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Abstract|This paper presents a new method-

ology for formal logic veri�cation for combina-

tional circuits. Speci�cally, a structural approach

is used, based on indirect implications derived by

using Recursive Learning. This is extended to for-

mulate a hybrid approach where this structural

method is used to reduce the complexity of a

subsequent functional method based on OBDDs.

It is demonstrated how OBDD-based veri�cation

can take great advantage of structural preprocess-

ing in a synthesis environment. The experimen-

tal results show the e�ective compromise achieved

between memory-e�cient structural methods and

functional methods. One more advantage of these

methods lies in the fact that resources that go into

logic synthesis can e�ectively be reused for veri�-

cation purposes.

I. INTRODUCTION

Traditionally formal logic veri�cation for combinational

circuits has been attempted by either a purely functional,

e.g., [7, 6] or a purely structural approach [20, 11, 4],

though the former is more common. As shown in [11, 4],

structural approaches to logic veri�cation can perform ex-

tremely well, if the circuits have some structural \similar-

ity"; however, they can fail otherwise. OBDD-based veri�-

cation, on the other hand, is independent of the structural
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representation of the individual circuits, but the construc-

tion of the OBDDs can be highly memory-expensive. The

goal of this paper is to propose a general scheme to com-

bine such structural and functional approaches for logic

veri�cation, to mutually exploit the advantages of both

the paradigms.

Current synthesis tools are comprised of numerous

di�erent steps involved in circuit transformations. As

pointed out in [11, 1], synthesis is an incremental process

consisting of many small operations. Therefore, along the

synthesis process, subsequent circuit designs can be ex-

pected to have some \similarity", and any tool able to ef-

�ciently exploit such similarity can perform well. Further-

more, design errors are often introduced by interference of

the human designer. Therefore, it is very important for

the designer to have e�cient tools for checking the func-

tional correctness of the design. This is the motivation for

our research and we propose an e�cient method to reduce

the complexity of BDD-based veri�cation, by making use

of the similarity between designs as it can be expected in

many practical veri�cation problems.

The underlying philosophy of this paper is as follows:

using structural methods to capture the similarity be-

tween circuits and to identify sub-circuits, by partitioning

the original circuits based on the partitioning criterion as

stated below; and to use a functional approach to prove

the equivalence of these subcircuits. This is outlined in

Figure 1. Also it is desirable to keep alternating between

these methods incrementally until a solution is obtained.

Let C1 and C2 be the circuits to be veri�ed. Assume

that both circuits are cut vertically, as shown in Figure 2,

so that both circuits are split into two parts. Let C1' and

C2' be the circuit partitions at the primary outputs of the

original circuits. C1' and C2' are shown in Figure 3.

Criterion for circuit partitioning: A cut through circuit

C1 and C2 is permissible if the functional equivalence of

the partitioned circuits C1' and C2', implies the equiva-
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lence of circuits C1 and C2.

The main problem of this approach is false negatives [2],
explained in the next Section.

Structural Analysis

Functional Comparison

Equal ?

False Negatives ?

Circuit equal Circuits not equal

No

Yes
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Figure 1: A hybrid veri�cation tool
A. False Negatives
The criterion for circuit partitioning, that the original

circuits are equivalent if the partitioned circuits are equiv-

alent, does not guarantee that the opposite is always true.

It is possible that the original circuits are equivalent but

the partitioned sub-circuits are not. This problem is gen-

erally referred to as false negatives [2].
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Figure 2: The False Negative Problem: Original Circuits

C1 and C2

Consider the circuits in Figure 2. It is obvious that the

two circuits are equivalent. Now, consider the partition,

shown by a dashed line. This satis�es our criterion for

partitioning. The cut circuits are shown in Figure 3. These

circuits are not equivalent even though the original circuits
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Figure 3: The False Negative Problem: Partitioned Cir-

cuits C1' and C2'

are equivalent. Therefore, e�cient techniques have to be

incorporated to deal with this problem.

B. Partitioning the Circuit

For partitioning the circuits, we make use of the internal

equivalencies derived from the method in [11]. These inter-

nal equivalencies form an excellent basis for circuit parti-

tioning and they satisfy our criterion. However, it must be

noted that any other method which satis�es our criterion

for circuit partitioning can be used, instead. Similarly, as

in [4], it is promising to use the concept of permissible

functions to identify larger sets of possible cuts. This can

be accomplished by using the notion of D-implications as

in [12].

Our method can be outlined as follows: Recursive

Learning [13] is used to �nd implications between signal

values from which internal equivalent points are extracted.

The circuit is partitioned by cutting the circuit through

the internal equivalencies, as shown by the dashed line

in Figure 2. To obtain optimum bene�t, we always at-

tempt to cut the circuit as close to the primary outputs

as possible. The internal equivalencies are treated as new,

independent \pseudo-inputs" of the reduced circuit. Once

the circuits are cut, the primary outputs of the circuits are

compared for equivalence. Karl Brace's OBDD package[3]

was used for building OBDDs. Our experiments suggest

that false negatives are not uncommon, the principle rea-

son being the inter-dependencies of these pseudo-inputs.

The BDDs thus formed may contain some combinations of

pseudo-inputs which are inconsistent in the original circuit

and hence, represent a don't care set for the partitioned

circuit. Therefore, the thrust of this paper is dedicated to

addressing this.

II. DESCRIPTION OF THE ALGORITHM

The block diagram of the program 
ow is shown in Fig-

ure 4. The algorithm consists of two stages:

1. Structural analysis (Identi�cation of internal equiv-

alent signals)

2. Functional Comparison (Building OBDDs for the

outputs and checking for their equivalence)

A. Structural analysis

The indirect implications which lead to the identi�ca-
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Figure 4: Block diagram of the program 
ow

tion of equivalent points are found using Recursive Learn-

ing [13]. Recursive learning is a complete algorithm to

perform implications [13] in a combinational circuit. (re-

fer [13] for a complete description). We use the veri�cation

tool HANNIBAL [11] for this purpose, which is based on

implications and learning. The two circuits to be veri�ed

are �rst joined at the inputs, their respective outputs then

tied together by an exclusive-or, the output of which feeds

an or-gate.

At every signal of this combined circuit, called miter
in [4], a logical one and a logical zero are assigned and

their logic consequences noted with the help of Recursive

Learning. Let A and B be two signals in a circuit. If an as-

signment A = 0 and A = 1 implies that B = 0 and B = 1,

respectively, then these two signals are functionally equiv-

alent. The number of internal equivalent points found this

way depends on the depth of recursion [11] used. We use

this as a preprocessing step. First, a recursion depth of

one is used and if this proves to be insu�cient, then it is

incremented and the process is repeated.

B. Functional Comparison

First, we need to identify the sub-circuits by partition-

ing the original circuits into smaller sub-circuits. For this,

a simple procedure is used, tracing from the outputs to-

wards the inputs. Using the classical depth �rst search

from the outputs, we trace until an equivalent point or

a primary input is encountered and marked. All these

marked signals are treated as independent pseudo-inputs

to the traced part of the circuit containing the outputs;

i.e., these marked signals are the desired partitions. This is

performed on one circuit and the partition is mapped into

the other circuit to the corresponding equivalent points.

In some cases, this mapping may not result in a complete

cut in the other circuit; in these cases, the outputs whose

cone does not contain a complete cut is traced in a similar

fashion, and the cut is made complete.

The OBDDs for the outputs are calculated for each cir-

cuit in terms of these pseudo-inputs that identify the re-

spective circuit's partitions. The OBDDs are built, us-

ing Apply operation [6] by traversing the circuit from the

pseudo-inputs towards primary outputs and building inter-

mediate, temporary OBDDs at each node's output. The

respective OBDDs of the output are compared for equiva-

lence. If they are equivalent, the circuits are proven to be

equivalent and if they are not equivalent, then it has to be

examined whether this is a false negative.

Pseudo-input justi�cation
To check for false negatives, we propose the following

approach. First, a new OBDD is formed by �rst Exor-ing
the respective output OBDDs, and then forming an OR of
all these Exor-ed OBDDs. Then, the following procedure
is applied:

Consistent satisfy(bdd node var)

f
if( var == constant ONE )

f /*Found consistent satis�able set*/

if(Justi�able)
/* Found a distinguish vector */

return ONE

else
/* Continue with the traversal */

return ZERO

g
else if ( var == constant ZERO )

/* Continue with the traversal */

return ZERO

Assign: `1' to the node which represents

the variable \var" represents

if(Imply() == consistent)

if(Consistent satisfy(var:high))

return ONE

Erase this Assignment and its implications
Assign: `0' to the node representing the variable \var"

if(Imply() == consistent)

if(Consistent satisfy(var:low))
return ONE

Erase this Assignment and its Implications

return ZERO
g

This is a process where, �rst, a consistent, satis�able

set is found by traversing the exor-ed OBDD and next,

3



an attempt is made to �nd a justi�cation sequence at the

primary inputs of the original circuit for this satis�able

set. If it cannot be justi�ed, OBDD traversal is continued

and a new consistent satis�able set is found, the process

is repeated until, either it is found that there is no con-

sistent satis�able set which can be justi�ed, which means

the circuits are equivalent, or a distinguishing vector is

generated.

The recursive function consistent satisfy() takes an

OBDD node as an argument and �nds a consistent satis-

�able set. Function justify() is used to check whether the

satis�able sequence found in consistent satisfy() is justi�-
able.

For the justi�cation process (justify()), we use test gen-
eration techniques based on FAN's [10] multiple backtrace

procedure and implicit enumeration. The prestored indi-

rect implications are used to speed up the process. In our

experiments Consistent satisfy, generally proved e�cient

to solve the false negative problem. However, in many

cases, the process can be speeded up considerably by the

following technique which allows decrease of the size of the

OBDD that has to be traversed by Consistent satisfy .

Incorporating the don't cares

include don0t cares(f(x1; x2; :::; xn))

f
for(i = x1 to xn)
f

assign : i = v

fi =j f j
i=v

/*Divide f into co-factors*/

f
i
=j f j

i=v

Imply() in the original circuit
for(j = x1 to xn and j 6= i)

f
if(circuit(j).output 6= don't care)

fi =j fijj0s value

g
assign : i = v

Imply() /*Make implications*/

for(j = x1 to xn and j 6= i)
f

if(circuit(j).output 6= don't care)

f
i
=j fvjj0s value

g
fnew = ITE(i; fi; fi)

if(size(fnew < f))

return fnew

else

return f

g
g

We do an implication analysis to incorporate partial in-

formation of the don't care information into the OBDDs.

Functional Structural + Functional

Circuit OBDD size Rec. Depth OBDD Size

C432 55,023 1 7 �
C499 136,255 1 32�
C1355 136,255 1 32�
C1908 31,978 1 25�
C2670 Unable 1 166,665
C3540 Unable 2 3516

C5315 11659 1 1677

C6288 Unable 1 33�
C7552 Unable 1 160,510

Table 1: Comparison of �nal OBDD Sizes.

Functional Structural + Functional

Circuit OBDD [s] Struct.[s] Funct.[s] Total [s]

C432 60.9 1.0 1.2 2.2

C499 89.32 1.9 0.27 2.17
C1355 143.6 6.6 0.73 6.73

C1908 30.44 11.2 3.34 14.54

C2670 Unable 8.7 150.6 159.3
C3540 Unable 52.8 14.84 67.64

C5315 20.52 32.4 340.4 372.8

C6288 Unable 21.5 11.24 32.74
C7552 Unable 97.2 5486.1 5583.3

Table 2: CPU times [s].

This procedure is listed above and is explained below. As

pointed out, the cause of a false negative is the interde-

pendency of the pseudo-inputs which means that if the

equivalent points are independent, then no false negatives

can occur. f is a function of n variables x1; x2; :::; xn.

First, f is divided into two cofactors fi and f
i
, based on a

variable, i 2 (x1; x2; :::; xn). A signal value is assigned to

the signal in the original circuit representing the variable

i, and implication performed. If this implication results in

the signals which represent other variables being speci�ed,

then \restrictions" are made on the respective cofactors, as

shown in the listing. This process is continued for all the

signals. Finally the \restricted" cofactors are combined by

an ITE operator, as de�ned in [3].

This procedure, however, is not complete i.e., it does not

�nd all possible don't care sets, but experimental results

show that this considerably reduces the OBDD sizes. It is

expected that our results can be further improved signi�-

cantly using well-known methods for don't care extraction

and OBDD minimization with respect to given don't care

sets, e.g. [9].

III. RESULTS

To examine the bene�t for OBDD-based veri�cation

from a structural preprocessing phase, we conducted a se-

ries of veri�cation experiments on the ISCAS-85 bench-
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Circuit Total number of # Outputs found equal # Outputs with # Outputs with

Outputs by Structural Analysis Isomorphic OBDDs Di�erent OBDDs

(False Negatives)

C432 7 7 | |

C499 32 32 | |

C1355 32 32 | |

C1908 25 25 | |
C2670 140 126 6 8

C3540 22 6 6 10

C5315 123 58 49 16
C6288 33 33 | |

C7552 108 56 42 10

Table 3: False Negatives.

marks. The ISCAS-85 benchmarks were veri�ed against

their non-redundant versions that are also available from

MCNC. This veri�cation experiment adequately re
ects

the range of applications we have in mind for our hybrid

veri�cation method. The circuits have been modi�ed at

several di�erent locations, but there is still \similarity" be-

tween them, which can be expected to be the case for many

practical veri�cation problems, especially after engineering

changes (ECs). As mentioned previously, we used Karl

Brace's BDD package for our implementation [3]. Exper-

iments were conducted on the MCNC ISCAS benchmark

circuits to verify the equivalence of the redundant [5] and

non-redundant [19] sets of these circuits. The prestored

indirect implications (the internal equivalent points) are

read from a �le generated by HANNIBAL [11] as a pre-

processing step. No special variable-ordering techniques

are used for our BDD formation. BDD variables are cre-

ated for each equivalent point and ordered, based on their

output distance. The ordering is �xed for all the outputs

of the circuits. The results are presented in Tables 1 and

2. Table 1 compares the �nal OBDD sizes for the whole

and the cut circuits, respectively. The variables used for

creating OBDDs for the whole circuit were also ordered,

based on their output distance. In Table 2, the CPU time

in seconds is listed. The recursion depth [11] used for pre-

processing is also listed for each circuit in Table 1.

The sizes are the aggregate sizes for all the outputs

which take sharing into account [3]. Importantly, in all

examined cases, the BDD sizes shrink drastically after the

structural preprocessing phase. For some circuits marked

by an �, structural analysis with recursion depth one could

complete the job, alone [11]; in these cases, the number of

BDD nodes shown is just the number of variables that was

created for outputs. For circuit c3540, we could not build

a BDD for a preprocessing recursive depth of one, so the

preprocessing is done with a recursive depth of two. In

this way, more internal equivalencies are generated which,

in turn, make the partitioned circuit tinier, causing the

BDD sizes to shrink. This aptly demonstrates how struc-

tural and functional techniques can complement each other

to provide more e�cient means to solve the veri�cation

problem. Note that our results can further be improved

drastically by applying more sophisticated ordering tech-

niques, as have been reported in literature [16, 14, 15]. The

BDD sizes for the examined circuits were extremely low,

compared to all the conventional functional techniques.

Consider the circuit c6288. As is well known, no optimal

variable order exists and any OBDD based veri�cation will

fail. In this case, as demonstrated in [11], the prepro-

cessing, itself, has proven that the circuits are equivalent,

without a need for building an OBDD.

Table 3 lists the number of false negatives encountered

for the benchmark circuits. The second column gives the

number of outputs of each circuit. The number of outputs

proven to be equivalent in the structural analysis alone are

shown in the third column of this table. The fourth and

�fth columns represent the number of outputs with iso-

morphic OBDDs and outputs with di�erent OBDDs (i.e.,

false negatives), respectively.

The results so far presented were only for the circuits

which were equivalent. It is interesting to see how our

methods fare when the circuits are not equivalent. For

this reason, we changed a gate in the benchmark circuits,

which was picked randomly, to a di�erent type, so that the

functionality of the original circuit was changed. These

modi�ed circuits were compared with their original coun-

terparts. Table 4 presents the results for these true nega-

tives, which compares OBDD sizes and CPU time between

the OBDD-based pure functional method and our hybrid

approach. For all the cases, the depth of recursion used

was one. In the majority of the cases, the inequivalence

was proven in the structural stage, itself. This is because

the structural techniques are particularly powerful in gen-

erating a distinguishing vector, without completely enu-
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Functional Funct. + Struct.

Circuit OBDD CPU OBDD CPU

Size Time [s] Size Time [s]

c432 55047 54.01 0 1

c499 365153 193.9 512 59

c1355 177573 285.4 0 9

c1908 38538 23.27 0 10
c2670 Unable | 0 11

c3540 Unable | 10371 15

c5315 12889 25.29 0 26
c6288 Unable | 0 23

c7552 Unable | 0 97

Table 4: True negatives.

merating the search space. In the cases where OBDDs

had to be created, the required sizes are very small and in

all the cases, the CPU time is relatively low.

As mentioned before, further improvements can be ex-

pected by a more general structural phase using the con-

cepts of [4, 12, 18], and/or by a more sophisticated func-

tional phase using better variable orderings or other graph

representations of Boolean functions [7, 17, 8]. Indepen-

dent of such promising extensions, our research demon-

strates how functional and structural methods for logic

veri�cation can be combined e�ciently. Our experimental

results con�rm that a hybrid approach of structural and

functional techniques provides a useful and 
exible tool set

to perform logic veri�cation in a synthesis environment.

IV. CONCLUSION

In this paper, we presented the e�ectiveness of a hybrid

logic veri�cation tool based on both structural [11] and

functional [6] techniques. This hybrid veri�cation tool is

based on OBDDs, the structural analysis based on recur-

sive learning. This provides a means for an e�ective trade-

o� between time and memory. An implication-based rou-

tine is developed for �nding don't care information, which

reduces the size of the OBDDs used.
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