniques, namely, SOCRATES [14],

which carries out static learning and RL [7]. Learning tech-

niques, through the temporary injection of logic values at ar-
bitrary signals in a digital circuit and subsequent examination

of its logical consequences, allow one to determine logical re-

lations even between gates not on any common path.

3.1 The concept of Functional Learning

The concept of FL [10] is explained below with the help of

an example.
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Figure 1: Functional learning

Consider the gate 23 in the circuit shown in Figure 1 and

let it be unjusti�ed to a 1. G and H are the OBDDs for

the gates 23 and 16 respectively, built in terms of the pseudo

inputs a, b and c. The two OBDDs are shown in Figure 2.

Note, the result of the AND operation between OBDDs for

G with H is H. This implies that when G is a Boolean 1,

H is a Boolean 0. Hence, it is learned that a Boolean 1 on

the gate 23 implies a Boolean 0 on the gate 16. By forward

implication, it is learned that the gate 24 must carry a Boolean

1. A Boolean 0 on the gate 16 and a Boolean 1 on the gate 24

are the necessary conditions for a Boolean 1 on the gate 23.
As discussed in [10], if G ) H then G

V
H = G. Con-

versely, if G
V
H = G, then G ) H, and thus by the Law of

Contrapositum H ) G. Identical arguments hold for G
V
H.

Therefore, all constant-value learnings between G and H can

be obtained by the two operations G
V
H and G

V
H.

3.2 Precise marking of potential learning
area

FL proceeds by choosing an appropriate cut � and build-

ing the OBDD for the unjusti�ed gate g in terms of the cut
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Figure 2: OBDDs for gate 23 and gate 16

variables, i.e., gates on the cut �. Once the OBDD is built,

appropriate AND operations, as explained in the previous sec-
tion, must be performed in order to learn indirect implications.

But, the gates where learning will be possible under the given

situation of value assignments in the circuit are not known
before hand. In order to precisely demarcate the potential

learning areas (PLAR) in the circuit, a simple preprocessing

of the OBDD is carried out.

De�nition 3.1 A justi�cation vector in an OBDD is a path
from the root variable in the OBDD to that terminal node

whose value equals the value (v) of the unjusti�ed gate (g).

During the preprocessing of the OBDD for event (g = v),

that is, the unjusti�ed gate g with an unjusti�ed value v, a

constant k number of justi�cation vectors are extracted. These
vectors are applied to the circuit and a complete implication

is carried out. Assume c(g; v; k) is the set of all the gates such

that any gate in this set carries the same consistent Boolean
value v for all k justi�cation vectors. The gates in c(g; v; k)

are marked as the PLAR. A set of mutually equivalent points
e(g; v; k) can also be de�ned where every member of the set is a

tuple of gates (h1; h2) such that the identical value is produced

at gates h1 and h2 for each of k justi�cation vector. Similarly,
a set of mutually complement points i(g; v; k) can be de�ned

where value of h1 is always a complement of the value of h2.

Theorem 3.1 With respect to the event (g = v), through

analysis of any possible BDD made from variables on cut �,

following assertions hold good:
(1) A constant-valued-learning is possible only at the gates

in c(g; v; k).

(2) Mutually equivalent or complement point learning is

possible only among gate tuples in e(g; v; k) and i(g; v; k) re-

spectively.

Proof Sketch: For a constant-valued relationship to hold be-

tween g and some gate h, it must hold at every vector that

satis�es (g = v). Hence every candidate gate h in assertion 1

must be a member of c(g; v; k). Similarly we prove the asser-

tion 2.
Mutually equivalent or complement relationships can be

also thought of as \second order" relationships. These are

easily computed using FL by simply comparing in constant
time the BDDs produced at the above candidate gates under

condition (g = v).

As a consequence of the above theorem, only the OBDDs
at gates in the sets: c(g; v; k), e(g; v; k), and i(g; v; k) are sub-

jected to the analysis required for learning. The number of jus-

ti�cation vectors that need to be applied in order to demarcate
the PLAR with high amount of precision can be heuristically

determined.

For OBDDs with a very small number of justi�cation paths,
our experiments indicate that this preprocessing is su�cient

to complete the learning operations. Where large OBDDs are
required, such preprocessing of the OBDD drastically reduces

the search space for the PLAR; often as much as by 2 orders of

magnitude. In general, we have found that extracting around
100 justi�cation vectors is quite su�cient for the purpose of

demarcating the PLAR.

In case of a larger OBDD, for which a complete enumera-

tion of all the justi�cation vectors is not feasible, the procedure

outlined above gives the gates that comprise the PLAR. Once
the PLAR has been marked, learning operations based on the

theorem stated above are carried out at these gates.

Assume Sf (L) and Sr(L) are the set of conditions learned

respectively by the FL technique when the cut � is selected at
distance L from an unjusti�ed gate g (or \operating at level

L" as we will use in the following), and the RL technique at

recursion level L. It can be shown that:

Theorem 3.2 [11, 12] Sf (L) � Sf (L� 1) [ : : : [ Sf (1)

Note that the RL technique learns implications through a

recursive analysis of a given logic function/topology. Justi�ca-

tion cubes are recursively extracted from and simulated on the
given topology. To learn at the ith level of recursion, one must

learn at each of the recursion levels from 1 through i�1. How-

ever the above theorem suggests that in the FL technique, one
can directly proceed to a given (structural) level, and begin

the learning there.

As shown in [10], for some functions, FL takes time polyno-

mial in number of gates analyzed, but RL requires exponential
time resources. Ignoring the arguments about OBDD variable

ordering, the reverse does not seem true and an RL method

apparently has a higher computational complexity. Interest-
ingly, our experiments show that FL performs equally well as

RL based veri�cation even on c6288, a multiplier, having an

exponential representation using OBDDs.

In short, time resources required by structural procedures
such as RL will be acceptable only if the total number of

cubes required to analyze a given problem is not unmanage-

ably large. However, in our experience, for every functional

analysis problem, this may not always be the case. Even when

learning is performed in FL through path extraction and sim-

ulation, it may be more e�cient because the functional infor-
mation is symbolically consolidated during any e�cient BDD

construction procedure, and the total cubes (paths) extracted

are often minimized.
3.3 On obtaining more than just constant-

valued learning

Assume that functions F and G are the outputs of gates f

and g respectively. As customary in FL, in the following dis-

cussion all functions are represented in terms of an OBDD con-

structed using some common cut � between the gates and (up

to) the primary inputs. A precise marking of the PLAR is done

to identify gates f and g (functions F and G) between which

AND has to be carried out to learn if any unique constant-

value learning can be obtained. When no such learning can

be obtained, consider the scenario when jHj � min(jF j; jGj)

where H = F ^ G. Then, the graph H can be processed

completely by path extraction and simulation.



Let S be the set of gates fp1; : : : ; pkg which assume a
unique value by simulating the circuit for each vector satis-

fying H. Or, implications can be learned by using symbolic
manipulation procedures between H and the BDDs produced

at other gates. Unlike, traditional learning methods, S is an

extra learning that FL provides. Note, H = F ^ G had al-
ready been computed to check if constant-value learning are

possible. Such learnings can be used in multiple ways. In

ATPG, while justifying any value assignment v in the circuit,
if gates f; g assume Boolean 1, no optional assignment should

be employed that contradicts assignments in S. In veri�ca-

tion, the above technique can be used as follows. For any
small H if the size of set S is large, we can write any function

as F = (H ^F
H
) _ (H ^FH). Each cofactor can now be sim-

pli�ed as described in Section 5. Importantly, since H = F^G

has a small OBDD representation, H = F ^H must have a

small OBDD too. (Note, OBDDs can be complemented in

constant time). Thus, through H, and H, we are covering
learning in an orthogonal part of the truth table without any

extra computation. Such features can be of critical help in

di�cult veri�cation problems.

Similarly, any other Boolean operation such as `XOR' or
`OR' or other more complex operations can also be carried

out. In general, if for any Boolean operation performed, the

resulting OBDD is small, an extra set of learnings can be
easily obtained. This technique enhances the ability to obtain

new learnings which constitute some of the 2N combinations

of values that can exits on N gates in a circuit. For example,
in Figure 1, if a cut is assumed on primary input variables and

each of the gates 11 and 19 assumes a Boolean value 1, we can

learn that gates 7, 16 and 23 assume unique values, namely 0,
0 and 1 respectively.

4 Algorithm for Learning

The two circuits to be veri�ed are joined at their primary

inputs and their corresponding primary outputs are fed in
pairs to 2-input XOR gates to construct a composite circuit.

Thus, if a given output pair in the circuit is to be proven in-

equivalent, we need to prove the satis�ability of the output of
the corresponding XOR gate.

Veri�cation is carried out in two phases : �rst, a learn-

ing phase followed by a checking phase. In the learning phase

[10, 11] Boolean values are injected at the gates in the compos-
ite circuit such that the gates become unjusti�ed. For exam-

ple, a Boolean 0 is injected at the output of an AND gate and a

Boolean 1 at the output of an OR gate. For an XOR/XNOR
gate, both a Boolean 0 and a Boolean 1 are injected at its

output. Typically, this phase is started using a certain initial

level of learning Ll. The initial learning level can be 1, which
means for learning at the gates in the composite circuit, cuts

are taken at a structural distance of 1 from the gates. Addi-

tional learning can be obtained by successively increasing the

level of learning in steps of k, where k need not be equal to

1. All the indirect implications learned during this phase are

stored along with the data structure of the gate from which

it was learned. Before learning at a gate G for learning level

Ll, learning is carried out at all the gates in the transitive

fan-in of G. This helps speed up the learning process by us-

ing the pre-stored indirect implications in the fan-in cone of

G. Gates in the circuit which have equivalence or inverse rela-

tions with other gates are also identi�ed and stored during this
phase. Note that this phase by itself is a complete algorithm

for design veri�cation. Given su�cient time, veri�cation can
be completed by this phase alone.

5 Augmenting Veri�cation Using ATPG or

Canonical OBDDs

To verify the two circuits we want to check if our compos-

ite output represents an unsatis�able function. As discussed
in [11], we can use an ATPG tool that tries to generate a

test for the s-a-0 fault at the composite output of the appro-

priate XOR gate. However such an approach still has lim-
itations if the ATPG tool lacks the capability to e�ectively

use symbolic manipulation to exploit the learning related in-

formation, and also analyze the given circuits. One can also
use OBDD based canonicity oriented veri�cation. Before we

discuss how a canonicity oriented veri�cation can be usefully

augmented using FL, we must discuss relevant characteristics
of a (functional) learning method which are critical in aug-

menting canonicity driven veri�cation.

5.1 Functional Learning Based Canonicity

Driven Veri�cation

Note, a central issue in integrating learning based veri�-
cation with traditional OBDD based techniques is recogni-

tion of the cases when a learning technique may not suf-

�ce. Let � = f 1; : : : ;  mg, be a cutset in our composite
circuit C, where the output Di of C represents di�erence

function Fi � Gi, the XOR between corresponding outputs

of circuit C1 and C2; f 1; : : : ;  mg are internal gates in cir-
cuit C. We can introduce a pseudo variable for each gate in

�; let Di(�); Fi(�);Gi(�) respectively represent the di�erence

function, and the output functions for circuits C1; C2, each
expressed in terms of cutset (henceforth referred to as just a

cut) �. Some limitations on the learning techniques can be

now stated:

Theorem 5.1 A learning technique will fail to prove equiva-

lence of Fi;Gi by examiningD
i
(�) if following conditions hold.

1. For some point  i in cone of Fi,  i 2 �, no indirect
implication can be discovered between  i and any other

gate on or ahead of the cut � in the cone of Gi.

2.  i is not a redundant variable in Fi(�)

Proof Sketch: We simply make the observation that Fi(�) �

Gi(�) 6= 0 if the active (nonredundant) variables in their sup-

port set are not the same.

Thus, by any implication based analysis solely in the circuit

between � and the output Di, we cannot determine if the cir-

cuits are equivalent. Through similar reasoning as used above,

the above theorem can be augmented as in the following.

Theorem 5.2 A learning technique will fail to prove equiva-

lence of Fi;Gi by examiningD
i
(�) if following conditions hold.

1. For some gate  i in cone of Fi,  i 2 �, an indirect impli-

cation can be discovered only for  i = b, for some unate
value b 2 f0; 1g, with respect to any gate between � and

the output Di(�) in the cone of Gi.

2.  i is a binate variable in Fi(�).



Thus, for a learning based analysis to verify a circuit by
itself, one must �rst establish that some cut exists that over-

comes the restrictions imposed by Theorems 5.1 and 5.2. For

example, the hardest outputs of c3540 can be veri�ed with
trivial space and time resources after locating the cut sug-

gested in Theorems 5.1 and 5.2. In such cases, we compute

OBDD for composite output Di(�); If the BDD reduces to
0 then Fi and Gi are clearly equivalent. If such a cut can-

not be initially located one can resort to a canonicity driven

technique as described below.1

If no complete cut exists, we locate a good \incomplete"

cut; a good heuristic is to maximize the number of learning

points as well as minimize the distance of the given cut from
the primary output.

5.2 BDD simpli�cation through learning in-

formation

Sometimes learning techniques cannot prove functional

equivalence by examining the circuit partition between � and
Di due to the the restrictions explained by Theorem 5.1 and

5.2, or because it cannot be decided if Di(�) is satis�able. In

such cases we can revert to computing OBDDs for compos-
ite output Di in terms of primary input variables, or another

cut �j between � and primary inputs. If Di, or some Di(�j),

reduces to 0 then Fi and Gi are clearly equivalent.2

Note that learning condition a) b can be written as a tau-

tology expression (a^ b) � a. The above tautology expression

or invariants can prove very handy as discussed below. Let
I = f�1; : : : ; �kg be k invariants discovered between gates that

are on or ahead of the cut �. It can be proved:

Theorem 5.3 Fi � Gi if Di(�)^ �i, �i 2 I is not satis�able.

The above theorem simply states that any invariant con-

juncted with Di(�) cannot change the functionality ofDi. Ob-
viously we can replace �i with a conjunction of any plurality

of restriction conditions in I. This can prove to be of criti-

cal help in simplifying a BDD for veri�cation as well as many
other problems.

In this context note that one may also examine BDD Di(�)

for unsatis�ability by explicitly checking if each 1-terminal

path in the graph is unsatis�able. In such case we can

prune the total number of paths that need be examined if

we (breadth-�rst) enumerate all paths from the root leading
up to some cutset ! within the given BDD; now Fi and Gi are

equivalent if there is a conict on each such path. The conict

can be tested using an ATPG tool or by a direct simulation.
As noted above, to analyze the di�erence graph Di(�) we

can �rst simplify it by using the learning conditions (invari-

ants). By reducing the size of Di(�), we can make the compo-
sition ofDi(�), and thereby the veri�cation too, more e�cient.

Invariant BDDs can be successively arranged in increas-
ing order of distance from the chosen cut � and successively

1Note, in such cases one can also spend a greater computational
e�ort in discovering learning at points where no learning was so

far discovered. However such an approach has not yet been imple-
mented and is thus not discussed in this paper.

2Note that whenever the goal is only to check whether some
functionDi is satis�able, by periodically checking the partially com-

posed graph, further compositions can be immediately aborted if a
path on primary inputs leading to a 1-terminal is obtained.

ANDed with Di(�) in succession. If after any AND opera-
tion, the size of the BDD decreases than the resulting BDD

replaces Di(�) else we AND the next BDD in the above given
order. Thus we are consolidating learning obtained in a large

domain of circuit at some cut preceding it. Proceeding in the

above manner, after all conditions are examined for ANDing (a
reasonably e�cient series of operations; note Section 6.2) the

graph sizes for learning BDDs can be very small) we are guar-

anteedly left with a BDD Di(�) which is no larger than the
graph we started with, and most likely considerably smaller.

Clearly, composing such an OBDD is more e�cient than build-

ing OBDDs for output functions without accounting for any
learning conditions. Note, using the remaining set of (unsuc-

cessful) invariants, one can again repeat the above described

series of AND operations. This iteration through the set of
remaining invariant ANDing is terminated when the graph

remains unchanged through every AND operation. Similarly

we can use the implications discovered between some members
 g;  h of cut �. For example, if  g )  h, then we can simplify

Di(�) by cofactoring its BDD on  g = 1 and making restric-

tion  h = 1. Note all implications between  g = 1 and other
members of � can be introduced simultaneously in the BDD

for Di(�) g ; the graph Di(�)
 g

can be similarly simpli�ed if

there are implications between  g = 0 and another member

of cut �. Let H g and H
 g

be the two reduced graphs. The

resulting graph for Di(�) is now ( g ^ H g ) _ ( g ^ H
 g
).

We maintain the resulting graph only if the cofactoring has

decreased the graph size.

The process of ANDing and cofactoring can be repeated

successively on each intermediate cut, progressively chosen
between the old cut and the primary input variables; each

successive cuts is chosen according to the same criterion as we

discussed for the �rst cut. If at a given cut the graph sizes
have decreased signi�cantly, we compose it directly in terms

of primary input variables.

Note for many invariants in I we need not spend resources

constructing their OBDDs as the graphs will ultimately re-
duce to a Boolean 1; obviously, pursuing a direct conjunction

of Boolean 1 with Di(�) is not required. Speci�cally, we usu-

ally need not examine learning condition invariants that were
discovered using (intermediate) cuts that are covered by the

present cut through our composite circuit. More formally, let

Sc be the set of all learning conditions that were discovered

using BDD operations between graphs encoded through a set

of cuts �cut = f�1; : : : ; �mg, where each �i is a cut for some

intermediate gates. Also let each �i 2 �cut be such that �i is

covered by �. We de�ne an intermediate cut �i to be covered

by another cut � if every path from primary inputs to any gate

in �i must pass through a gate in �. Importantly, we assume
that if shortest path distance of every gate in �i from any

gate in cut � is at least d then during the learning phase the

learning levels were incremented at most in increment of d.
By applying Theorem 3.2, we can now prove that [12]:

Theorem 5.4 No learning condition invariantmade from the

learning relationships in set Sc can help minimize the BDD

size of Di(�) through a Boolean operation between the learning
condition invariant and Di(�).



6 Results

At Fujitsu, we were not able to verify some di�cult in-
house circuits using OBDDs despite the application of numer-

ous ordering tricks including application of dynamic variable

ordering.
In this paper we focus on verifying such circuits as well

as on the veri�cation of the combinational portion of S38417

which has not been veri�ed before using OBDDs. Discounting
integer multiplier c6288, for all ISCAS circuits except c7552

the veri�cation results using dynamic ordering appear quite

e�cient [13]. Identical observations hold for functional learn-
ing even when integrated with a rudimentary ATPG tool [11].

(Note, using learning information, we can verify c6288 against

c6288nr in just 25 seconds [11]. Similar results hold for many
other ISCAS circuits, but such results are not very instructive

for purpose of discussing integration of canonicity driven and

learning methods since in these particular cases there appear
exceptionally many equivalent points between the given pair

of circuits. Thus, in the checking phase, the BDD construc-

tion is not critical, or is not even invoked, and the veri�cation
is largely over after the learning phase.)

The above di�cult circuits serve as good and fair test cases

for showing that OBDD based canonicity driven veri�cation
can be usefully augmented with learning based veri�cation

methods. Importantly, in our implementation results we have

still not employed functional implications as discussed in Sec-
tion 3.3. Also, it appears to us that there are numerous im-

plementational issues which can greatly speed up our current

veri�cation tool. Such issues will be focus of our future work,
and thus the results presented in this section are preliminary

in nature. The results are presented in Table 1. The times are

in seconds unless otherwise mentioned.
6.1 Successful veri�cation of a di�cult in-

dustrial circuit

To corroborate the e�cacy of our method, we will �rst

describe successful veri�cation of some test cases from Fu-

jitsu which we will refer to as FJ1 and FJ2 which needed
to be compared against their respective redesigned versions,

FJ1new, FJ2new. (Note, FJ1 and FJ2 are di�erent outputs

of the same circuit.) The second copy of the circuit was ob-
tained as the speci�cation of some outputs in the original cir-

cuit needed to be changed. Some parts of the original circuit

were modi�ed and reused. However, the designer was now not
sure if many of the outputs in the original circuit retained the

intended functionality in the new circuit. The circuits have

around 2000 gates, 200 inputs and 9 outputs. The experi-
ments were run on a Sparc 10 with 128 MBytes. The times

reported are in seconds except where speci�ed. The OBDD

sizes reported for our technique are the maximum graph sizes
required in the checking phase.

The above two functions are notoriously di�cult to verify,

and compared to the ISCAS circuit pairs [8, 11] have relatively

fewer internal equivalences with their redesigned version. FJ2

(not a multiplier) cannot be veri�ed by any existing technique

known to us. Traditional OBDD schemes also fail even when

dynamic ordering is used separately for each output! We found

that for FJ1 a composite circuit output graph of originally 210

nodes was produced. After a series of successful AND (and

cofactor and restrict) operations this size could be reduced to

110 nodes before the �rst successive compose was begun. This

Table 1: Veri�cation of some di�cult circuits.

OBDDs With Learning Only OBDDs
Circuit Lrng. Total OBDD Time OBDD

time time nodes nodes

FJ1 310 590 5079 9,176 479,064
FJ2 1065 6.5 h 425,300 Abort Abort
c7552 9 22 8303 53 26,877

s38417 (a) 1.23 h 1.26 h 5 Abort Abort
s38417 (b) 505 5 h 65,390 Abort Abort
s38417 (c) 1892 1976 5 6,915 739,600

graph could be very easily composed and FJ1 output was veri-

�ed in less than 10 minutes. However, using dynamic ordering
alone without the AND-ing of learning conditions, verifying

FJ1 required close to 2.5 hours. Similarly, FJ2 could not be

veri�ed earlier using only OBDDs even by using dynamic or-
dering. It could now veri�ed in less than 7 hours. A graph of

about 7000 nodes was reduced to close to 1450 nodes by the

process of ANDing the learning condition BDDs, and through
the cofactoring operations based on the implication relations.

This reduced graph was composed later in presence of dynamic

ordering and the circuit design was veri�ed. (Even in the ab-
sence of dynamic ordering, AND-ing of invariants proved to be

extremely e�ective and reduced a 325,000 node decomposed
OBDD for FJ2 to around 16,500 nodes.)

We report 3 di�erent results on s38417 distinguished by

(a), (b), (c). The second (and optimized) copy of s38417 had
many equivalent points with the original circuit. Hence the

FL based veri�cation was largely completed in the learning

phase itself in experiment (a). But this does not prove that
our checking phase framework is useful.

In order to test and compare the bene�ts of incorporating

learning conditions during checking phase we also report two
more experiments. In (b) we report the time & space required

for veri�cation if far lesser number of learning conditions are

learned; a relatively large BDD construction in checking phase
was now required. Now, it can be seen that our checking phase

framework did su�ce in controlling the complexity of OBDD

construction and veri�cation. Finally, to compare the bene�t
of our framework with the OBDD-only framework, in (c) we

report and compare results on a large subset of outputs (the

last 500 outputs) for which OBDDs are indeed able to com-
plete the veri�cation. We also compare results for verifying

the hardest output of c7552.

The pro�le of the XOR OBDD sizes in the checking phase
for the veri�cation of FJ1 is shown in Fig. 3. The commence-

ment of successive compose and AND-ing of learning condi-

tions are shown on the graph with `c' and `a' respectively. Note

that the use of learning conditions during successive compose

caused appreciable reductions in the graph size, making the

technique viable for this di�cult circuit.

6.2 Reducing the complexity of veri�cation

by aborting unsuccessful operations

An interesting feature of learning or learning based veri�-

cation is that since the goal is only to decrease the resources

required, we can abort all operations that can be determined
to not lead to a learning or a reduction in the size of BDD

in which they are being incorporated. This technique has not



yet been implemented but we believe it can provide signi�cant
performance gains.

For example, suppose in learning between two BDDs G and

H, we construct the BDD F^G. Clearly, the given AND oper-
ation can be aborted immediately if the intermediate product

is larger than max(jGj; jHj). Thus the complexity of learning

between two functions using AND operation can be bounded
by max(jGj; jHj) rather than complexity of apply operation

bounded by jGj � jHj.

In a similar vein, whenever we AND any learning condition
invariant with the composite output BDD, we can abort the

operation as soon as the resulting graph exceeds the original

graph size. If we use only relatively small invariants, as we
have found to often su�ce, the time required for incorporat-

ing the learning conditions in a given BDD can be drastically

reduced. Identical observations hold for the use of cofactoring
in exploiting implications.
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Figure 3: Pro�le of XOR OBDD sizes in checking phase
for FJ1 veri�cation

7 Conclusions and Future Work

In this paper we have addressed the problem of combina-

tional circuit veri�cation. We have presented an approach to

merge the FL technique with the conventional OBDD based

methods to improve the space and time complexity.

FL can learn constant-valued learning more e�ciently then

existing learning techniques when a large block of circuit needs

be analyzed. It is also capable to learn relationships between

di�erent sets of gates where each set is allowed to have a plu-

rality of logic gates in it. As appears from our theoretical,

empirical and intuitive analysis, the FL technique is more
powerful and general than other known learning techniques.

We show how learning techniques can be integrated with tra-

ditional OBDD based veri�cation methods to give signi�cant
space and time improvement for some very di�cult industrial

circuits over methods that conduct veri�cation by compar-

ing canonical OBDDs for each circuit. E�cient veri�cation
results were obtained for other benchmark circuits also for

which canonicity driven veri�cation appeared somewhat inef-

fective or was intractable.

The methods can naturally be extended for sequential cir-

cuit veri�cation in the cases where one expects to �nd many

indirect implications between a given pair of circuits. Our sub-
sequent research will be directed towards the application of FL

to the optimization of combinational and sequential circuits.
The current research was focussed on developing a conceptu-

ally sound as well a practically viable framework for obtaining

learning and checking functional equivalence. We can also in-
corporate techniques presented in [15] and minimize the size

of BDDs using a don't care set derived from learning rela-

tionships. We plan to integrate the current programs with
any advanced ATPG tool. We also plan to use observabil-

ity don't care information such as successfully exploited in [2].

We will also focus on implementational issues which we believe
can signi�cantly enhance the performance of the veri�cation

framework presented in this paper.
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