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Abstract  This paper presents a symbolic method to detect
short and open circuit faults in switch-level networks.
Detection and fault sensitization vector determination are
possible since the behavior of each node is described by a set of
two functions: the on-set and the off-set functions. Their
analyses provide designers with an efficient tool for circuit
verification and test pattern generation.

I. INTRODUCTION

Design verification and test pattern generation must cover
realistic faults originating in either mistakes made during
schematic or layout design, or physical defects during IC
fabrication.

Most faults consist of unwanted or missing connections
between layers [1,2], creating false short or open circuits that
are not always easily mapped onto stuck-at faults at gate-
level [1].

On the contrary, these bridging and line open faults can be
adequately represented at transistor level; consequently
corresponding switch-level networks are considered for
analysis and verification.

Several authors have considered switch-level circuits for
verification and test pattern generation. Cerny and Gecsei
[3], and Bryant [4,5,6] describe logic level circuit simulators
that use symbolic MOS circuit analysis to obtain a set of
Boolean expressions that simplify the simulation procedure
and subsequent circuit analysis. In either case, symbolic
information is maintained as ordered binary decision
diagrams (OBDDs) [7], because of their properties in both
function evaluation and comparison. Consequently, in the
COSMOS symbolic simulator [6], a three-valued logic
(0,1,X) can be combined with Boolean variables to produce

results for both verification and test pattern generation
purposes. Similar approaches are used in [8] and [9] for
verification and test vector generation, respectively,
considering only stuck-at faults.

Due to the difficulty involved in accurately representing
CMOS failure modes for stuck-at-1/0 models,  bridging and
stuck-on/open faults should be considered instead.
Especially, if bridging and transistor stuck-on faults may
account for as much as 90% [1] of the realistic faults in
present day digital CMOS processes.

Therefore, this paper aims to present a new simulation-
based symbolic method to detect these switch-level faults and
to provide a means of automatically generating test patterns
that sensitize symbolically-detected faults.

Bridging and transistor stuck-on faults must be physically
detected by IDDQ testing techniques [1,10,11], while
sensitized by appropriate stimulus. As many of they result in
nodes connected to both power voltage supply and ground
terminals by low resistance paths, they are also referred to as
short-circuit faults.

Open circuit faults can be detected by applying an
initializing input vector prior to a sensitization vector, whose
corresponding output is the opposite of the first vector. If
there is no change in the output value after supplying the
second vector, unwanted memorization occurs, revealing the
presence of a fault.

After review of some definitions and notations used in this
text, the theoretical basis of the method is explained. In the
following sections, the symbolic simulation procedure and
transistor models used to derive the Boolean behavior of
circuits are described, and their analyses considered. Results
and relevance of this work are discussed in the concluding
section.

II. DEFINITIONS AND NOTATIONS

This section is devoted to define some of the terms that
will be used later on in the paper.
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A literal is a Boolean variable, xk, or its negation, x'k. And
is usually referred to in lower case letters.

A Boolean expression, F, is a combination of Boolean
operators and literals.

A switching function is defined as an application of the
form

{ }f B Bn: ,→ =    0 1 (1)

that has a non-unique representation as a Boolean
expression. Note that switching functions can also be
canonically represented by ordered binary decision diagrams
(OBDDs).

The Boolean quotient of f with respect to a product term t
is the function formed from f by imposing the constraint t=1.
In particular, for a given variable xi in x,  f(x)/xi satisfies
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An activation term, Ti,j , is a Boolean expression that turns
on an ideal switch whose source and drain nodes are i and j.

Let Ρ = (n0,d0,n1,d1, ..., nk-1,dk-1,nk) be a path in a
network, where ni are nodes and di are connecting devices.
Then, the Boolean representation of the conducting link
between the two terminal nodes in the path, n0 and nk, is the
product of all the device activation terms,
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The on-set of a node is the set of paths driving it to a
constant logic value one, that is, a node with a universal on-
set,

on -set ( n ) :   |  j N P Nj
on

i j i
on= =→ 1n s (4)

and the off-set of a node is the set of paths leading it to
zero (a node containing an universal off-set),

off -set (  n ) :   |  j N P Nj
off
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Both sets can be considered as a representation of a unique
function, and thus denoted  f 1(x) and f 0(x) as the on and off-
set functions, respectively.
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Therefore, the function implemented on one node is a set
of two functions:

f x f x f xj j j( ) ( ), ( )= 1 0 e j (8)

A complementary logic function f(x) will fulfill the
following property,

f x f x1 0( ) ( )= (9)

There can be two erroneous cases for this type of
functions, denoted as the short-circuit and the open-circuit
(or memorization) states. Such conditions can be calculated
as,

f x f x f xs( ) ( ) · ( )= 1 0 (10)

f x f x f xz( ) ( ) · ( )= 1 0 (11)

Equations (10) and (11) correspond to short-circuit and
open-circuit function calculations. If either of these functions
is not null, the originating function f is considered non-
complementary and therefore, faulty.

III. SYMBOLIC FAULT PROPAGATION

Switch level circuit faults can be classified into two main
categories: open and short circuit faults. The latter have
proven more likely to occur in a fabricated chip.

This section analyzes how these faults can be symbolically
propagated through a network of switches and detected at
the output. To this end, we shall first consider some
properties of the functions of the form depicted in (8).

A correct, complementary logic circuit can be modeled as
a complementary switching function, g(x), such that

g x g x1 0( ) ( )⇔ , (12)

and consequently,

g x g x1 0 0( ) · ( ) = (13)

The former equation is still valid when a literal is
withdrawn from both function representations. More
formally, the following lemmata can be stated and proven.

Lemma 1. If g(x) is the complementary function that
characterizes a given switch network G, and xi one of its
input variables taken from x, then the Boolean quotient of
g(x) with respect to xi or x'i is also a complementary
function.

Proof. This lemma implies, as seen in the deduction of
(13) from (12), that

g x g xx xi i
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and
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By Boole's expansion theorem of both terms in (13), we
obtain

x g g x g gi x x i x xi i i i
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which implies that both terms must be zero

x g gi x xi i/ /·1 0 0e j = (17)

x g gi x xi i/ /
·1 0 0F

H
I
K = (18)

Given that xi and x'i are not present in the product of
quotients in (17) and (18), respectively, they must be zero
regardless of the multiplying literal. Therefore, (14) and (15)
are true. q

Lemma 2. A variable, xi, is redundant in a
complementary function f(x) |  xi ∈ x, if and only if the
Boolean derivative of f(x) with respect to xi is zero.

Proof.  Here, we recall the definition of the Boolean
derivative of a Boolean function  f  from [12], defined as,
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As complementary functions are represented by a set of
two functions that follow (9), the former equation can be
extended to,
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which corresponds to the normal expansion of the
exclusive-or operation with function negations substituted by
off-set functions.

On the other hand, if xi is a redundant variable in the
expression of f, then

f x f xx xi i
( ) ( )→ →=1 0 (21)

which can also be expressed as

f x f xx xi i
( ) ( )/ /

= (22)

The former identity implies that

f x f xx xi i
( ) ( )/ /

⊕ = 0 (23)

which is the same as stating that the Boolean derivative of
f with respect to xi  is zero. q

Corollary 1. The influence of a Boolean variable xi on a
node np is determined by the Boolean derivative of the node
related function fp(x) with respect to xi. In particular, if xi is
redundant, its influence is null.

Corollary 2. The Boolean derivative of fp(x) with respect
to xi corresponds to the set of all possible sensitization paths
from node ni to node np.

In this case, node ni is represented by the following set of
functions,

f x f x f xi i i i i( ) ,= = =1 0 d i (24)

The former corollaries imply that the relation between two
nodes is given by the Boolean derivative of the ending node
function with respect to the starting one.

Short and open circuit faults are detected by inspecting the
expressions resulting from (10) and (11). This examination
requires calculating  f  s and f  z for each node in a network. A
closer look at the problem shows that a simple inspection of
the output nodes is sufficient in most circuit realizations.

Theorem 1. Let H be a network of switches with a set of
input nodes N= (n0,n1,...,nm-1) and an output node nz. And
let h be the corresponding function of nz, described as a
vector of variables x = (x0,x1,...,xm-1) corresponding to N,
whose related functions are in the form of (13). If one of
these functions, fi, does not have complementary behavior,
then h will also be non-complementary.

Proof. Assume that h(x) has complementary behavior
when all input functions fi are of the form shown in (13).
With no loss of generality, we will select f0 as one of the
functions with non-complementary behavior. Then h(x) can
be written in the following form, having replaced variable x0
with a non-complementary (or faulty) function f0.
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To find the non-complementarities of h, we calculate the
short and open circuit functions, according to (10) and (11).
For this proof, only short-circuit functions are considered
and results will be shown as extensible to open-circuit
functions.
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The last terms of the above equation are null according to
lemma 1, and the first term can be expressed through (20) as
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A similar procedure to calculate hz will obtain the
following formula
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Examination of the former equations may infer that
function h will show a non-complementary behavior if x0 is
not redundant (lemma 2). q

Corollary 3. A fault (open or short circuit on a node) is
reflected at the output if the node where it is located is not
redundant with respect to the complementary function that
takes it as an input.

In the next sections, the application of this study is
described in detail.

IV. SYMBOLIC SIMULATION

Circuit analysis is possible when all nodal functions are
available. These functions are obtained by applying a special
type of symbolic, event-driven [13] simulation to the circuit.

A scheme follows of the simulation procedure for a switch
network G( N, D), where N is the set of nodes ni=0÷k-1 in the
network and D is the set of devices dj=0÷m-1 whose model is
described by a set of functions Φj that depend on the set Fj of
its input node related functions fi.

// Simulation pseudo-code.
For each initializing device dj {

Apply device function Φj (Fj)
Enqueue modified nodes fi | fi ∈ Fi

}
While ( QUEUE not empty ) {

Dequeue node ni
For all devices dj | fi ∈ Fi {

Apply device function Φj (Fj)
Enqueue modified nodes fi | fi ∈ Fi

}
}

Device functions Φ must be correctly established to ensure
that no destabilizing conditions leading to instability are
present in the device model.

Only independent voltage sources (to set primary input
nodal functions to variables) and transistors (to process
symbolic information) are considered in switch-level
circuits.

An independent voltage source device can supply a
constant binary value (0 or 1) or a variable. In the last case,
its model is described by the following equation
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where vi(x) is the terminal node ni of the device.

Transistors are considered as bi-directional devices that
modify both drain and source nodal functions. The equations
for a P-type transistor drain are given in the following
formulae.
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where fd, fg, and fs are the nodal functions of the transistor
drain, gate and source, respectively.

The complete set of equations for a PMOS switch can also
be expressed as follows.

f x f x f x f x

f x f x f x f x
f x f x
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Note that the product term is a scalar multiplication of a
function f 0(x) by a vector of functions f(x).

A similar system would describe the behavior of a NMOS
switch, provided that the off-set function of the gate is
substituted in (31) by the on-set function.

The simulation algorithm described in this section stops
when no new events occur (device functions do not modify
nodal functions). That is, when all nodes have reached a
stable, final set of functions that reflects their logical
behavior. Consequently, its analysis and subsequent
detection of errors is possible. In addition, input
configurations causing circuit malfunction or fault
propagation to the output can be obtained by simple Boolean
operations.

V. CIRCUIT VERIFICATION

Using the symbolic simulation procedure described
previously enables obtaining the Boolean behavior of each
node as a pair of functions (on-set and off-set). The results
can serve for both formal verification and test pattern
generation. This section covers their analysis and some
considerations when the working circuit is not implementing
complementary logic.

If a given circuit is known to have complementary
behavior, all output nodal functions must be complementary.
Therefore, any single short or open circuit fault injected in a
node will cause at least one of these output to have the same
faulty behavior, as stated in Theorem 1. Any cover of the
faulty function will be a sensitization vector for that fault.



If an injected fault is not reflected at the output, the
originating node is redundant and therefore, can be
eliminated.

For circuit design verification purposes, any non-
complementary output node will reveal a short/open circuit
fault in the circuit caused by a bridge or a break in the
layout.

Sequential circuits are not complementary in the form
described by (9). Usually, in CMOS logic circuits, nodal
functions with memorization capabilities are of the following
form

( )f f g h f g h

f hz

= = ⋅ = ⋅

=

1 0 ,  
(32)

In such a case, verification should be extended to compare
the calculated memorization function f z with the desired
one. This function contains clock signals. Special care
should be taken when simulating such circuits because a
clock-controlled switch may annihilate the propagation of
product terms containing the negation of the clock. This is
prevented by using different variables to identify different
clock phases.

Precharged logic stages have their Boolean functions in
only one of the two sets (off or on-set) of their output nodes,
while the other only contains the propagation controlling
terms. That is, output nodal functions, assuming precharge
to one, are

( )f f h f h g

f h gz

= = = ⋅

= ⋅

1 0 ,  
(33)

where h is the precharging condition, which usually is
opposed to that of the evaluation, h'. For weak, constant

loads ( )f f g1 01= =,  the short-circuit condition contains

the negation of the implemented function, g. However, this
last solution will lead to permanent current consumption
which should be avoided in circuit designs.

Symbolic propagation of functions across precharged logic
stages is an issue for consideration. The most effective
design techniques for dynamic (precharged) logic circuits
alternate P-type with N-type evaluation blocks. That is,
functions in a path appear alternatively in f 1 and in f 0, being
the controlling terms for N-type and P-type evaluation
blocks, respectively.

If that were not the case, circuit functionality cannot be
adequately obtained, unless predominant values are
indicated at stage output nodes. For instance, assuming zero
as the dominant value, the output of a precharged stage may
be rewritten as

f f h h l g h l h g

f l g
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Note that the variables in the precharge term h are usually
opposed to those in the evaluation term l. Therefore, they
must be identified differently to avoid mutual exclusion. This
operation lets the function term g also be present in f 1 and
thus, symbolically propagable to stages in which evaluation
blocks are controlled by on-sets.

VI. RESULTS AND CONCLUSIONS

An event-driven symbolic simulator (SymSim) has been
implemented to obtain the nodal set of functions of a given
circuit, described in SPICE [14] format. Device models are
implemented through a series of Boolean operations
performed by the BDD routines of the SIS package [15,16].

CPU time and memory requirements depend on both the
number of nodes and on the number and order of the
Boolean variables in the BDD structures. Therefore, the
analysis of large circuit will require embedding variable
ordering and partitioning strategies [17] into the analyzer.

Table I gives an idea of the computational effort (in terms
of CPU processing time) required to verify correct,
small/medium size circuits. However, CPU times may vary
when faults are introduced in a circuit. These variations
strongly depend on the type of the injected faults.

TABLE I
SIMULATION TIMES IN A SUN SPARC 10. SDFFRP IS A SEQUENTIAL

CIRCUIT. CXXXX ARE TRANSISTOR-LEVEL DESCRIPTIONS OF THE

CORRESPONDING ISCAS'85 BENCHMARKS.

Circuit #Vars Nodes Transistors Time(s)

ADD2 5 27 40 <1
MULT2 4 29 45 <1
SDFFRP 7 36 54 <1
c17 5 19 24 <1
c432 36 396 753 54
c499 41 613 1349 308
c1355 41 1165 2308 434
c1908 33 1758 3446 509

Table II contains the results of the c432 circuit analysis
for some single fault injections. The last column indicates
the type of error caused. The meaning of each error is
explained in the following paragraphs.



TABLE II
SIMULATION TIMES OF ISCAS'85 C432 CIRCUIT, WITH SINGLE FAULT

INJECTION.

Fault Time(s) Error

None 54 None
191gat stuck at 1 47 Cmp
203gat stuck at 0 20 Cmp
309gat short-circuited to Power 28 I ↑
203gat and 239gat (feedback) bridged 77 I ↑
344gat and 376gat bridged 63 I ↑
nMOS stuck-on in 332gat (xor) 72 I ↑
pMOS stuck-on in 353gat (nand) 96 I ↑
340gat (nand) pMOS open 60 Q
Floating pMOS in 118gat 64 Q
158gat and 159gat swapped 80 Cmp

“ I↑” indicates that there is at least one input configuration
that provokes an increase of the current consumption due to
the sensitization of a conditional short-circuit in a certain
node.

“Q“ indicates that a memorization state has been
propagated to at least one of the output and its sensitization
path is given by (11).

On the contrary, if every output node shows
complementary logic behavior, verification by Boolean
comparison is necessary and indicated by “Cmp“. The
corresponding test vector (which sensitizes the path from
faulty node to output) is the Boolean difference between the
resulting and the desired expressions. This is the case of
most stuck-at faults.

In conclusion, the method presented enables detecting and
locating faulty (non-complementary) nodes in a digital
CMOS circuit. This is possible by operating the function
representing the set of paths that puts a node through a logic
one with that which represents the set of paths that drives
the same node to a logic zero.

What is more, the sensitization functions thus calculated
permit direct determination of the corresponding test
vectors.

In addition to this, it can also be used to verify a number
of circuits, including sequential ones, if clock phases are
conveniently assigned to different Boolean variables. This
limitation is overcome by considering temporal logic or
timing in the simulation procedure of SymSim [18,19].

The implemented program can be accelerated by using
gate-level models and hierarchical simulation. However,
these options will lead to some loss of detail in the resulting
analysis.
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