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Abstract - This paper reviews the step-response

of the semi-in�nite distributed RC line and focuses

mainly on the step-response of a �nite-length RC line

with a capacitive load termination, which is the most

common model for a wire inside the present day inte-

grated CMOS chips. In particular, we obtain the val-

ues of some of the common threshold-crossing times

at the output of such a line and show that even

the simplest �rst order lumped �-approximation to

the �nite-length RC line terminated with a capacitive

load is good enough for obtaining the 50% and 63.2%

threshold-crossing times of the step-response. Higher

order lumped approximations are necessary for more

accurate predictions of the 10% and 90% threshold-

crossing times.

1 Introduction

The distributed RC line is used to model a wire inside present
day integrated CMOS chips. Consider a distributed RC line as
shown in Figure 1. The underlying partial di�erential equation
(PDE) capturing the behavior of such a line is the well-known
di�usion equation of the form

rc
@v

@t
=

@2v

@x2
(1)

where r and c are the uniform resistance and capacitance per
unit length of the line and v(x; t) is the voltage and position
x along the line and at time t. The current i(x; t) at position
x along the line and at time t also satis�es the same PDE (1)
above and is related to the voltage v(x; t) as follows:

i = �1
r

@v

@x
(2)

The PDE (1) can be solved in the time-domain under some
special initial and boundary conditions. For example, consider
the semi-in�nite line starting at x = 0 and extending to 1 on
the right as shown in Figure 1(a). The typical initial and
boundary conditions of interest in this case are:

BC1 : v(0; t) = vin(t) for all t > 0 (3)

BC2 : v(1; t) = 0 for all t > 0 (4)

IC : v(x; 0) = 0 for all x > 0 (5)

x = 0

v  (t)in v(x,t)

i(x,t)

i(x,t)

++

--

x

(a)  Semi-infinite Distributed RC Line
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x = L

(b)  Finite Distributed RC Line

Figure 1: The Distributed RC Line

For the �nite line of length L as shown in Figure 1(b), the
�rst boundary condition BC1 and the initial condition IC (for
0 < x < L) above usually apply, while the second boundary
condition BC2 is altered to capture the e�ect of the Load ap-
plied at the end of the line x = L. Under the special case of an
open-ended �nite-line, the current at the end of the line should
be zero, i.e., i(L; t) = 0 for all time t > 0 which on using (2)
results in:

BC3 :
@v

@x
(L; t) = 0 for all t > 0 (6)

Over the past several years, several authors [1-3,5-10] have
solved (either completely, or approximately) the open-ended
�nite distributed RC line under unit-step excitation, i.e., they
have obtained solutions v(x; t) that solve the PDE (1) under
BC1, BC3, and IC above, with vin(t) = u(t), where u(t) is the
unit-step function which is 1 for t > 0 and 0 for t < 0. A fairly
detailed review of previous results is given in [1]. However, in
[1], the authors incorrectly claim that

v(x; t) = erfc(x
q

rc

4t
) (7)

solves the open-ended �nite distributed RC line under unit-
step excitation, where the complementary error-function is de-
�ned to be

erfc(z) = 1� 2p
�

Z z

0

e
�y2

dy (8)

Clearly, v(x; t) given by (7) solves the PDE (1) and satis�es
BC1 and IC above but does not satisfy BC3 above. In fact it
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satis�es BC2 above and is therefore the solution of the semi-
in�nite line under unit-step excitation. Setting x = L in (7)
we get

v(L; t) = erfc(

r
RC

4t
) (9)

where R = rL and C = cL are the total resistance and capac-
itance of a line of length L. The authors of [1] had used (9)
to predict rather large values of the various threshold crossing
times of an open-ended RC line of length L, and it was this
error that primarily motivated the present work. The authors
of [1] realized that the error was due to incorrect cancellations
in their analysis of reections for the open-ended case [12], and
their corrected results will appear in a future publication [10].
The rest of this paper is organized as follows. In Section

2, we will consider the semi-in�nite RC line and in Section
3, the �nite RC line terminated at x = L by a general load.
We will use Laplace transforms to carry out the analysis in
both cases. Special cases when the input excitation is a unit-
step and load is an open-circuit and when the load is a pure
(lumped) capacitance will be considered in Sections 3.1 and
3.2, respectively. In Section 4, we will present some results,
focusing mainly on Section 3.2. Finally, Section 5 concludes
this paper.

2 The Semi-In�nite RC Line

Consider the semi-in�nite Distributed RC line shown in Figure
1(a), uniform resistance per unit length r, uniform capacitance
per unit length c, and whose voltage v(x; t) and current i(x; t)
satisfy the di�usion equation (1), and v(x; t) satis�es BC1,
BC2, and IC given by (3), (4), and (5), respectively. De�ne
the Laplace transform of the voltage function to be

V (x; s) =

Z 1
0

v(x; t) est dt (10)

where s is the complex frequency variable. Taking the Laplace
transform of (1) and applying the initial condition IC given by
(5) results in

@2V

@x2
(x;s) = rcsV (x; s) (11)

solving which gives the general solution in the Laplace trans-
form domain to be

V (x; s) = A(s)ex
p
rcs +B(s)e�x

p
rcs (12)

where A(s) and B(s) are independent of x and have to deter-
mined from the boundary conditions. Let Vin(s) denote the
Laplace transform of the input excitation vin(t). Note that
BC2 given by (4) implies that V (x; s) ! 0 as x ! 1 for
all s; hence, A(s) = 0. Moreover, BC1 given by (3) implies
V (0; s) = Vin(s); hence, B(s) = Vin(s). Therefore,

V (x; s) = Vin(s)e
�x
p
rcs (13)

If we now invert the above transform, we can obtain the time-
domain response for v(x; t). To this end consider the Laplace
transform pair [4]:

1

2
p
�t3

e
� 1

4t  ! e
�
p
s (14)

Using Frequency scaling property of Laplace transforms we get

x
p
rc

2
p
�t3

e
� x2rc

4t  ! e
�x
p
rcs (15)

Therefore, v(x; t) is the convolution of the above time-function
with the input excitation vin(t) resulting in the general solu-
tion to the semi-in�nite Distributed RC line as

v(x; t) =

Z t

0

vin(t� �)
x
p
rc

2
p
��3

e
�x2rc

4� d� (16)

In general, the above convolution may be hard to evaluate.
But under the special case of unit-step excitation, we have
vin(t) = u(t) which results in

v(x; t) =

Z t

0

x
p
rc

2
p
��3

e
� x2rc

4� d� (17)

Using the variable substitution � = x
p
rc=4� in (17) we get

v(x; t) = erfc(x
q

rc

4t
) (18)

as the unit-step voltage response of the semi-in�nite RC line
at any position x > 0 and time t > 0. One can easily verify
that (18) solves the PDE (1) and satis�es all three conditions
(3), (4), and (5) for the unit-step excitation.

3 The Finite RC Line

Now consider the �nite Distributed RC line of length L as
shown in Figure 1(b). Let I(x;s) denote the Laplace trans-
form of the current function i(x; t) of the line. In the case
of a general load at x = L, the boundary condition is best
expressed in the Laplace transform domain as

BC4 :
I(L; s)

V (L; s)
= YL(s) (19)

where YL(s) represents the admittance of the general load.
Note that if the line is open at x = L, then YL(s) = 0 (or
i(L; t) = 0 for all t > 0), while if the the line is terminated by
a lumped capacitor CL then YL(s) = sCL which will be the
two special cases considered later. Since our domain of interest
is only 0 � x � L, we will restrict the initial condition to this
domain and re-express the IC as

IC : v(x; 0) = 0 for all 0 < x � L (20)

Note that we have purposely omitted x = 0 from the IC above
so that we can handle cases when the input excitation vin(t)
has a discontinuity at t = 0 (e.g, the unit step function u(t)).
For now, we are looking for solutions v(x; t) and i(x; t)

that satisfy (1) and (2), such that the voltage v(x; t) satis�es
BC1 given by (3) and IC given by (20) and the corresponding
Laplace transforms satisfy BC4 given by (19). Our approach
to a time-domain solution here is to �nd a general expression
for V (x;s) that satis�es BC1, IC, and BC4. We will then in-
vert the transform under special cases. To this end, note that

V (x; s) = A(s)ex
p
rcs +B(s)e�x

p
rcs (21)
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is the general solution of the Laplace transform of the PDE
(1) as in Section 2. Taking the Laplace transform of (2) we
get

I(x;s) =
q

sc

r
(B(s)e�x

p
rcs �A(s)ex

p
rcs) (22)

Now, BC1 forces V (0; s) = A(s) + B(s) = Vin(s), and BC4
gives r

sC

R

(B(s)e�
p
sRC � A(s)e

p
sRC)

(B(s)e�
p
sRC + A(s)e

p
sRC)

= YL(s) (23)

where R = rL and C = cL are the total resistance and ca-
pacitance of the line. Solving for A(s) and B(s) and plugging
these back into (21) and simplifying gives

V (x;s) = Vin(s)
N(s)

D(s)
(24)

where

N(s) =

r
sC

R
cosh((1� x=L)

p
sRC)

+ YL(s) sinh((1� x=L)
p
sRC)

D(s) =

r
sC

R
cosh(

p
sRC) + YL(s) sinh(

p
sRC)

Equation (24) is about the extent to which we can remain in
the frequency domain. A similar result appears in [9]. To
invert the transform, we need to consider speci�c input exci-
tations Vin(s) and loads YL(s). Two examples are presented
in the following sub-sections.

3.1 The Open-Ended Finite RC Line

Suppose vin(t) = u(t) and the terminating load is an open-
circuit, i.e., i(L; t) = 0 for all t > 0. Then,

Vin(s) =
1

s
and YL(s) = 0 (25)

Applying (25) to (24) we get

V (x; s) =
1

s

cosh((1� x=L)
p
sRC)

cosh(
p
sRC)

(26)

The above Laplace transform has a simple pole at s0 = 0 and
an in�nite number of simple poles (roots of cosh(

p
sRC) = 0)

at sk = �pk=(RC) for each integer k � 1, where

pk =
(2k � 1)2�2

4
for each k � 1 (27)

The residues corresponding to each of these poles are �0 = 1
and

�k(x) =
�4 cos((1� x=L)(2k � 1)�=2)

(2k � 1)� sin((2k � 1)�=2)
for each k � 1 (28)

Hence, the time-domain solution is

v(x; t) = 1 +

1X
k=1

�k(x)e
skt (29)

which on simplifying (i.e., using sin((2k � 1)�=2) = (�1)k+1
for each integer k � 1 and other manipulations) results in

v(x; t) = 1�
1X
k=1

4 sin((k � 1=2)�x=L)

(2k � 1)�
e�

(2k�1)2�2t
4RC (30)

which is the complete solution to the unit-step response of the
open-ended �nite RC Line at any position 0 � x � L and any
time t > 0. At x = 0 we have each term in the series vanishing
resulting in v(0; t) = 1 for all time t > 0 and this veri�es BC1
under the unit-step excitation. To get an expression for the
current through the line, we use (2) and (30) to get

i(x; t) =
2

R

1X
k=1

cos((k � 1=2)�x=L)e�
(2k�1)2�2t

4RC (31)

Plugging in x = L above gives i(L; t) = 0 for all time t > 0
because cos((k�1=2)�) = 0 for all integers k � 1. This veri�es
the second boundary condition since the line is open-ended.
Finally, the IC (20) is veri�ed by noting that

v(x; 0) = 1�
1X
k=1

4

(2k� 1)�
sin((k� 1=2)�x=L) (32)

But the in�nite series in (32) is simply the Fourier series of a
periodic function in x with period 4L with value 1 for 0 < x <

2L and value �1 for 2L < x < 4L. Hence, v(x; 0) = 0 for all
0 < x � L, thus verifying the IC.
The output voltage at the end of the line is obtained by

substituting x = L in (30) and one obtains the expression
derived by other authors such as [5]. If one takes only the
�rst two terms of the in�nite series in this case, the expression
reduces to the one derived in [7].
An alternate approach followed by [6,9] is to invert the

Laplace transform (26) di�erently. In this case we expand

1

cosh(
p
sRC)

= 2

1X
n=0

(�1)ne�(2n+1)
p
sRC (33)

Therefore (26) can be re-written as

V (x;s) =

1X
n=0

(�1)n
s

(e�(2n+x=L)
p
sRC + e

�(2n+2�x=L)
p
sRC)

(34)
The above expression can be inverted by using the Laplace
transform-pair (15) and convolution as in Section 2, to get

v(x; t) =

1X
n=0

(�1)n
(
erfc((2n+ x=L)

r
RC

4t
)

+ erfc((2n+ 2� x=L)

r
RC

4t
)

)
(35)

It can be veri�ed (by evaluating through a computer program)
that the two equations (30) and (35) result in identical values
for the same x and t. The only di�erence is that the series in
(30) converges faster for large values of t > 0 while the series
in (35) converges faster for small values of t > 0. Choosing
a threshold value of � = 10�20 in deciding convergence, and
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Table 1: The �rst 10 positive roots pk of (39) versus a = CL=C

k a = 0:0 a = 0:5 a = 1:0 a = 5:0 a = 10:0
1 2.4674 1.1597 0.7402 0.1874 0.0968
2 22.2066 13.2758 11.7349 10.2652 10.0685
3 61.6850 43.2745 41.4388 39.8773 39.6782
4 120.9027 92.7284 90.8082 89.2259 89.0263
5 199.8595 161.8569 159.9033 158.3134 158.1136
6 298.5555 250.7032 248.7334 247.1399 246.9401
7 416.9908 359.2800 357.3011 355.7056 355.5057
8 555.1652 487.5916 485.6072 484.0105 483.8106
9 713.0789 635.6401 633.6520 632.0546 631.8547
10 890.7318 803.4264 801.4359 799.8379 799.6379

working with double precision, at most 4 terms are needed for
convergence using the series in (30) for t > 0:4RC while at
most 4 terms are needed for convergence using the series in
(35) for t < 0:4RC. One can then use this rule to pick the
appropriate series to evaluate the time-domain solution v(x; t)
for the open-ended �nite RC line.

3.2 The RC Line Terminated by a Capacitance

Suppose vin(t) = u(t) and the terminating load is a pure ca-
pacitance CL. Then,

Vin(s) =
1

s
and YL(s) = sCL (36)

Applying (36) to (24) we get

V (x; s) =
1

s

N(s)

D(s)
(37)

where

N(s) = cosh((1�x=L)
p
sRC)+a

p
sRC sinh((1�x=L)

p
sRC)

D(s) = cosh(
p
sRC) + a

p
sRC sinh(

p
sRC)

and

a =
CL

C
(38)

is the ratio of the load capacitance to the total capacitance of
the line. This real parameter a � 0 will play a major role in
determining the time-domain solution v(x; t). In particular,
note that the above Laplace transform has a simple pole at
s0 = 0 and an in�nite number of simple poles (roots of D(s) =
0) at sk = �pk=(RC) for each integer k � 1, where pk is the
k-th positive root of the following transcendental equation in a
real variable y

cos(
p
y)� a

p
y sin(

p
y) = 0 (39)

For a given value of the real parameter a, the above equation
will have in�nite positive roots with the k-th positive root pk
lying between (k � 1)2�2 and (k � 1=2)2�2 for each integer
k � 1, and can be found by applying say the Newton-Raphson
technique. To start the Newton-Raphson iterations, one can
pick y0 = 2=(2a + 1) for k = 1, or y0 = (k � 1)2�2 + 2=a for
k > 1, and the iterations usually converge to pk within 4 or 5

iterations. Table 1 provides the �rst 10 positive roots for a few
values of a � 0. Note that a = 0 corresponds to CL = 0 which
means that the load is an open-circuit; hence, the values of pk
correspond to Equation (27) in Section 3.1.

The residues corresponding to each of these poles are �0 = 1
and

�k(x) =
2(a
p
pk sin((1� x=L)

p
pk)� cos((1� x=L)

p
pk))p

pk((1 + a) sin(
p
pk) + a

p
pk cos(

p
pk))

(40)
for each integer k � 1. Hence, the time-domain solution is

v(x; t) = 1 +

1X
k=1

�k(x)e
�
pkt

RC (41)

Note that at x = 0, the residues given by (40) evaluate to 0
since pk solves (39) for each k � 1. Hence v(0; t) = 1 which
satis�es BC1 for the unit-step excitation. At the end of the
line, x = L, the residues become

�k(L) =
�2p

pk((1 + a) sin(
p
pk) + a

p
pk cos(

p
pk))

(42)

for each integer k � 1. resulting in

v(L; t) = 1�
1X
k=1

2 e�
pkt

RC

p
pk((1 + a) sin(

p
pk) + a

p
pk cos(

p
pk))

(43)
which is the solution for the voltage at the end of the line. The
fact that this solution satis�es the second boundary condition

CL
@v

@t
(L; t) = �1

r

@v

@x
(L; t) (44)

can be easily veri�ed. For a given a > 0 and 0 < x < L,
the series in (41) converges fairly quickly for large values of
t but very slowly for small values of t approaching 0. Due
to the �nite precision of the computer one gets into numerical
convergence problems for extremely small values of t. However,
if a su�ciently large number of terms is evaluated in the series,
and double precision is used, then one can see that the values of
v(x; t) become smaller and smaller as the value of t approaches
0, thereby, verifying the IC.
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Table 2: A comparison of threshold-crossing times

50% crossing times 63.2% crossing times
a = CL=C Dist. �2 �1 Dist. �2 �1

0.0 0.379 RC 0.375 RC 0.347 RC 0.503 RC 0.507 RC 0.500 RC
0.5 0.739 RC 0.732 RC 0.693 RC 1.004 RC 1.007 RC 1.000 RC
1.0 1.089 RC 1.079 RC 1.040 RC 1.503 RC 1.505 RC 1.500 RC
5.0 3.863 RC 3.851 RC 3.812 RC 5.501 RC 5.501 RC 5.500 RC
10.0 7.329 RC 7.317 RC 7.278 RC 10.501 RC 10.501 RC 10.500 RC

10% crossing times 90% crossing times
a = CL=C Dist. �2 �1 Dist. �2 �1

0.0 0.130 RC 0.101 RC 0.053 RC 1.031 RC 1.063 RC 1.151 RC
0.5 0.220 RC 0.183 RC 0.105 RC 2.127 RC 2.173 RC 2.303 RC
1.0 0.287 RC 0.249 RC 0.158 RC 3.263 RC 3.312 RC 3.454 RC
5.0 0.726 RC 0.690 RC 0.579 RC 12.454 RC 12.507 RC 12.664 RC
10.0 1.254 RC 1.217 RC 1.106 RC 23.963 RC 24.017 RC 24.177 RC

4 Results

We now present some results on unit-step response of the �-
nite RC line of length L, with total resistance R = rL, to-
tal capacitance C = cL, and terminated with a load capaci-
tance CL = aC as studied in Section 3.2. Note that the case
a = 0:0 corresponds to an open-ended line studied in Sec-
tion 3.1. Consider the distributed RC line as shown in Figure
2(a). The simplest lumped approximation to the distributed
RC line is to use a �rst-order �1 approximation by modeling
the line as a lumped resistor R between the input and output
node and a lumped capacitance of C=2 from either node to
ground as shown in Figure 2(b). We also consider a second-
order �2 approximation as shown in Figure 2(c), wherein the
RC line is split into two halves, and each half is approximated
by a �rst-order �1 approximation. Similarly, one can think of
higher-order lumped �n approximations by splitting the RC
line into n pieces and replacing each piece by a �rst-order �1

approximation. The waveforms at the output node in all three
cases under unit-step input excitation are shown in Figures
3, 4, and 5, for di�erent capacitive loads, namely, a = 0:0
(the open-ended line), a = 1:0, and a = 10:0, respectively. In
each case, the solid line gives the waveform of the distributed
line obtained using Equation (43) for v(L; t) (with the pk's
computed using the Newton Raphson technique discussed in
Section 3.2 for Equation (39)). The dotted line is the output
waveform of the �rst-order �1 network of Figure 2(b) given by

v�;1(t) = 1� e
� t
RC(0:5+a) (45)

Note that the lumped capacitance of C=2 at the source-end of
this network plays no role in this response since the input is an
ideal unit-step and we have considered no source impedance in
this analysis. The dashed line is the output waveform of the
second-order �2 network of Figure 2(c) given by

v�;2(t) = 1 +
�2

�1 � �2
e
�
�1t
RC � �1

�1 � �2
e
�
�2t
RC (46)

where �1 and �2 are the eigenvalues of the second-order system
given by

�1 =
�8(2a+ 1) + 4

p
(4a+ 1)2 + 1

4a+ 1
(47)

�2 =
�8(2a+ 1)� 4

p
(4a+ 1)2 + 1

4a+ 1
(48)

Once again, note that the lumped capacitance of C=4 at the
source-end of this network has no e�ect on the response since
the source impedance is ignored.
It is clear from these plots, that the �2 network is better

than the �1 network. Moreover, these approximations get bet-
ter and better for larger loads, i.e., for larger values of a. Note
that for a = 10, all three waveforms are almost identical. In
Table 2, we present some common threshold-crossing times of
the output waveforms of the distributed RC line (Equation
(43)), the second-order �2 network (Equation (46)), and the
�rst-order �1 network (Equation (45)), for di�erent values of
the capacitive load controlled by the parameter a. From these
tables, it is clear that the 63.2% crossing times of all three
waveforms are almost identical and the error in the 50% cross-
ing times is less than 9%. The �1 network over-estimates the
90% crossing time by less than 12% but under-estimates the
10% crossing time by as much as 60% as in the a = 0:0 (open-
ended line) case. The �2 network, on the other hand, under-
estimates the 10% crossing time by less than 22%. In any case,
the errors in the threshold crossing times between the approx-
imations and the distributed network reduces as the load CL

is increased. Finally, note that errors in the threshold-crossing
times (in particular the 10% crossing time) will reduce further
as higher-order lumped approximations (such as the lumped
�n approximations for n � 3) are used to approximate the
distributed RC line. In such cases one can use a tool such
as RICE [11] to solve the lumped network and compute the
required threshold crossing times.

5 Conclusions

This paper presents the exact analysis of a distributed RC line.
Both the semi-in�nite length line and the �nite length line ter-
minated by an arbitrary load are studied in the Laplace trans-
form domain. To get the results back in the time-domain, the
input excitation is assumed to be the unit-step function and
the terminating load is assumed to be a pure capacitance which
is typical in present day CMOS VLSI chips. While a closed

5



form expression (in terms of the complementary error func-
tion) exists for the voltage at any point x on the semi-in�nite
line, the solution in the �nite-length line (with capacitive load)
case is an in�nite series whose terms diminish in value. It is
shown that the simplest �rst-order lumped �-approximation of
the distributed line is su�cient for predicting 50% and 63.2%
delays fairly accurately. For 10% and 90% higher order approx-
imations are needed. Moreover, the errors in the the lumped
circuit approximations reduce signi�cantly as the capacitive
load increases.
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Figure 2: The RC Line Terminated by a Capacitive Load
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Figure 3: The Unit Step Response of the Open-Ended RC Line
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Figure 4: The Unit Step Response of the RC Line Terminated
with CL = C

0

0.2

0.4

0.6

0.8

1

Voltage

t / RC
0 5 10 15 20 25 30

...
....

...
....

....
....

....
.....

.....
.......

.......
. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. .

.. . .. . .. . .. . .. . .. . .. . .

. . . . . . . .
a = 10.0

1st Order
2nd Order
Distributed

Figure 5: The Unit Step Response of the RC Line Terminated
with CL = 10C
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