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1. Introduction
The goal of this work is to provide an accurate and con-

cise executable representation of a data-path for synthesis
and scheduling applications. Although extensive work
exists in behavioral synthesis, relatively little work exists
for resynthesizing designs where large portions are already
constructed and an upgrade or engineering change is
required. These tasks require the ability to rapidly deter-
mine and exercise the capabilities of existing designs. For
complex data-path networks, efficient exploitation of the
resources poses many challenges. In particular, assignment
of operands into memory elements and the scheduling of
operations may have greater dependence on the limitations
of the data-path interconnection network than on the algo-
rithm’s critical path, even when resource limits are
included.

Conventional data-path models abstract the intercon-
nection and locality constraints into simple bounds based
on the number of resources (Fig. 1a). These bounds aid
the synthesis of an unspecified data-path. However, such
bounds fail to represent the tightly constrained connec-
tions and local storage for a design with an assigned
interconnection network (Fig. 1b). Moreover, it is often
the case that adopting pre-existing designs is more eco-
nomical than starting anew, especially when such designs
have been verified for timing or are completed layouts.
Furthermore, changing design requirements might
require rescheduling or rebinding, yet still must make
efficient use of the existing resources.

Fig. 2 exposes a vulnerability of the conventional
data-path model. The figure lists a schedule for the small
data-flow on the given data-path. Using conventional
constraints, ASAP reports that the data-flow should take
four cycles. In fact, the feasible schedule takes over twice
as long. The difference results from two main factors: (1)
the schedule requires time to move operands to the
proper place, and (2) there are insufficient resources to
store all of the operands after generating operando2.
Although the conventional register constraint of four
operands is never violated, the operando1 must be
recomputed since the data-path can not simultaneously
use and overwrite operanda2. Clearly, limiting the avail-

 Figure 1. Data-path models
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Abstract
We present an automata model which concisely cap-

tures the constraints imposed by a data-path, such as bus
hazards, register constraints, and control encoding limita-
tions. A set of uniform base components for depicting gen-
eral data-paths and techniques for systematic translation
of such depictions into Boolean functions are described.
Finally, this model is expanded to represent the limitations
of generating as well as moving operands by incorporating
data-flow graphs. The benefits of this representation are
demonstrated by modeling a commercial DSP micropro-
cessor.
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ability of operands compromises fundamental scheduling
analysis techniques.

This paper presents an automata based data-path
model which captures the constraints required to correctly
model temporal behavior. The model restricts communica-
tions to those that are simultaneously feasible on the
defined interconnection network. It models the behavior
and exclusive use of function units, as well as the behavior
of storage elements, including the limited capacity of reg-
ister files. Finally, it enforces the control encoding restric-
tions on the data-path switching, storage and function
units. We present techniques for systematically construct-
ing this model as a Boolean symbolic representation.

First, we describe in Section 3 a uniform set of compo-
nents from which formal models of behavior can be con-
structed. The subsequent section presents techniques for
generating these models. Initially, Section 4.1 describes
methods for generating the constraints of a general switch-
ing network. From here, techniques for modeling the
restricted availability of an operand and for transforming
them into a general transform are specified. Finally, in
Section 5 we outline a number of applications employing
this model including results for representative algorithms
constrained by the TMS32010 data-path.

2. Previous Work
Previous efforts in data-path synthesis used models

that can be divided into two major types: In the first type, a
register and multiplexer bus transaction model is derived
for the particular communications of the designs
[5][10][11][12]. This model is typically represented as a
connection graph and conventional graph search and
matching techniques are applied. More recent models
accommodate register files but restrict the connectivity
[15]. The second type uses a pre-defined data-path and
generates microcode or control for the structure [4][9]. In
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 Figure 2. scheduling example
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these systems, the network is specifically designed to sim-
plify assignment of communications. Finally, current
research in formal system verification uses similar con-
cepts [1][3][6]. In contrast to formal verification model-
ing, our model is intended for synthesis use. Thus, we are
free to introduce heuristics which do not seriously detract
from the power of the system but greatly enhance the
speed.

3. Data-Path Model
We model a data-path as a network of memory ele-

ments, switching logic, and combinational logic con-
nected by a set of wires. Switching logic, used to
conditionally transfer existing operands to different wires,
is distinguished from combinational logic which creates
new operands. All activities of a data-path are determined
by its set of control lines during each clock cycle. Further-
more, the control is currently modeled under the assump-
tion that the data-path uses a single-phase clocking
structure. Fig. 3 lists the basic blocks of the model. Mem-
ory elements are represented by either latches or register
files, switching elements are modeled as multiplexers, and
combinational logic elements are referred to as function
units. A wide variety of data-paths can be specified with
this basic set of components [8].

Each component connects to the wires via a set of uni-
directional ports.1 No bounds are placed on the number of
ports, so function units and register files may have multi-
ple outputs. A few restrictions are placed upon the wire
connections. First, each wire of the network must have a
single source represented by a specified output port. Also,
each output port must connect to a single wire. Although,
a wire may fan out to many destinations, each input port
must be connected to an individual wire.

Components may have a control field which deter-
mines their activity during a clock cycle. As this model is
not intended for timing verification, it is assumed that the
control signals are well-defined and consistent over the
span of a clock cycle. Control fields may have logical con-
straints needed to model complex interconnect or control
word encoding. For example, certain types of complex
switching components constrain the values of the control
bits to ensure proper operation of the data-path. An exam-

1. Bidirectional ports are modeled by combinations of unidirectional
ports, switching elements, and switching control restrictions.

 Figure 3. Base component set.
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ple of this is shown in the partitioned bus depicted in Fig.
4. A similar situation occurs when the control bits of the
data-path are heavily encoded. This situation is character-
ized by a further set of restrictions on the allowed connec-
tions and is easily accommodated.

A communication consists of transfer of an operand
over a connection. Aconnection is a path between two
component ports on the data-path. Connections may
traverse an arbitrary number of switching elements but not
other components. Because of the restrictions placed on
the port and wire interfaces, a connection can be equiva-
lently defined as a path from a source wire to a destination
wire.

4. Boolean Symbolic Formulation
We wish to represent the behavior of the modeled data-

path implicitly as a Boolean symbolic finite state machine.
This allows direct use of efficient BDD based representa-
tion and traversal algorithms. Isolating the memory ele-
ments of the data-path model transforms it into a standard
Huffman model of a state machine as depicted in Fig. 5. In
our construction, the state is represented by the set of oper-
ands stored in each of the data-path’s memory compo-
nents. The next-state function represents the limitations of
generating new operands from the function units as well as
moving them and existing operands over the network. We
restrict the automata to model operations and operands
specific to a pre-specified data-flow graph. The next state
function is represented by a constructed Boolean relation.

4.1. Wire Functions

A connection between a source and a destination wire
is constrained by the control bits of the network’s switch-
ing elements. Fig. 6 depicts a example switching network
and lists the possible connections as well as their control
requirements in the accompanying table. In this paper,
upper case characters represent wire labels and lower case
characters represent control bits. To aid a Boolean formu-
lation, each wire in the network is assigned a unique Bool-
ean encoding.

S3S2S1 S4 S5 S6
S3S2S1 S4 S5 S6

xf()

xg()

xf()xg()
⇒

 Figure 4. Partitioned bus modeling
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 Figure 5. Automata Model Organization

It is useful to denote the set of connections that can be
achieved for the destination wireX. A wire function W(X)
is defined as a sum of all such connections. Each connec-
tion is represented by the required switching values and
labeled with the Boolean encoding of the source wire.
Therefore, the function operates over the set of variables
as depicted in Eq. 1. To describe the behavior of a switch-
ing network, it is sufficient to list a wire function for each
of the network’s primary outputs (destinations).

W( X) = f( switch vars, wire vars)  (1)
The construction technique for W(X) for an arbitrary

networks relies on the acyclic nature of connections in
switching networks.2 This construction process recur-
sively generates W(X) for each switching component. An
initial set of wire functions is constructed to represent the
switching function of each multiplexer. This set of wire
functions is then combined to represent a set of wire func-
tions for the network of multiplexers. Symbolic substitu-
tion of a wire symbol by the associated wire function
constructs the set of wire functions systematically. The
construction of the wire functions associated with the net-
work shown in Fig. 6 is shown in Fig. 7.

The ensemble behavior of the switching network may
be formulated as a single function by combining the set of
wire functions of the primary outputs. This function will
represent the dependencies that each of the wire functions
have upon the common set of switching variables and is
generated through a two-step process. First the source
encodings are remapped to a unique encoding represent-
ing both the source and destination wires. This re-encod-
ing is symbolically depicted by using subscripts to denote
the destination wire. At this point, the intersection of these
functions generates the ensemble switching function. Fig.
8 displays the construction process for the ensemble net-
work function for the example data-path.

2. Acyclic switching networks simplify timing and race analysis. Well
defined cyclic switching networks can also be represented unless
used as a mechanism for storage of state.

control connection
x y z E F
0 0 0 A A
0 0 1 A C
0 1 0 A A
0 1 1 A C
1 0 0 A B
1 0 1 A C
1 1 0 B B
1 1 1 B C

 Figure 6. An example data-path and the set of connections.
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Initial wire function:

W( D) = xA + xB

W( E) =yA + yD

W( F) =zD + zC

Resulting wire functions:

W( E) =yA + y( xA + xB) = yA + yxA + yxB

W( F) =z( xA + xB) + zC =z xA + zxB + zC

 Figure 7. Wire function construction.



4.2. Operand Functions

A correct data-path representation models the limita-
tions placed on an operand existence at a specific location.
Towards this goal, our automata model constructs operands
functions. Anoperand function, F(W, opX), is defined as
the sum of communications which supply operandopX to
wire W. Since the availability of an operand is dependent
upon the state information, operand functions operate over
the set of variables in Eq. 2. Operands are supplied to the
source wire of a connection by either a memory element or
function unit.

F( W, OpX) = f( control vars, present state)  (2)
The availability of an operand from a memory unit is

constrained by the operand binding of the present state and
by potential control bits. Fig. 9a depicts the constraints for
an example memory access including control variables and
an abstract present state mapping function, PS( op1, RF1),
corresponding the operandop1 being bound in the device
RegFile1. A control field is required only for selecting
operands from register files. It is possible to constrict regis-
ter file access using network constraints defined previously.
However, this is not efficient since we do not care in what
order the operands are stored in register files. We therefore
simply list all values available in the register file. The con-
trol variables then select which operand to use instead of
which register. We must, however, limit thenumber of
such operands to that allowed by the register file.

The existence of an operand on a function unit’s output
port is constrained by a set of operand functions as well as
a set of control bits. Fig. 9b depicts how the data-path and
data-flow identify the wires and operands for constructing
the set of dependencies. Additionally, the required value of
the function unit control lines are specified.

A recursive construction technique is used to build a set
of operand functions for an arbitrary data-path and data-
flow. An example construction is depicted Fig. 10; for sim-
plicity, this example ignores any permutation of operands
to the function units. The construction uses an ordered tra-
versal of the data-flow graph, evaluating each node only
after its dependencies are analyzed (hence, op5 follows

 Figure 8. Network function construction.
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yAE + yxAE + yxBE
z xAF + zxBF + zCF

⇒
Wire functions:

W(E) =yA + yxA + yxB

W(F) =z xA + zxB + zC

Ensemble network function:
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 Figure 9. Example operand functions

F( C, op3) = zF( A, op1)F( B, op2)F( X, op1) =a1a0PS(op1,RF1)
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op3). For each node, an initial operand function is gener-
ated for each function unit capable of producing the cor-
responding operand. Then operand functions, identified
by the wire and operand pairs, are substituted to formulate
a function based solely upon memory access and control
bits. If an operand function must traverse a switching net-
work as in F(D,op2), the operand function is derived from
the network’s wire function. Eventually, the memory
access functions are replaced by the proper state encoding
and control bits.

4.3. Transform Relation

A transform relation, describing the relation between
present and next states, is systematically built from the set
of operand functions in a two step process. First, a set of
operand relations are constructed from the operand func-
tions. Each operand function pertaining to a memory
component’s input port identifies the storage of a particu-
lar operand in that device. Adding the corresponding next
state operand binding to these functions creates a relation
between the operand bindings of the present and next
state. Fig. 11 shows operand relations derived from the
operand functions of Fig. 10 using general next state
binding functions.

The second step uses Eq. 3 to combine the operand
relations into a general transform relation. The inner term
lists the set of operands which may be loaded in each
memory device. The product of the resulting terms lists
compatible operand relations for the set of memory input
ports. Fig. 11 shows resulting transform for the example
data-path.

Build op3 functions:

F( E, op3) = yF( C, op1)F( D, op2)

W( D) = xA + xB ⇒ F( D, op2) =xF( A, op2) + xF( B, op2)

F( E, op3) = yF( C, op1)(xF( A, op2) + xF( B, op2))

Build op5 functions:

F( H, op5) = zF( E, op3)F( G, op4)

F( H, op5) = zyF( C, op1)(xF( A, op2) + xF( B, op2)) F( G, op4)
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 Figure 10. Example data-path and data-flow
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 Figure 11. Construction of transform relation.

Operand relations:

R( E, op3) = yF( C, op1)(xF( A, op2) + xF( B, op2))NS( op3, RF2)

R( H, op5) = zyF( C, op1)(xF( A, op2) + xF( B, op2)) F( G, op4)NS( op5, RF1)

Transform relations:

zyF( C, op1)(xF( A, op2) + xF( B, op2)) F( G, op4)NS( op3, RF2)NS( op5, RF1) +

zyF( C, op1)(xF( A, op2) + xF( B, op2))NS( op3, RF2)



 (3)

A number of additional constraints may be added to the
general transform relation. Specifically, control encoding
constraints may be formulated as a Boolean function. The
product of the transform relation and this Boolean function
identifies the set of permissible communications.

5. Applications
The model’s capacity for symbolic execution is utilized

to construct a number of data-path specific applications.
Initially a tool to generate a comprehensive list of the set
of simultaneously feasible connections was developed.
This tool was then expanded to create a data-path con-
strained scheduler and a schedule feasibility checker (veri-
fier). Through their symbolic execution of the data-path,
both applications preform binding for both function and
memory units.

 These applications use the transform relations devel-
oped in Section 4.3 to define the data-path activity. This
technique constructs the set of the next states using an
image relation as in [14]. Because the size of the general
transform relation can grow very large, we construct the
transform dynamically. Since the transform is constructed
by relations based on operands, we partition operands into
those that are obtainable and those that are unobtainable
based on the operands in the current set of states. Con-
structing the transform relation from the set of active oper-
and relations drastically reduces the relation size.

Fig. 12 depicts how the wire labels, control variables,
and state information are combined for our applications.
The connection and switching requirements are repre-
sented using a common set of switching bits and an
encoded source field for each of thek destination wires.
The present and next state fields list the content of memory
components. Each of thel latches specifies the operand
that it stores, and each of them register files specifies the
subset of then operands that are present. The encoding of
latch operands require less space since they can utilize
binary encoding to identify an operand, while registers use
one-hot encoding which aids the representation of arbi-
trary subsets.

Finally, this model shows promise in the field of engi-
neering change. Specifically, we are interested in analyz-
ing the effects that small changes in the data-flow or data-
path has on prescheduled algorithms on existing machines.
Changing the timing constraints on an external signal or
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 Figure 12. Data-path Boolean encoding template
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deleting a previously existing wire are two examples of
changes an engineer might face. Our model can incorpo-
rate the existing algorithm, including all binding informa-
tion and then rapidly perform local rescheduling.

5.1. Feasible-Path Generation

The feasible-path tool was built to construct the wire
functions and the ensemble network function of a data-
path. The tool utilized the techniques discussed in
Section 4.1 to build an OBDD function. The function rep-
resents a set of terms, where each term is a unique, legal
set of communications.

Table 1 lists the cost for representing the detailed
data-path infrastructure of three data-path models. All
three models were based on existing commercial data-
paths: Texas Instruments TMS32010 DSP processor,
Texas Instrument’s 74888 and Intel’s 8085. Fig. 13 shows
the data-path model of the TMS32010 using the base
components described in Section 3. The number of legal
configurations are listed (“# terms”) as well as the num-
ber of BDD nodes required to represent the network func-
tion (“# nodes”). The smaller size of the TMS32010 and
74888 designs are due to our ability to isolate the data-
path from the control-path.

5.2. Scheduling

 The scheduler explores the state space linking a spec-
ified initial and final state. These states are specified by an
initial and final binding of operands to memory elements.
Using the automata model, the state space is explored
cycle by cycle until a state equivalent to the final state is

latch p

Register
File

ALU

ACC

latch t
data
bus

 Figure 13. TMS32010 based data-path model
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TABLE 1. Representation size

# terms # nodes

TMS32010 80 79

7488 96 48

8085 608 579



5.3. Feasible Schedule Verification

Another application is to verify the feasibility of a
schedule for a given data-path. This application investi-
gates the binding freedom for memory and function units
by symbolically executing the automata model for a given
sequence of operations. The feasibility of a schedule is
verified by the successful automaton execution subject to
data-flow and data-path constraints.

The CPU execution times of the scheduler and verifier
are listed in the final columns of Table 2. Although the two
bus data-path is more complicated, its increased data-path
activity enables our heuristic to identify productive sched-
ules more efficiently. As expected, the smaller search
space of the verifier leads to faster execution.

6. Conclusion
We present an automata model which concisely cap-

tures the constraints imposed by a data-path. A process for
expressing data-paths in terms of the base components is
presented and techniques for systematic translation of such
specifications into Boolean functions are described. The
benefits of this representation are demonstrated by apply-
ing the automata model to a commercial DSP micropro-
cessor. Future work will expand the model to support
variable-width bus structures and multiphase clocking
schemes.
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generated. Finally, the history of intermediate states is
parsed to identify the set of schedules and memory bindings
which generated the solution.

This scheduler explores many options not implemented
in traditional techniques. Multiple operation binding is
allowed to accommodate problems which require the oper-
and recomputation as seen in Fig. 2. Additionally, operands
are permitted multiple memory bindings to increase their
availability. Support for multiple register files is inherent in
the scheduling model. Finally, an arbitrary mapping
between operations and function units is permitted, allow-
ing function units to support multiple operations.

A variety of pruning techniques can be employed to
reduce the number of states. For large problems, the num-
ber of states can grow rapidly and critically effect CPU
requirements of the program. A useful pruning technique is
to maintain a list of previously traversed states and only
propagate unencountered states on each cycle. Addition-
ally, heuristics can be employed to reduce the number of
states. For example, a greedy technique can identify the
most active schedules. At each step, only those states which
created the maximum number of operands are preserved.

Table 2 lists the results for scheduling thedifferential
equation andelliptic wave filter benchmarks. The bench-
marks were scheduled on two data-paths. The first, based
on the TMS32010, is depicted in Fig. 13. Then, an
expanded version of the first data-path was constructed to
explore the improved performance resulting from an addi-
tional global bus. The posted register constraints corre-
spond to the size of the register file. Two values are listed:
the first assumes constants are stored in a coefficient ROM
and the second, in parentheses, assumes that both operands
and constants use the register file. The benchmarks only
benefit from a relaxed register constraint on the two-bus
data-path. Schedule execution times are indicated in the
column “# cycles.” The data-path-constrained results gen-
erated by our system (“automata”) are compared to results
of exact scheduling techniques (e.g., [7][13], “exact”).
These exact execution times correspond to the same func-
tional unit constraints, but with global bus structure and no
latches in data-path. A comparison of these values under-
scores the dramatic effects that the data-path constraints of
a commercial microprocessor have on the execution time.

a. assumes no bus constraints. ewf(2 bus) = 34 and diff_eq(2 bus) = 11 cycles.

TABLE 2. Application results

bus #
register

constraint

# cycles run time (sec/cycle)

automata exacta schedule verify

elliptic wave

 filter

1 9 (17) 54

27

61.0 14.6

2
8 (16) 42 18.7 1.0

9 (17) 40 33.5 0.8

differential

 equation

1 4 (8) 20

7

26.7 1.0

2
4 (8) 15 9.6 0.3

5 (9) 14 11.6 0.3
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