
Deriving E�cient Area and Delay Estimates by Modeling

Layout Tools

Donald S. Gelosh1 Dorothy E. Setli�
Department of Electrical Engineering

University of Pittsburgh

Pittsburgh, PA 15261

dgelosh@a�t.af.mil setli�@ee.pitt.edu

Abstract| This paper presents a novel approach to de-

riving area and delay estimates for high level synthesis us-

ing machine learning techniques to model layout tools. This

approach captures the relationships between general design

features (e.g., topology, connectivity, common input, and

common output) and layout concepts (e.g., relative place-

ment). Experimentation illustrates the e�ectiveness of this

approach for a variety of real-world designs.

I. Introduction

Design automation must produce a physical artifact
with real physical characteristics. The earlier �nal phys-
ical characteristics are accessible the more optimal the
design process and the resultant design. Unfortunately,
current VLSI CAD design automation systems fail to in-
corporate accurate estimates in high level synthesis. The
lack of accurate estimates at this level cripples the ability
of the high-level synthesis to produce optimal designs in
a timely manner.
McFarland, Parker, and Camposano [10] de�ne high-

level synthesis as taking a description of a design's be-
havior along with cost (usually area) and performance
(usually delay) constraints and producing a structure that
implements the behavior while satisfying the constraints.
High level synthesis encourages developers to evaluate and
compare possible designs. It is cost prohibitive to use ac-
tual layout tools to evaluate potential designs. Thus, area
and delay estimates are instead used within synthesis.
This paper describes a method of quickly obtaining ac-

curate area and delay estimates using machine learning to
model layout tool transformations. This model captures
the relationships between the physical and graphical fea-
tures (e.g., size, topology, connectivity) and the relative
placement of nodes as produced by the modeled layout
tool. Applying the model produces a predicted layout.
Area and delay estimates are then formed from the pre-
dicted layout. This paper illustrates how this approach
is both CPU runtime cost-e�ective while providing a high
degree of accuracy.

1Maj Donald S. Gelosh is now with the Air Force Institute of
Technology, Wright-Patterson AFB, OH

The remainder of this paper is organized as follows. Sec-
tion II discusses existing estimators and shows how our
approach is di�erent. Section III presents an overview of
the tool modeling method and describes the general solu-
tion architecture. Section IV presents experimentation il-
lustrating the accuracy and e�ectiveness of this approach.
Section V reviews the contributions of this paper.

II. Previous Work

This section reviews competitive area and delay esti-
mators. PLEST [5] provides area estimates for standard
cell designs. PLEST uses two estimators: one estimates
wiring space requirements for the routing channels and
the other estimates the number of feedthroughs. Kurdahi
and Parker claim an accuracy of within 10% of the actual
areas for small designs. TELE 2.0 [14] uses a combina-
tion of constructive (partial slicing tree) and analytical
(Rent's rule) approaches to estimate wire-length for stan-
dard cell designs. TELE 2.0 is both fast and accurate
(7% or better), but only for small designs (less than 1800
cells). Finally, Nourani and Papachristou [11] use a non-
probabilistic analytical formula to estimate standard cell
layouts. They claim their estimates are within 12% for
small designs (less than 2100 cells). None of these ap-
proaches consider modeling layout tools instead of ana-
lyzing the target designs or estimating layouts to gain a
time and resources advantage. We show here that model-
ing layout tools and using the model in place of the tool
is a reasonable and e�cient alternative in estimating the
area and delay of target designs.

III. Modeling Layout Tools

In general, machine learning attempts to generalize and
quantify identi�ed potential relationships. In this paper,
the identi�ed relationships are between design features
(e.g., size, topology, connectivity) and layout concepts
(e.g., relative placement). Each relationship results in a
rule with an identi�ed certainty factor attached to the
rule. This certainty factor is a measure of the strict one-
to-one relationship strength between a design feature and
a layout concept. For example, if a rule de�ning the rela-
tionship between a particular design feature (e.g., input to
output connectivity) and a particular layout concept (e.g.,
side by side relative placement) has a higher certainty fac-
tor than most, or if the certainty factor is extremely high,
occurrence of input to output node connectivity results
in the placement of these two nodes directly next to each

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

Design Tool
Layout Produce

Training
Set

Learning
Program

Set of
Rules

Training

Fig. 1. Modeling Process Overview

other. Applying these rules results in a predicted layout.
Analysis of this predicted layout is the basis of area and
delay estimation formulation. The remainder of this sec-
tion discusses the two key issues of this approach: model
formulation, and use of this model to produce area and
delay estimates.

A. Model Formulation

Fig. 1 illustrates the model formulation process. The
target layout tool produces layouts for a set of training de-
signs. The training designs re
ect a varied cross-section of
components contained in the expected target designs. The
resultant layouts form a training set and serve to charac-
terize the design-to-layout transformations of the target
layout tool. Each of the training designs are typically
small (<700 transistors) so producing these layouts does
not consume much CPU time. In addition, this process
is performed o�-line and only once for a particular layout
tool. The learning system takes the training set informa-
tion, analyzes the relationships, and produces rules with
certainty factors for each identi�ed relationship. These
rules constitute the layout tool model.
Producing the model requires �rst developing a training

set and then using this training set to actually build the
model. A training set must be su�cient (i.e., cover the
operation transfer function of the layout tool). A training
set is considered su�cient when it reaches a point where
a substantial increase to its size does not increase the per-
formance of the system using it [16]. In this context, a
substantial increase means the addition of more training
designs to the training set. The appropriate number of
training designs is determined through experimentation
and analysis of the results. Developing the training set is
not a complex process. A good approach is to initially in-
clude at least one example of each expected target design
using di�erent styles (e.g., bit widths, algorithms, encod-
ing schemes, etc.). Then, this large training set can be re-
duced until its performance on known test designs starts
to fall o�. At this point, the training set is considered
su�cient.
The machine learning system �nds relationships be-

tween features in the training designs and their corre-
sponding layouts. Each training design instance in the
training set includes a set of attribute-value pairs describ-
ing various features about the training design and a set
of layout concepts that indicate relative placement of the
nodes in the layout. The attribute-value pairs describe
features such as the minimum area, height, and width
of each node, the associated delays for rising and falling
output transitions, the number of inputs, and the node's
function. (All of this information is obtained from a node
library as the training set is built.) The attribute-value
pairs also describe the topology of the training design in
relation to the node. While some of the features seem
redundant, such as area when height and width are avail-
able, it is necessary to explicitly describe all features. This
is because the learning system used in this approach, Rule

(nx1_nx2 !=) ==> near_d

{ pos= 0.48, neg= 0.19, cf= 0.710

p=31, n=1099, tp=64, tn=5872 }

Fig. 2. Example Rule

Learner [13], is incapable of learning relationships among
the features. Rule Learner is an inductive learning system
and can only learn by observation.
Because it is necessary to pair up each node with every

other node in order to obtain relative placement infor-
mation from the layout, node pairs are used to form the
individual training instances in the training set. The fea-
tures for each node pair include each node's individual set
of attribute-value pairs, plus a set of relational attribute-
value pairs. This includes information about which node
has more area, more height, more width, more delay, more
total inputs, more external inputs, and more internal in-
puts. Other relational features include whether or not
one node has an input to, output from, or no connection
to the other node, and if the two nodes share a common
destination or a common source.
The relative placement information for each node pair

is obtained by examining the training set layouts to deter-
mine where the nodes are located relative to each other.
Each node pair has a relative placement as its concept,
and the learning system tries to learn what features about
the two nodes determine where they are placed relative to
each other. We can use the relative placement to derive
the relative distance. The relative distance determines
wirelength between the logically connected nodes.
The machine learning system analyzes the training set

data to determine if there are any relationships between
design features found in the training set and the de�ned
layout concepts. These relationships indicate trends and
characteristics of the target layout tool. For example, if
the target layout tool tends to place logically connected
nodes close together, then there will be a rule describing
the relationship between logically connected nodes and
close placement. Each rule has a certainty factor describ-
ing the strength of the relationship. The ability to de�ne
the certainty of rules produced from a machine learning
system provides an implicit ordering of rule importance
and applicability.
A set of rules produced by the learning systems captures

relationships between design features and layout concepts.
This rule set models the layout tool, not the layout itself.
These rules are of the form < lhs > ! < rhs >, where
< lhs > is a conjunction of features (attribute-value pairs)
and < rhs > is the layout placement concept related to
the features in < lhs >. An example rule is shown in
Fig. 2. Because the rules are based on relationships be-
tween features in the training designs and corresponding
layout concepts, they re
ect the characteristics of the tar-
get layout tool. When applied to a target design, these
rules map features in the design to layout concepts and
provide layout information that can be used to estimate
area and delay.

cf =

p

tp

p

tp
+ n

tn

(1)

Certainty factors (cf= 0.710 in Fig. 2) are generated
by (1) where p is the number of positive examples in the
training set supporting belief in the rule, tp is the total

Design
Target

Set of
Rules

Rules
Apply Area & Delay

Estimates
Estimate
Area & Delay

Fig. 3. Applying the Model Overview

number of examples having the same concept, n is the
number of negative examples supporting disbelief in the
rule, and tn is the total number of examples not having
the same concept. Certainty factors should not be viewed
as probabilities of a rule's truth [1]. Rather, certainty
factors rank order and weight rule application.

cfcomb(X;Y) = X + Y (1�X) (2)

When more than one rule predicts the same concept
for a node pair, the certainty factors are combined into
one factor [1]. If other rules predict di�erent concepts for
the same node pair, those rules' certainty factors are com-
bined using (2). The combination of certainty factors X
and Y results in a higher certainty factor than for either X
or Y alone. Combination continues until each node pair
has only one certainty factor associated with it. These
combined certainty factors are used to rank order the pre-
dicted concepts for that node pair.
The next section explains how the model of the target

layout tool is applied to test designs to obtain area and
delay estimates. The target layout tool used to illustrate
this is the ArtistII [3] layout tool.

B. Formulating Area and Delay Estimates

Fig. 3 illustrates the area and delay estimate formula-
tion process. To formulate area and delay estimates, we
�rst apply the layout tool model to the desired target de-
sign to produce a predicted layout. This predicted layout
forms the basis of the area and delay estimates. Estimates
are accurate because the rules are based on how the layout
tool produces layouts for the training designs. The esti-
mates are obtained more e�ciently because it takes much
less time to apply the rules than to produce an actual
layout.
The model of the ArtistII layout tool we used for the

experiments discussed in this paper is based on a training
set consisting of four training designs: a 4-bit adder, 8-bit
adder, 16-bit adder, and 32-bit adder. The test designs
include a 4-bit adder, 12-bit adder, 24-bit adder, 16-bit
absolute value operator, and 4-bit multiplier. The test
designs include adders because the training set is built
from adder designs. The other test designs, the absolute
value operator and multiplier, are used to show how an
adder-based training set can work for other types of de-
signs.
Model application �rst requires identi�cation of the de-

sign concepts present in each of the gate pairs making
up these designs, then applying the rules from the model
to identify the certainty factors of the appropriate layout
features. Initially, each concept is assigned a certainty
factor of 0.0. Rules �re for gate pairs whose particular
design concepts satisfy the rule's left-hand side. When

a rule �res for a gate pair, the rule's certainty factor is
combined with the predicted concept's current certainty
factor for the gate pair according to (1). This combined
certainty factor becomes the current certainty factor for
that concept. The rule with the highest certainty factor is
applied to all node pairs �rst, then the second most certain
rule, and so on. Certainty factors are combined as nec-
essary until each node pair has a list of predicted layout
concepts rank-ordered according to their �nal combined
certainty factor. Each of the layout concepts corresponds
to a predicted relative placement of each node pair.
This rule application process is continued until all rules

have been applied to all gate pairs. When this process is
�nished, each gate pair will have a list of predicted con-
cepts with their �nal certainty factors. Each gate pair's
list of concepts is then rank ordered by certainty factor in
descending order. The concept with the highest certainty
factor becomes the �rst choice for the gate pair. The con-
cept with the next highest certainty factor becomes the
second choice, and so on.
The list of gate pairs is then rank ordered in descending

order according to the certainty factor of the �rst choice
concept. Starting at the top of this list, each gate pair
is assigned its �rst choice concept, unless that concept
is unavailable due to physical limitations. Each time a
concept is assigned, the physical limitation �le is updated.
When that concept is no longer possible for the remaining
gate pairs in the predicted layout, any unassigned gate
pairs in the list having that concept as their �rst choice
must now use their second choice, if it is available. This
is an example of fuzzy classi�cation in the method. It
is not necessary to assign a gate pair its �rst choice of
relative placement concepts. For example, if the physical
limitations allow only so many concepts of near s, the gate
pairs with the highest certainty factors for this concept
should have it assigned �rst. When the available number
of this concept runs out, then the gate pair's second choice
can be assigned. Fuzzy classi�cation gives the method

exibility when assigning concepts so physical limitations
of the domain can be satis�ed.
The assignment process is repeated until all gate pairs

have an assigned concept. The end result is a �le that
lists all gate pairs with their predicted concepts. This
�le is rank ordered so the gate pairs near the top have
been assigned concepts with the best certainty factors.
The gate pairs towards the end of the list may not have
been assigned their �rst or second choice concepts, but the
certainty factors are lower towards the end due to the rank
ordering. This means there is a higher probability that the
�rst choice concepts may be incorrect as it is. The physical
limitations de�ne the bounds of the predicted layout and,
thus, enhance the overall accuracy of the methodology.

B.1 Delay Estimation

The critical path determines the minimum delay
through the circuit. and is a sum of all the delays between
nodes on this path. The delays between nodes are calcu-
lated as a function of the driving node's intrinsic delay,
the delay due to the length of wire on the driving node's
output, and the load that the driven node(s) place on the
driving node. The driving node's intrinsic delay comes
from a physical library �le. The load from the driven
node(s) is a function of the number of driven nodes. This
comes from the design's netlist. The relative placement of

TABLE I

Delay Estimates for Example Test Designs

Design Number Actual Estimated Percent

Name of Gates Delay (ns) Delay (ns) Error

add4 43 19.1 19.2 0.54%
add12 147 61.5 60.35 -1.87%
add24 303 134.0 125.06 -6.67%

abs16 208 109.0 112.36 3.08%
mult4 163 44.5 44.99 1.11%

TABLE II

Area Estimates for Example Test Designs

Design Number Height Width
Name of Gates Error Error

add4 43 4.14% -1.65%

add12 147 17.01% 9.88%
add24 303 -4.44% 17.90%
abs16 208 -5.38% -3.62%

mult4 163 -1.76% 4.55%

two gates translates directly into the length of wire needed
to connect them.

Table I shows the critical path delay estimates obtained
for the �ve test designs and the percent error between
these delay estimates and the actual delays from IRSIM
simulations. This table shows the model performs quite
well estimating delay in its �nal implementation for this
example. This table also shows that even though the
model is based on a training set using all adder designs,
the model works well on other types of designs. The errors
for the �ve test designs are all under 10%.

B.2 Area Estimation

The area estimation process looks at the list of relative
placement concepts and grows a predicted layout. The
�rst gate from the �rst gate pair in the list of predicted
concepts is put in the center of the predicted layout. This
becomes the seed gate. The second gate from the �rst gate
pair is placed in relation to the seed gate according to the
predicted concept for the gate pair. In other words, when
the predicted layout is �nished, this gate will be located
the appropriate Manhattan distance away from the seed
gate. Due to the rank ordering of the gate pairs according
to certainty factors, the �rst gate pair in the list has an
assigned concept with the best certainty factor of all. This
means this gate pair has the best chance of having the
correct relative placement concept. The gate placement
process is continued until all gates have been placed in the
appropriate positions according to their relative placement
concepts.

Area estimates are generated directly from the pre-
dicted layout. Table II shows the height and width es-
timates obtained for the example test designs. This table
shows the percent error between these estimates and the
height and width values from the actual layouts. This
table shows that for these test designs, the height and
width estimates are within 20% of the actual values. In
addition, this table shows that the model works well for
area estimation on designs other than adders. These are
all small designs and thus small di�erences yield larger
than expected error rates.

20 40 60 80 100 150 200 250 300 400 600 700 3000 5000 6000 12000

of nodes

%
 e

rr
o

r

-5%

-10%

-15%

-20%

5%

10%

15%

20%

0%

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x x

Fig. 4. Overall Error for Area Estimates

IV. Results

The following results illustrate application range by
showing results for ALU components as well as common
synchronous benchmarks. A comparison against other ap-
proaches illustrates the competitiveness of this machine
learning approach.

A. ALU Component Designs

A set of simple microprocessor ALU component designs
(listed in Table III) represent a varied cross-section of dif-
ferent types and sizes of microprocessor ALU components.
We used the TinkerTool [2] system to automatically gener-
ate VHDL descriptions of each design, and then ran Artist
II to produce layouts, Magic [12] to obtain the height and
width of the layout and IRSIM [15] to obtain the criti-
cal path delay. These measurements constitute the actual
area and delay for error calculations. Each test design has
its known actual height, width, and delay.
The following graphs show the results from applying

the layout model to these designs. These graphs show
percentage error vs. the wide range of design sizes found
in the set of test designs. (In each of these graphs, the
horizontal axis is nonlinear due to the wide range of vary-
ing design sizes.) A comparison of the estimated area and
delay to the actual area and delay quanti�es the overall
error. For example, Fig. 4 shows the overall error for area
estimates. All of these estimates are within 20% even for
large designs. Fig. 5 shows a graph of the overall error for
delay estimates. This graph shows the delay estimates for
all of the designs are within 12%. According to Nourani
and Papachristou [11], a di�erence of less than 10% is con-
sidered very good, but di�cult to achieve. A di�erence of
20-30% [7] is considered to be both acceptable and achiev-
able. Thus, these results are quite good according to these
criteria.
This methodology is also much faster than producing an

actual layout. Table III shows the total time to derive area
and delay estimates is much less than producing an actual
layout. Combining these execution time results with the
area and delay estimate results shows that this method
of modeling layout tools does produce accurate estimates
very quickly.
Layouts for all of the test designs except for the last

three were produced by ArtistII using 10,000 iterations.

20 40 60 80 100 150 200 250 300 400 600 700 3000 5000 6000 12000

of nodes

%
 e

rr
o

r

-5%

-10%

-15%

5%

10%

15%

0% x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

x

x x

x
x

Fig. 5. Overall Error for Delay Estimates

TABLE III

Execution Time Comparison (cpu sec)

Design Number Total ArtistII
Name of Gates Time Time

add4 43 0.49 840
add8 95 0.96 2278

add12 147 1.70 5385
add16 199 2.82 8278
add24 303 5.82 11886

add32 407 10.71 18735
abs16 208 2.71 6676
inc4 23 0.61 405

inc8 51 1.15 980
inc16 107 0.97 3408
sub4 48 0.48 828

sub8 104 1.18 2374
sub16 216 3.67 7788

addsub4 64 0.80 1398

addsub8 132 1.44 4896
addsub16 268 4.24 10224
mult4 163 2.22 4106

mult8 711 29.03 47696
mult16 2959 442.57 28746
big 6264 2215.44 65493

realbig 12528 7605.73 359289

Due to their large size, the last three designs in the table,
mult16, big, and realbig required a reduced number of it-
erations (100) in order for ArtistII to produce a layout at
all! (In order to keep the comparisons valid, we built a
di�erent training set using the same training designs that
models ArtistII using only 100 iterations and used the re-
sultant model to obtain the execution times for these three
large designs.)

B. Comparison to Other Area and Delay Estimators

Table IV shows how our area and delay estimation
method compares to other estimators. A comparison of
results from this estimation method to estimators from
Nourani [11] and in the TELE 2.0 [14] and PLEST [5] sys-
tems show that this modeling method is very competitive
in area and delay estimation. The estimation method has
the advantage of being able to aggressively handle larger
designs as shown in Table III.

TABLE IV

Comparison to Other Estimators

System Design Dim. Their Our

Name Name Error Error

(Nourani) mult4 ht 3.09% 0.77%
wd 4.22% 1.83%

mult8 ht 4.69% -1.60%

wd 6.87% -15.93%

TELE 2.0 mult16 area -13.91% -4.85%
del 18.00% -6.30%

add32 area 9.62% -9.37%

del 6.00% -3.08%

PLEST mult8 area 5.8% 1.05%
add16 area 10.6% 6.51%
mult16 area 3.1% -4.85%

TABLE V

Area Estimates for Benchmark Designs

Design Number Height Width

Name of Gates Error Error

DIV16 2085 -16.73% 0.02%
GCD32 3669 5.51% -12.82%
DIV32 4177 14.42% 9.64%

C. Benchmark Results

This section focuses on benchmark designs [8]. These
benchmark designs each contain more than 2000 gates, so
again, a reduced number of iterations (100) of the Artis-
tII model was necessary. Table V shows the height and
width errors found using this method. Table VI shows
the actual delay obtained from an IRSIM simulation of the
benchmark design and the critical path delay derived from
information produced by applying our model of ArtistII
to the benchmark design. These results show the accuracy
of this approach even for complex synchronous designs.

V. Conclusions

This paper presents a methodology using machine learn-
ing to model layout tools, rather than the layout itself. Us-
ing this model in place of the layout tool quickly produces
accurate area and delay estimates. Through experimen-
tation with a number of training designs and test designs,
and two target layout tools, this paper demonstrates the
validity of this modeling method and the accuracy of the
area and delay estimates. This paper also demonstrates
the scalability of this approach by producing estimates
within 10% for designs up to 12,000 gates. The mod-
eling method is orders of magnitude faster and includes
estimating area and critical path delay. A comparison of
estimation results from both of the models to other area
and delay estimators illustrate the competitiveness of this
approach.
This methodology aids the design automation process

TABLE VI

Delay Estimates for Benchmark Designs

Design Number Actual Estimated Percent

Name of Gates Delay (ns) Delay (ns) Error

DIV16 2085 231.0 199.71 -13.55%
GCD32 3669 331.7 327.78 -1.18%
DIV32 4177 344.7 336.15 -2.48%

by decreasing the overall design time while increasing the
e�ectiveness of high-level decision making ability. It does
this by modeling the layout tool being used, and not the
design itself. This model is used in place of the layout
tool to provide the necessary layout information based on
the design. This layout information along with graph the-
ory principles is used to derive accurate area and delay
estimates in a timely fashion.

Acknowledgment

We are very grateful to Professor Steven Levitan and
his colleagues at the University of Pittsburgh for their
assistance. Our thanks also to the reviewers of this paper
for their helpful suggestions and advice.

References

[1] Buchanan, B. and Shortli�e, E. Rule-Based Expert Systems,

(Reading: Addison-Wesley, 1984) pp. 247-262.
[2] Hsieh, Yee-Wing, \Architectural Synthesis Via VHDL" (M.S.

thesis, the University of Pittsburgh, 1992).

[3] Irwin, M.J. and Owens, R.M., \A Comparison of Four Two-
Dimensional Gate Matrix Layout Tools," Proceedings of the

26th ACM/IEEE Design Automation Conference, pp. 698-701,

1989.
[4] Kang, S., \Linear Ordering and Application to Placement,"

Proceedings of the 20th IEEE/ACM Design Automation Con-

ference, pp. 457-464, 1983.
[5] Kurdahi, F.J. and Parker, A.C., \Techniques for Area Esti-

mation of VLSI Layouts," IEEE Transactions on Computer-

Aided Design, vol. 8, no. 1, (Jan. 1989), pp. 81-92.
[6] Landman, B. and Russo, R., \On a Pin Versus Block Rela-

tionship for Partition of Logic Graphs," IEEE Transactions

on Computers, vol. C-20, pg. 1469, 1971.
[7] Personal communication with Steven P. Levitan, Assistant

Professor, Department of Electrical Engineering, University of
Pittsburgh, PA., September 6, 1993.

[8] MCNC, Center for MicroelectronicSystemsTechnologies, 3021

Cornwallis Road, P.O. Box 12889, Research Triangle Park,
N.C. 27709.

[9] McFarland, M.C., Parker, A.C., and Camposano,R., \Tutorial

on High-level Synthesis," Proceedings of the 25th ACM/IEEE

Design Automation Conference, 1988, pp. 330-336.
[10] McFarland, M.C., Parker, A.C., and Camposano, R., \The

High-Level Synthesis of Digital Systems," Proceedings of the

IEEE, Vol. 78, No. 2 (February 1990), pp. 301-317.
[11] Nourani, M. and Papachristou, C., \A Layout Estimation

Algorithm for RTL Datapaths," Proceedings of the 30th

ACM/IEEE Design Automation Conference, 1993, pp. 285-
291.

[12] Ousterhout, J., Hamachi, G., Mayo, R., Scott, W., and Taylor,
G., \Magic: A VLSI Layout System," Proceedings of the 21st

Design Automation Conference, pg. 152, 1984.

[13] Provost, F.J., \Policies for the Selection of Bias in Inductive
Machine Learning" (Ph.D. Thesis, University of Pittsburgh,
1992).

[14] Ramachandran, C. and Kurdahi, F.J., \TELE: A Timing Eval-
uator Using Layout Estimation for High Level Applications,"
Proceedings of the European Design Automation Conference,

1992.

[15] Terman, C.J. \SimulationTools for Digital LSI Design" (Ph.D.
thesis MIT Laboratory of Technology for Computer Science,
1983).

[16] Weiss, SholomM. and Kulikowski, Casimir A., Computer Sys-

tems That Learn, (San Mateo: Morgan Kaufmann, 1991).

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

