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Abstract|Built-in self-test (BIST) techniques have
evolved as cost-e�ective techniques for testing digital
circuits. These techniques add test circuitry to the
chip such that the chip has the capability to test it-
self. A prime concern in using BIST is the area over-
head due to the modi�cation of normal registers to be
test registers. This paper presents data path alloca-
tion algorithms that 1) maximize the sharing of test
registers resulting in a fewer number of registers be-
ing modi�ed for BIST, and 2) minimize the number
of CBILBO registers.

I. Introduction

Built-in self-test (BIST) techniques have gained accep-
tance for testing complex digital designs. These tech-
niques involve modi�cation of the hardware on the chip
such that the chip has the capability to test itself. One
of the considerations in BIST techniques is the extra area
needed for the test circuitry. How to reduce the BIST area
overhead without sacri�cing the quality of the test is an
important research problem [1]. Considering testability
at an earlier stage in a design can lead to a more e�cient
exploration of the design space, thus resulting in a cir-
cuit that requires minimal BIST area overhead and that
meets area, throughput and other requirements. The �eld
of high-level synthesis has made signi�cant progress in ad-
dressing area-performance requirements. However investi-
gation of synthesis methods that take into account testa-
bility has only recently received attention from the re-
search community [2],[3],[4]. The objective of these meth-
ods is ease of test generation and e�cient partial scan. For
designs that support BIST, Avra proposed a register allo-
cation method that minimizes the number of self-adjacent
registers in the design [5]. The assumption in this work
is that every self-adjacent register needs to be modi�ed
to be a CBILBO register, and thus the overhead is high.
Papachristou et al. �rst presented a combined register
and ALU allocation method that generates self-testable
designs that do not have any self-loops [6]. The approach
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is based on constraining the allocation to generate a self-
testable template which is very restrictive and hence re-
sults in exploring a small subspace of the testable design
space. Later they presented a method of generating self-
testable designs by extending the self-testable template to
include one speci�c con�guration of a self-adjacent regis-
ter [7]. This approach is still restrictive because it does
not consider many other self-adjacency scenarios that do
not require CBILBOs and is based on synthesizing tem-
plates by simultaneous constrained allocation of ALUs,
registers and interconnect.
Given a scheduled data 
ow graph we allocate opera-

tions, variables and data transfers such that the functional
constraints are satis�ed and the area overhead required for
BIST is minimal. The BIST methodology used is based
on the concept of an I-path [8] and the sharing of I-paths
between modules. We show that self-adjacency does not
necessarily imply poor testability and have derived ex-
act conditions of register assignment which necessitate
CBILBOs. Our model subsumes the testability design
styles considered in [5] and [7]. The conditions derived
and the separate assignment of operations, variables and
data transfers enables an e�cient exploration of a larger
testable design solution space.

II. Test methodology

The allocation scheme presented in this paper is di-
rected towards synthesizing data paths that are to be
tested using a partial intrusion pseudo-random BIST
methodology. In this methodology, some of the registers
in the data path are recon�gured to support test pattern
generation (TPG) and signature analysis (SA) during the
test mode. A built-in logic-block observation (BILBO)
register is a design capable of these modes. The basic
BILBO BIST architecture consists of partitioning a cir-
cuit into a set of registers and combinational blocks. For
complete testing of all the combinational blocks in the
design, di�erent mappings of registers to TPGs and SAs
is required. The concept of an I-path can be used e�ec-
tively to explore the various mappings [8]. The data path
architectures comprising registers and combinational op-
erator modules with the multiplexer connectivity model
lend themselves naturally to the concept of I-paths and
the BILBO BIST methodology. Also the mapping of reg-
isters to TPGs and SAs is independent of the function
and the gate-level implementation of the operator mod-
ules. Hence the testability constraints for this BILBO
BIST methodology are appropriate for consideration dur-
ing high-level synthesis.
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Fig. 1. A generic con�guration with simple I-paths

De�nition 1: (Abadir and Breuer [8]) An identity path,
I-path is a data path from a primary input or a register
to an input port of an operator module or from an output
port of an operator module to a primary output or a reg-
ister so that data can be transferred unaltered. The �rst
and the last elements of an I-path are called the head and
tail, respectively, of the I-path. A simple I-path is an
I-path consisting of at most one register and no operator
modules.

An example of a binary operator module M1 and sim-
ple I-paths to and from its ports is shown in Fig. 1. Input
port R has a simple I-path from R3. This I-path is active
at all times and is the only I-path to port R. Input port L
has simple I-paths fromR1 and R2 that pass through mul-
tiplexer m1. I-paths with multiplexers can be activated
by appropriate control signals, for example c1 in this case.
A con�guration of I-paths that covers all the ports of a

module is called a BIST embedding of the module. The
heads of the I-paths to the input ports are modi�ed as
TPGs and the tails of the I-paths from the output ports
are modi�ed as SAs. If the con�guration chosen is such
that a head and a tail are the same register then that
register has to act as a TPG and SA at the same time.
To ensure high fault-coverage a concurrent built-in logic
block observation (CBILBO) register is required [9].
Generally, there is more than one embedding for a mod-

ule. The choice of TPGs and SAs for testing this module
largely depends on how and which registers are connected
to the rest of the modules. For minimizing the BIST area
overhead, the design is analyzed globally to determine the
test resource allocation such that all operator modules are
tested with a minimal number of registers modi�ed as test
resources. Also a CBILBO register has an area approxi-
mately twice that of a normal register and hence another
objective is to minimize the number of CBILBOs. Since
minimal area overhead is our objective, it is not necessary
to test all the combinational modules at the same time,
i.e. in one test session.
The assignment of registers and interconnect presented

in this paper is done with the aim of maximizing sharing
of I-paths between di�erent modules. Also the assignment
procedure takes into account the possibility of requiring
CBILBO registers in the testable design and avoids such
assignments. This leads to superior results compared to
existing synthesis procedures.

III. Module and register assignment

The behavioral description is assumed to be given in
the form of a data 
ow graph (DFG) G = (V;E) where
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Fig. 2. A scheduled DFG

V is the set of operations and E is the set of variables
(operands and results of the operations) and a schedule
S : V ! f 1, 2, 3,... g where S(v) corresponds to the
control step in which operation v is scheduled. All oper-
ators are assumed to be binary and commutative. Non-
commutative operators can be handled by adding addi-
tional constraints in our assignment procedures. Unary
operators can be treated as a special case of binary oper-
ators.
The assignment is performed in the following order -

module assignment, register assignment and �nally inter-
connect assignment. We chose the above order for the
following reasons. The module assignment space is rel-
atively much smaller than the other spaces and the im-
pact of module assignment on the functional area is large.
Hence there is little 
exibility within the module assign-
ment solution space for improving testability. Most of the

exibility for minimizing test resources for BIST exists in
register assignment. Also, registers can be viewed as po-
tential test resources only after the module assignment is
�xed. Interconnect assignment is strongly related to mod-
ule and register assignment and its e�ect on functional
area can be implicitly considered during those phases. In
our approach, the interconnect assignment that follows
register assignment tries to make the best use of the reg-
ister assignment to further reduce BIST overhead.
Module assignment is done without any testability con-

sideration. Existing algorithms that optimize area are
used. The module assignment is de�ned as � : V ! M
where M is the set of available modules. The subset of V
mapped onto module Mi will be referred to as Vi. Each
operation v 2 Vi will be referred to as an instance ofMi.

De�nition 2: The temporal multiplicity of module
Mi, TM (Mi) is the number of operations from V mapped
onto Mi, i.e. TM (Mi) =j Vi j.

Consider the scheduled DFG shown in Fig. 2 and the
following module assignment. Operations +1 and +2 are
assigned to module M1 and operations �1 and �2 are as-
signed to module M2. Thus V1 =f +1;+2 g where each
element is an instance of M1 and TM (M1) = 2.

De�nition 3: The input variable set of module Mi,
IMi

is the set of all the operand variables associated with
each instance j of moduleMi. The output variable set
of module Mi, OMi

is the set of all the output variables
associated with each instance j of module Mi.

For the scheduled DFG of Fig. 2 and the above men-
tioned module assignment IM1

= f a; b; c; d g and OM1
=

f d; f g.
A register assignment �R can be de�ned as a partition

fR1; R2; :::; Rr g of the set of variablesE such that for any



two variables u and v in Rk, 1 � k � r, their lifetimes do
not overlap. For the scheduled DFG of Fig. 2, a minimum
of three registers are required. There are 108 distinct as-
signments of the variables in E to three registers. With
respect to register and functional unit area these 108 as-
signments are equivalent. Only a subset of these result in
more testable data paths (low BIST overhead) than the
rest. Our algorithms direct register assignment to this low
BIST area overhead subset of the solution space.

A. Maximizing sharing of test resources

Observation 1: Given a module assignment,
(a) An assignment of variables to a register Ri such that
Ri \ IMj

6= � and Ri \ IMk
6= �, guarantees the creation

of simple I-paths to an input port of module Mj and to
an input port of module Mk that share a common head,
namely register Ri, independent of the subsequent inter-
connect assignment.
(b) An assignment of variables to a register Ri such that
Ri\OMj

6= � and Ri \OMk
6= �, guarantees the creation

of simple I-paths from the output port of moduleMj and
from the output port of moduleMk that share a common
tail, namely register Ri, independent of the subsequent
interconnect assignment.

Fig. 3 shows the formation of the simple I-paths with
a common head and with a common tail. Consider a
portion of a scheduled DFG shown in Fig. 3(a). Each of
the operations are scheduled in a di�erent control step
and all the variables depicted have disjoint lifetimes. Let
op3 be one of the operations assigned to module M1 and
operations op1 and op2 be the only operators assigned to
moduleM2. Now IM2

= f a; b; p; q g and IM1
= f x; y; ::: g.

IM1
could have elements in addition to x and y depending

on which other operations are assigned to M1. Suppose
each of the input variables of M2 is assigned to a separate
register, e.g., a to R2, b to R3, p to R4 and q to R5. Now
if a variable from IM1

, say x, is assigned to one of these
registers, say R2, a simple I-path is created from R2 to an
input port of M1 also. This is shown in Fig. 3(b). The
only requirement for M1 and M2 to have I-paths with a
common head is that at least one variable each from IM1

and IM2
be assigned to the same register, i.e. there should

be a register Ri such that Ri\IM1
6= � and Ri\IM2

6= �.
Similarly if at least one variable each from OM1

and OM2

is assigned to the same register, R6 in this case, I-paths
from the outputs of both the modules to R6 are created.
In Fig. 3(b), the register R2 can be used as a TPG for

both the modules and the register R6 can be used as a
SA for both the modules by activating the appropriate I-
paths. Thus for maximizing the sharing of TPGs between
the input ports of modules an assignment �R is desirable
such that for each Ri the number of input variable sets
with which it has at least one variable in common is max-
imized. Similarly the number of output variable sets with
which each Ri has at least one common variable should
be maximized.

De�nition 4: The sharing degree SD(v) of a variable
v is the sum of the number of modules for which v is an
input variable and the number of modules for which v is
an output variable.
If v 2 IMj

, let Xv
j = 1, else Xv

j = 0; if v 2 OMj
, let

Y v
j = 1, else Y v

j = 0. Then SD(v) =
Pm

j=1(X
v
j + Y v

j ),
where m is the total number of modules assigned.
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Fig. 3. Sharing of I-paths

De�nition 5: The sharing degree of a register R is
SD(R) =

Pm

j=1(X
R
j + Y R

j ), where

XR
j =

_

8v2R

Xv
j and Y R

j =
_

8v2R

Y v
j

The sharing degree of a register is thus the total number
of distinct input variable sets and distinct output variable
sets that contain at least one element of R. The sharing
degree re
ects the number of modules for which the reg-
ister can act as a TPG and the number of modules for
which it can act as a SA. Consider a register R that has
been assigned some variables. Let the sharing degree of
R after another variable v is assigned to it be denoted by
SD(R; v). Now SD(R; v) = SD(R)+SD(v)�

Pm

j=1(X
R
j �

Xv
j + Y R

j � Y v
j ). Using this measure the assignment pro-

cess can be guided by choosing merges that result in large
increases in the sharing degrees of registers. The increase
in the sharing degree of a register R as a result of assign-
ing variable v to it will be denoted by �SDv(R). (i.e.
�SDv(R) = SD(R; v) � SD(R)).
The register assignment problem can be modeled as

coloring of the variable con
ict graph. A variable con-

ict graph has vertices corresponding to variables with
an edge between two variables only if they have overlap-
ping lifetimes. A coloring of this graph corresponds to a
valid register assignment with each color corresponding to
a register. In the rest of the paper we will use the terms
color and register interchangeably. If the data 
ow graph
description does not contain mutual exclusion constructs
and loops, the resulting variable con
ict graph is an inter-
val graph [10]. A minimum coloring of these graphs can
be obtained in polynomial time [11]. The minimumcolor-
ing algorithm on interval graphs is a greedy algorithm and
at every step it has a restricted choice of variables which
does not allow for an e�cient exploration of the solution
space to search for a good testability solution.
The greedy coloring algorithm uses the hereditary prop-

erty of interval graphs which is de�ned through simplicial
vertices. A vertex v of a graph G is simplicial if its ad-
jacency set induces a clique in G. The adjacency set is
the set of all vertices that are connected to v. An inter-
val graph has at least two simplicial vertices. If a sim-
plicial vertex and all its incident edges are removed, the
remaining graph is also an interval graph. An ordering
of the vertices such that each vertex is a simplicial vertex
of the remaining graph is called a perfect vertex elimina-
tion scheme (PVES). An interval graph has many such
perfect vertex elimination schemes. The optimal color-
ing algorithm constructs one such scheme arbitrarily and



colors the vertices greedily in the reverse order (reverse
PVES) [11]. Our heuristic is di�erent from the optimal
coloring algorithm in two respects: 1) it selects the PV ES
in a more structured way taking into account informa-
tion such as the sharing degree of variables and size of
maximal cliques; and 2) the vertices are then colored us-
ing this scheme, but instead of assigning colors greedily,
many more coloring possibilities are explored and the one
most suited for maximizing the sharing of test resources
for BIST is selected.
1. Selection of a PV ES: With each vertex of the con-


ict graph we associate a sharing degree as per De�ni-
tion 4. In addition we also �nd the size of the maximum
clique to which each vertex belongs. The size of such
a clique indicates the number of registers to which this
variable cannot be assigned. Let MCS(v) denote the size
of such a clique containing v. The vertices are ordered
such that if v is before w, then SD(v) � SD(w) and if
SD(v) = SD(w) then MCS(v) � MCS(w). At every
step of constructing a PV ES there is a choice of simpli-
cial vertices. The PVES is now determined such that at
each step a simplicial vertex that is earliest in this order
is selected. Since vertices are colored in the reverse PVES
order, this results in vertices with higher sharing degrees
to be considered earlier when there is maximum 
exibil-
ity in the assignment of colors. Also since vertices with a
higher MCS value are considered earlier more colors are
�xed in the earlier stages thus creating more coloring op-
tions to explore. This enables the heuristic to search the
design space more e�ciently for �nding a coloring with
low testability area overhead keeping the number of col-
ors close to optimum.
2. Coloring in reverse PV ES order: For the purposes

of the following discussion the vertices will be referred
to by their number in the reverse PV ES. Let the as-
signment after the kth vertex is colored be denoted as
�k
R = (Rk

1 ; R
k
2; :::; R

k
ck
) where Rk

i \ Rk
j = � if i 6= j andSck

i=1R
k
i = f1, 2,...,kg. The total number of registers after

the kth vertex is colored is ck.
The vertex (k+1) is assigned in the following way. If

(k+1) con
icts with all registers Rk
1; R

k
2; :::; R

k
ck

then a
new register Rk+1

ck+1
= fk+1g is created. Otherwise, out of

the registers that do not con
ict with (k+1) pick a regis-
ter Rk

i such that �SD
k+1(Rk

i ) = SD(Rk
i ; k+1)�SD(R

k
i )

is maximum. Such an Rk
i corresponds to a register that

can best utilize (k+1) to improve its sharing as a test re-
source. If there is more than one such register then the tie
is broken by considering the sharing degree of the registers
and the one which has the higher sharing degree is cho-
sen. Further ties are broken by taking into consideration
the e�ect of the assignment on interconnect cost. There
are two cases in which a register other than Rk

i might be
preferable for assignment.
Case 1: Consider the following example with 3 modules
M1, M2 and M3 with output variable sets OM1

= fa; bg,
OM2

= fc; dg and OM3
= fe; fg. Assume that the as-

signment so far is R1 = fa; b; cg and R2 = fd; eg and f
is the vertex under consideration for coloring next. Fur-
thermore let us assume that f does not con
ict with any
of the other variables so it can be assigned to either R1 or
R2 and assume �SDf (R1) > �SDf (R2). This implies
that R1 can make the best use of variable f in terms of
increasing its potential as a test resource. The increase in
its sharing potential is due to the fact that since f 2 OM3

,
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Fig. 4. Con
ict graph of variables

R1 can be a potential SA for testing moduleM3. But reg-
ister R2 already has variable e assigned to it and e 2 OM3

.
If SD(R2) � SD(R1; f), there is a greater likelihood of
R2 being chosen as a test resource in which case it can
act as a SA for module M3. Assigning f to R1 in such
a case would only increase the interconnection cost since
module M3 would have to transfer data from its output
to two registers instead of one.
Hence if vertex (k+1) is an output variable of module

Mj and if there is a register Rk
l with which (k+1) does

not con
ict such that Rk
l already has an output variable

of Mj assigned to it then the �nal sharing degrees of Rk
i

and Rk
l are compared. If SD(Rk

l ) > SD(Rk
i ; k + 1) then

(k+1) is assigned to Rk
l instead of Rk

i even if �SDf (Rk
i )

is greater.
Case 2: This case is analogous to case 1 above except that
it deals with the possibility of selection of registers as po-
tential TPGs. Since operators are binary, this case re-
quires the existence of two such registers, Rk

m and Rk
n.

In general both the cases can arise in which case a set of
candidate registers is created of all such registers Rk

l , R
k
m

and Rk
n and (k+1) is assigned to the one which results in

the highest increase in its sharing degree. Again ties are
broken so as to minimize interconnect.
The optimality in the minimum coloring algorithm is

guaranteed by assigning the vertex (k+1) to the �rst Rk
i

with which it does not con
ict. Since our heuristic does
not make such an assignment we cannot guarantee op-
timality in terms of the number of registers allocated.
However the heuristic is near-optimal since it still relies
on a PV ES of a con
ict graph. In all the examples con-
sidered it resulted in the minimum number of registers.
The details of the register assignment algorithm and the
pseudo-code can be found in [12].
Consider the scheduled DFG in Fig. 2 with the following

module assignment: M1 =f+1;+2g and M2 =f�1; �2g.
The variable con
ict graph along with the SD and MCS
values is shown in Fig. 4. A perfect vertex elimination
scheme of this graph satisfying the SD and MCS or-
dering is h; b; a; e; g; f; d; c. The coloring is now done in
the reverse order, namely, c; d; f; g; e; a; b; h. The �rst
two vertices c and d are assigned to separate registers
since they con
ict and thus we have R2

1 = fcg, R2
2 =

fdg and SD(R2
1) = 2, SD(R2

2) = 2. Consider the as-
signment of the third vertex, f . Since �SDf (R2

1) =
SD(R2

1; f) � SD(R2
1) = 4 � 2 = 2 which is greater than

�SDf (R2
2) = SD(R2

2; f) � SD(R2
2) = 3� 2 = 1, f is as-

signed to R2
1 and we have �3

R =(fc; fg, fdg). Vertex g is
assigned the same color as d. Vertex e con
icts with both
the allocated registers and hence a new register is allo-
cated and e is assigned to it. The sixth vertex, a, belongs
to IM1

= fa; b; c; dg. There are two registers R5
1 =fc; fg

and R5
2 = fd; gg that have elements from IM1

and shar-
ing degrees 3 and 4, respectively. The increase in the
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Fig. 5. Data paths from DFG in Fig.2.

sharing degree of R5
3 due to a, �SD

a(R5
3) is greater than

�SDa(R5
1
) and �SDa(R5

2
). But the actual sharing de-

gree SD(R5
3
; a) is less than SD(R5

1
) and SD(R5

2
). Hence

we prefer to assign a to R5
1 or R5

2. R
5
1 is chosen because

of lower interconnect cost. The last vertex h increases the
sharing degree of R7

1 and R7
3 by 1. However R7

2 has an
element of OM2

to which h also belongs and SD(R7
2) is

greater than SD(R7
1; h) and SD(R7

3; h). Hence h is as-
signed to R7

2. The �nal assignment is �8
R = (fc; f; ag,

fd; g; b; hg, feg).
The data path corresponding to this register assignment

and the given module assignment is shown in Fig. 5(a).
The data path corresponding to a minimum coloring ob-
tained without regard for testability is shown in Fig. 5(b).
In both cases minimum interconnect was assigned after
register assignment.
It can be seen that in Fig. 5(a) R1 and R2 can be shared

as TPGs between both the modules and R2 can be shared
as a SA. So a minimal area BIST solution would be to
convert R1 to a TPG and R2 to a CBILBO. Compare
this to Fig. 5(b) where R2 is the only common TPG. Also
the two modules do not have a SA in common. A minimal
area BIST solution for this data path is R1 as a TPG and
R2 and R3 as CBILBOs which is more costly than the
minimal area BIST solution for the earlier design.

B. Minimizing CBILBOs

Sharing test resources between modules is not su�cient
to minimize the BIST area overhead because it could still
result in the formation of data paths that require CBIL-
BOs to test some modules. In a globally minimal BIST
area overhead solution, a register might be modi�ed into
a CBILBO register even though it is not necessary to do
so. However a situation where modifying a register to a
CBILBO is absolutely necessary is the one which results
in high BIST area overhead. In this section we derive
the exact conditions for register assignment which when
followed by minimum interconnect assignment necessitate
the modi�cation of a register to a CBILBO.

De�nition 6: An input register of moduleMk is a reg-
ister Ri such that at least one input variable (operand) of
Mk is assigned to it, i.e. Ri \ IMk

6= �. An output reg-
ister of moduleMk is a register Ri such that at least one
output variable of Mk is assigned to it, i.e. Ri\OMk

6= �.
The set of input registers and output registers will be de-
noted by IRk and ORk respectively.

If a BIST embedding for a module is chosen such that
the I-path from the output port of the module and the
I-path to an input port of the module have the same reg-
ister, a CBILBO has to be used. In general any register
that is an input register as well as an output register of
a module can be made a CBILBO in order to test the

module. But it is essential for a register to be made a
CBILBO only if it is a CBILBO in all the possible embed-
dings of a module. The conditions derived below are for a
register to be a CBILBO in all possible BIST embeddings
of the �nal data path.

Lemma 1: If all the possible BIST embeddings of mod-
ule Mk require a CBILBO register then j ORk j� 2.

From the above lemma and the de�nition of an output
register, if register Ri has to be a CBILBO in any BIST
embedding of moduleMk then either (i) Ri\OMk

= OMk
,

or (ii) Ri \ OMk
� OMk

and there exists a register Rj

such that (Ri \OMk
) [ (Rj \OMk

) = OMk
. That is, the

variables of the output variable set of Mk are assigned to
either one or two registers. This information reduces the
number of cases to be considered for deriving the exact as-
signment conditions for a register to be made a CBILBO.

Lemma 2: A register Rx is a CBILBO in all embeddings
of module Mk if and only if one of the following cases is
true.
Case(i): Rx \ OMk

= OMk
and Rx \ I

j
Mk

6= � for j =
1, 2, ..., TM (Mk).
Case(ii): Rx \ OMk

� OMk
and Rx \ I

j
Mk

6= � for
j = 1, 2, ..., TM (Mk) and 9 a register Ry such that

(Rx \OMk
) [ (Ry \OMk

) = OMk
and Ry \ I

j
Mk

6= � for
j = 1, 2, ..., TM (Mk). Case(ii) is symmetrical in Rx and
Ry and so either of them can be made CBILBO.

The proofs of Lemma 1 and Lemma 2 are provided
in [12]. Lemma2 enables us to check if a particular assign-
ment would result in a CBILBO in the BIST version of
the design. The register assignment algorithm is modi�ed
to include the check and to avoid assignments leading to
CBILBOs. If such an assignment cannot be avoided with-
out allocating an extra register, we allow the assignment.
Our experiments indicated that the assignment space is
large enough for this situation to occur infrequently.

IV. Interconnect assignment

Register assignment is followed by minimum intercon-
nect assignment. For a given module assignment di�erent
register assignments have di�erent e�ects on interconnect
area. Our register assignment algorithm does not take
into account the e�ect on interconnect area except to re-
solve ties. The typical situations that occur when two
variables or intermediate registers are merged into one
register are shown in Fig. 6. The corresponding increase
or decrease in multiplexers and BIST resources as a result
of the merges is also shown.
Case 1: Merging variables/intermediate registers that

have di�erent source modules and di�erent destination
modules.(Fig. 6(a))
Case 2:Merging variables/intermediate registers where

a source module of one variable is the destination module
of the other variable.(Fig. 6(b))
Case 3:Merging variables/intermediate registers having

only one destination module in common but di�erent
source modules.(Fig. 6(c))
Case 4:Merging variables/intermediate registers having

only one source module in common but di�erent destina-
tion modules.(Fig. 6(d))



TABLE I Design comparisons with BIST area overhead

DFG Module Traditional HLS Testable HLS % Reduction in
Assignment # Reg # Mux % BIST area # Reg # Mux % BIST area BIST area

ex1 1+, 1* 3 3 18.14 3 3 10.67 30.00
ex2 1/, 2*, 2+, 1& 5 5 11.17 5 4 7.56 32.31

Tseng1 2+, 1*, 1-, 1&, 1j, 1/ 5 9 17.65 5 7 11.34 35.75
Tseng2 1+, 3 ALUs 5 7 10.04 5 10 5.66 46.62

Paulin 1+, 2*, 1- 4 6 16.34 4 6 9.34 42.84
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Fig. 6. E�ect of register assignment on interconnect

Case 5:Merging variables/intermediate registers having
both a common source module and a common destination
module.(Fig. 6(e))
The above discussion shows that a register assignment

with consideration for BIST overhead and without any
consideration for interconnect area will still result in a
data path with lower overall area. Our results indicated
that in all cases the increase in the number of multiplexers,
if any, was compensated for by the savings achieved by a
reduction in the number of BIST resources. For example
in Table I, the number of multiplexers has increased only
in the case of Tseng2 which also has a high reduction in
BIST area that of 46.62%.
For a particular register assignment, the minimum in-

terconnect assignment solution space can be explored for
further reduction in the BIST area overhead. Given a
moduleMk and the set of input registers IRk, each input
register can be connected in one of the following three pos-
sible ways: 1) it is only connected to the \left" input port
of Mk, 2) it is only connected to the \right" input port
of Mk, and 3) it is connected to both the \left" and the
\right" input port of Mk. Assignment of interconnect �I

can be thus seen as a partition of IRk into sets IR
L
k , IR

R
k

and IRLR
k corresponding to the cases 1), 2) and 3), re-

spectively. Pangrle has shown that the minimum connec-
tivity assignment is one that minimizes j IRLR

k j [13]. For
making the most use of the register assignment in reduc-
ing the BIST overhead, the connectivity assignment can
be directed to ensure that registers with high sharing de-
grees have a better chance of being selected as TPGs. To
test a moduleMk, two registers with independent I-paths
to distinct input ports of Mk have to be made TPGs. A
register Ri 2 IRLR

k has a better chance of being chosen
as a TPG since it can serve as a TPG for either the left or
the right port. Hence it is advantageous to have a register
with a high sharing degree in IRLR

k . The output connec-
tivity assignment has no e�ect on the selection of BIST
resources.
The connectivity assignment can be modeled as a dou-

ble clique partitioning of the input register compatibility
graph [13]. In this graph each input register is a vertex
with an edge between two vertices if they can be con-
nected to the same input port. The two disjoint cliques
correspond to cases 1) and 2) and the rest of the ver-
tices to case 3). We use weights in the clique partition-
ing algorithm to direct the assignment towards �nding
cliques such that registers with high sharing degrees are
connected to both the input ports [12].

V. Results

Data paths from some scheduled DFGs and module as-
signments were synthesized using traditional assignment
algorithms which optimize functional area and using the
assignment algorithms presented in this paper. ex1 is the
DFG from Fig. 2. ex2 is a DFG taken from [6]. Tseng1
and Tseng2 are di�erent module assignments of the Tseng
high-level synthesis benchmark [14]. Paulin is another
standard high-level synthesis benchmark - the di�erential
equation solver [15].
The data paths synthesized by the two approaches were

then made testable using the Built-In Test System (BITS)
of the USC-Test system [16]. BITS generates a variety of
BIST designs for a data path depending upon which pa-
rameter is to be optimized. BITS was used to generate
the minimal area BIST solutions for all the data paths.
The BIST area overhead of these designs was then com-
pared. The area overhead is in terms of gate count. Table
I shows that our assignment resulted in 30-45% reduction
in the BIST area overhead as compared to the traditional
assignment. Note that the module assignment and the
number of registers in both the cases are the same. In
all the cases the number of registers is the minimum re-
quired. The BIST area overhead is expressed as a per-
centage increase in the gate count as a result of using the
BIST registers from our library. Table II depicts the ac-



TABLE II Minimal area BIST solutions

DFG Traditional HLS Testable HLS

ex1 2 CBILBO, 1 TPG 1 CBILBO, 1 TPG

ex2 2 CBILBO, 1 TPG/SA, 2 TPG 1 CBILBO, 2 TPG/SA, 1 TPG
Tseng1 2 CBILBO, 3 TPG/SA 1 CBILBO, 3 TPG/SA, 1 TPG
Tseng2 2 CBILBO, 1 TPG/SA, 1 TPG 2 TPG/SA, 1 TPG

Paulin 3 CBILBO, 1 TPG/SA 1 CBILBO, 2 TPG, 1 SA

TABLE III Design comparison for Paulin example

HLS System Module allocation # Reg # TPG # SA # BILBO # CBILBO

RALLOC 1+, 2*, 1- 5 0 0 4 1
SYNTEST (+*), (> ��), (*+) 5 4 1 0 0

Ours 1+, 2*, 1- 4 2 1 0 1

tual number of BIST resources and their modes used to
make the data paths testable. It can be observed that us-
ing the assignment algorithms presented in this paper has
signi�cantly reduced the total number of BIST registers
as well as the number of CBILBOs required to test the
combinational modules in the data path.
We also compared our approach with two other syn-

thesis for testability approaches, RALLOC [5] and SYN-
TEST [7]. Table III shows a comparison of BIST ver-
sions of data paths synthesized from the Paulin di�erential
equation benchmark. The total number of registers allo-
cated and the number of BIST registers required to make
the data paths testable are shown in the table. Since the
module allocations are di�erent it is not possible to show
the BIST area overhead as a percentage of the total area.
But it can be clearly seen that our approach resulted in
a smaller number of total registers as well as a smaller
number of BIST registers.

VI. Conclusions

One of the considerations in applying BIST techniques
to digital circuits is the extra area overhead incurred by
modi�cations to registers. In this paper we have pre-
sented a high-level synthesis approach to make the BIST
approach cost-e�ective. The proposed data path alloca-
tion algorithms synthesize circuits in which the sharing
of BIST registers between functional modules is maxi-
mized and the number of CBILBOs required to test the
data path is minimized. Experimental results on bench-
mark examples demonstrate the ability of our algorithms
to generate low BIST overhead designs.
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