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Abstract| Fault simulation for synchronous sequential

circuits is a very time-consuming task. The complexity

of the task increases if there is no information about the
initial state of the circuit. In this case an unknown initial

state is assumed which is usually handled by introducing

a three-valued logic. As it is well-known fault simulation

based on this logic only determines a lower bound of the

fault coverage. Recently it has been shown that fault simu-

lation based on the multiple observation time test strategy

can improve the accuracy of the fault coverage. In this
paper we describe how this strategy can be successfully

implemented based on Ordered Binary Decision Diagrams.

Our experiments demonstrate the e�ciency of the fault

simulation procedure developed.

I. Introduction

Despite numerous attempts to create automatic test pattern
generators capable of testing sequential logic this problem re-
mains inherently intractable if a three-valued logic is used. The
major cause of the di�culty is the unknown initial state of the
circuit. By using the concept of synchronizing sequences, it is
shown in [11] that entire classes of testable sequential circuits
exist which cannot be tested by algorithms based on the three-
valued logic. With regard to fault simulation the unknown
initial state prevents from computing the fault coverage accu-
rately. Based on the three-valued logic only a lower bound for
the fault coverage can be determined. An improvement of the
accuracy either requires that functional information is provided
to the fault simulation or that circuit modi�cations are made
to permit setting the circuit into a known initial state. But in
general the information or modi�cations only concern the fault-
free circuit. Consequently, the computation of synchronizing
sequences for the faulty circuits remains intractable using the
three-valued logic. Therefore in [8] a hybrid fault simulator is
proposed which improves the accuracy by performing a sym-
bolic simulation based on Ordered Binary Decision Diagrams
(OBDDs) [4]. In many cases this simulation strategy improves
the accuracy considerably but until now it determines the fault
coverage only with respect to the single observation time test
strategy (SOT) which is inaccurate in itself.

To overcome the limitation of SOT a more general de�nition

of detectability has to be considered [1]. This de�nition leads
to the multiple observation time test strategy (MOT) which
is used in [12, 14] to increase the e�ciency of test generation.
In [5, 9] test generation with respect to the MOT strategy
is combined with OBDD-based techniques. From "ordinary"
test generation it is well-known that test generation has to be
accelerated by use of an e�cient fault simulator. Of course,
MOT-based test generation should be supported by a MOT-
based fault simulation to obtain the full power of the MOT

strategy and to improve on the time and space behavior. Un-
til now, only Pomeranz and Reddy realized this necessity and
proposed a three-valued fault simulator based on the MOT

strategy in [13]. For the \complete" MOT strategy it is nec-
essary to compare the sets of fault-free responses with the set
of responses obtained in the presence of faults (for all possible
states of the circuit). This is especially complicated if long test
sequences and a large number of memory elements exist. To
overcome these problems several methods are presented in [13],
which basically try to reduce the size of the response set (for
the fault-free circuit and for the faulty circuit). This leads to a
\less accurate" MOT test which nevertheless is more accurate
than SOT in many cases.

In this paper we extend the hybrid fault simulation as pro-
posed in [8] to also work for the MOT strategy and thereby
avoid the explicit state enumeration. At �rst, we describe a
procedure that identi�es faults which cannot be detected by a
conventional fault simulation based on the three-valued logic
and the SOT strategy. The procedure works in polynomial
time. Eliminating faults identi�ed by this procedure can ac-
celerate the three-valued fault simulation considerably. We
then show how the MOT strategy can be integrated e�ciently
in the OBDD-based part of the hybrid fault simulator. In
order to reduce the complexity of the MOT approach a three-
valued fault simulation is carried out �rst. During the MOT-
based fault simulation only faults which are not detected by
the three-valued fault simulation are considered. We study the
improvement in terms of detected faults and for the �rst time
we also investigate the performance of a MOT-based fault sim-
ulation. By the use of OBDDs it becomes possible to handle a
large number of output sequences. Thus, we succeed in com-
puting the exact MOT fault coverage for many of the consid-
ered benchmark circuits. In case that the space requirements
of the OBDD-based approach exceed a given limit which is
determined by the working environment the hybrid fault sim-
ulator changes to the SOT strategy based on the three-valued
logic for some simulation steps as described in [8] and then
again returns to the symbolic evaluation and the MOT strat-
egy. This guarantees that the MOT strategy can be applied
even to large circuits. We also show that the MOT strategy is
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very attractive if the circuit considered has a reset state or if it
is restricted to outputs with a well-de�ned value in the fault-
free case (rMOT). The usefulness of the rMOT strategy in the
area of test generation for fully synchronizable circuits was al-
ready investigated in [5]. In contrast to the general MOT strat-
egy the rMOT strategy allows a test evaluation by comparing
the output sequence of the circuit-under-test with the unique
output sequence of the fault-free circuit as usually. We show
that the accuracy of fault simulation based on rMOT is iden-
tical with that based on MOT for many circuits. With regard
to the performance it can be observed that for some circuits
a symbolic rMOT fault simulation works even more e�ciently
than a symbolic SOT fault simulation. Clearly, compared with
a three-valued fault simulation the increase of accuracy must
be paid for with an increase of the execution time.
The paper is structured as follows: We start in Section II by

presenting some de�nitions and important properties of syn-
chronous sequential circuits. In Section III we describe the pro-
cedure for the identi�cation of faults which cannot be detected
by the test sequence due to the inaccuracy of the three-valued
logic. In Section IV we show how fault simulation based on
the MOT strategy can be realized by the use of OBDDs. In
Section V experimental results are given, which demonstrate
the e�ciency of the fault simulation procedure with respect to
the MOT strategy. Finally we draw some conclusions.

II. De�nitions

A synchronous sequential circuit can be considered to be a
Finite State Machine (FSM) as introduced in [7].
De�nition 1: A �nite state machine M is de�ned as a

quintuple M = (I;O; S; �; �), where I is the input set, O is the
output set and S is the set of states, � : S � I ! S is the next
state function, and � : S � I ! O is the output function.
Since we consider a gate level realization of the FSM, we

have I = Bk, O = Bl and S = Bm with B = f0; 1g. k denotes
the number of primary inputs, l the number of primary outputs
and m the number of memory elements. The functions � and �

are computed by a combinational circuit. The inputs (outputs)
of this circuit which are connected to the outputs (inputs) of
the memory elements are called secondary inputs (outputs).
For the description of fault simulation we use the following

notations: Z = (z(1); : : :, z(n)) denotes an input sequence of
length n. zi(t), 1 � i � k, is the value that is assigned to
the i-th primary input before starting simulation at time t,
1 � t � n. S(p; Z) = (s(p; 0); s(p; 1); : : : ; s(p; n)) denotes the
state sequence de�ned by the initial state p = s(p; 0) and Z.
si(p; t), 1 � i � m, is the state of the i-th memory element
after simulation step t. O(p; Z) = (o(p; 1); o(p; 2); : : : ; o(p; n))
denotes the output sequence de�ned by the initial state p and
Z. oi(p; t), 1 � i � l, is the value at the i-th primary output
after simulation step t. Using these notations the next state is
given by

s(p; t) =

�
p if t = 0
�(s(p; t� 1); z(t)) otherwise

Analogously, the output o(p; t) is de�ned by the function �.
A single stuck-at fault f transforms a machine M into a

machine Mf = (I;O; S; �f ; �f ). The functions �f and �f are
de�ned analogously.

If there is no knowledge about the initial state of the circuit
using the SOT strategy the detectability of a single stuck-at
fault with respect to an input sequence Z can be de�ned ac-
cording to [1] as follows:

De�nition 2: A single stuck-at fault is detectable with
respect to the SOT strategy by an input sequence Z =
(z(1); z(2); : : : ; z(n)) if 9b 2 f0; 1g;9t � n; 9i � l;8p; q

oi(p; t) = b and o
f

i (q; t) = b with p an initial state of the
fault-free circuit and q an initial state of the faulty circuit.

As shown in [11] fault simulation based on the three-valued
logic determines a lower bound for the fault coverage with re-
spect to the de�nition given above. The exact fault coverage
can be determined by using the OBDD-based symbolic fault
simulation as presented in [8]. In many cases the application of
the symbolic techniques leads to more accurate fault coverages
than that obtained by using the three-valued logic.

III. Elimination of X-redundant Faults

In this section we describe a procedure that e�ciently iden-
ti�es faults which are undetectable with respect to a given test
sequence due to the inaccuracy of the three-valued logic and
the limitation of the SOT strategy. We denote these faults as
X-redundant faults as proposed in [2]. Eliminating these faults
before starting three-valued fault simulation leads to a consid-
erable speed-up. Similar methods are used to accelerate test
generation. For instance the testability measure SCOAP [6]
allows the identi�cation of such faults. An extension of this
approach is described in [15]. All these methods identify faults
that cannot be detected by any test sequence due to the inac-
curacy of the three-valued logic. Using the fact that in case of
fault simulation a test sequence is given we developed a more
sophisticated procedure called ID X-red. It works in three
steps.
Step 1: For the given test sequence a true value simulation

of the circuit using the three-valued logic is performed. For
each lead the values assigned to the lead during simulation
are stored. The result of this simulation is encoded into a
four-valued logic containing the elements fXg, fX;0g, fX;1g,
fX; 0; 1g. The value fXg means that a lead always has value
X, i.e. the lead does neither assume the value 0 nor the value
1 during simulation. The other logic elements are interpreted
analogously. The value assigned to a lead l in this step is
denoted by IX(l).

Step 2: A backward pass is started from the primary and
secondary outputs towards the primary and secondary inputs.
Thereby the IX -values of the leads are recomputed. During the
recomputation we distinguish between fanouts and gates. Let
l be a fanout stem with branches l1 and l2. Then we perform
the assignment IX(l)  fXg if and only if IX(l1) and IX(l2)
are equal to fXg. In case of gates the IX -values of the inputs
are set to fXg if the output of the gate has the value fXg.
After this step a lead has the value fXg if either the lead does
not assume the value 0 or 1 during the simulation performed in
step 1 or if every path from the lead to a primary or secondary
output contains a lead l with IX(l) = fXg. The backward pass
is iterated until no changes occur at the secondary inputs.

Step 3: A backward traversal inside the fanout-free re-
gions is performed that determines the observability OB of
each lead inside the region at the output of the region. The
backward traversal starts at the output l of the region by set-



ting OB(l) = 0 if IX(l) = fXg and OB(l) = 1 otherwise. The
observabilities at the inputs of a gate are determined as fol-
lows: An input of an AND gate is observable if its output is
observable and if the other inputs of the gate have the values
fX;1g or fX; 0; 1g. An input of an OR gate is observable if
its output is observable and if the other inputs have the values
fX;0g or fX; 0; 1g. An input of an inverter is observable if its
output is observable.
Step 4: Faults which cannot be detected by the test se-

quence are identi�ed by checking the following su�cient con-
dition: A stuck-at 0 fault at l (stuck-at 1 fault at l) is unde-
tectable if IX(l) = fX;0g (IX(l) = fX; 1g) or IX(l) = fXg
holds or if OB(l) = 0 holds.
For shortness of the paper the correctness proof of the pro-

cedure described above is omitted.
The procedure has the following run time behaviour. The

simulation in step 1 can be performed in time O(jCj�jZj) where
jCj is the circuit size and jZj is the length of the test sequence.
Steps 2-4 can be performed in O(jCj). Therefore the procedure
works very e�ciently and its run time is negligible compared
with the run time needed for three-valued fault simulation. If
it is performed before starting the three-valued fault simula-
tion, the number of faults which have to be considered can be
reduced for a lot of circuits.

IV. Multiple Observation Time

Faults which are eliminated by the procedure described in
the previous section cannot be detected by a fault simulation
based on the three-valued logic. On the one hand this fact
can be explained by the inaccuracy of the three-valued logic.
In [8] a hybrid fault simulation is described which eliminates
this inaccuracy. Nevertheless there are some circuits for which
this fault simulator does not achieve a reasonable accuracy
because the simulator is based on the SOT strategy. This
strategy shows several limitations with respect to the detection
of faults by a test sequence. For illustration consider Fig. 1
which is taken from [13]. It shows two fault simulation steps
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Fig. 1. Stuck-at fault not detectedwith respect to the SOT strategy.

for the test sequence ([1; 0], [1; 0]). As it can easily be seen
the simulated fault cannot be detected with respect to the
SOT strategy. Even if the fault-free circuit is initialized similar
e�ects can occur as outlined in Fig. 2. As it can be seen, this
sequence drives the fault-free circuit in a de�ned state but not
the faulty circuit. Therefore the fault is undetectable with
respect to de�nition 2. To overcome the limitations of the SOT
approach the multiple observation time test (MOT) strategy
can be applied.
De�nition 3: A fault is detectable with respect to the mul-

tiple observation time strategy by an input sequence Z if for
all states p and q there are t � n, i � l and b 2 f0; 1g such
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Fig. 2. Stuck-at fault not detectedwith respect to the SOT strategy

despite of initialization.

that we get oi(p; t) = b and o
f

i (q; t) = b. (p denotes an initial
state of the fault-free circuit and q an initial state of the faulty
circuit.)
This means a fault is detectable if the output sequences de-

termined by the fault-free and faulty circuits are di�erent for
any pair of initial states. In [13] fault simulation based on
this approach is implemented by using the three-valued logic
in combination with an enumeration of a subset of all pos-
sible initial states. To reduce the complexity it is proposed
to use the value X as initial value of a latch if this does not
cause a negative e�ect on the fault detection. Nevertheless the
main disadvantage of this implementation is the explicit state
enumeration. The authors restrict their enumeration tech-
nique to less than 6 memory elements which corresponds to
64 di�erent initial states. A way to overcome this limitation
is presented in the sequel. We de�ne the detection function
Df;Z : Bm �Bm ! B by

Df;Z(x; y) :=

nY
t=1

lY
j=1

[oj(x; t) � o
f

j (y; t)]

for each fault f and test sequence Z. x and y denotes the
initial states of the fault-free and faulty circuit, respectively.
Lemma 1: A fault f is detectable by the input sequence

Z = (z(1); z(2); : : : ; z(n)) according to De�nition 3 i�

Df;Z � 0

Proof: Let p and q be two arguments with Df;Z(p; q) 6= 0.
Then it follows from the de�nition of the detection function
Df;Z that for the initial states p and q the output sequence
(o(p; 1); : : : ; o(p; n)) of the fault-free circuit and the output se-
quence (of(q; 1); : : : ; of(q; n)) of the faulty circuit are equal.
Therefore the fault f is undetectable according to De�nition 3.

2

To illustrate the application of the MOT strategy based on
the detection function consider the circuit shown in Fig. 3. In
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Fig. 3. Example.

order to check whether the test sequence detects the fault f

located at the second primary input of the circuit we have to



compute its detection function. In doing so we determine the
output sequence of the fault-free and faulty circuits. Obviously
we get o1(x;1) = x, of

1
(y; 1) = �y, o1(x; 2) = x and of

1
(y; 2) = y.

According to the de�nition given above we get for the detection
function Df;Z

Df;Z(x; y) = [x � �y] � [x � y]

= 0 8x; y

Consequently, with Lemma 1 and the MOT strategy it follows
that the fault can be detected by the test sequence.

A. Fault Simulation

To perform fault simulation based on the MOT strategy we
introduce variables xi for each memory element of the circuit.
These variables are used for the encoding of the unknown initial
state which is de�ned by x = [x1; : : : ; xm]. Moreover for each
fault a detection function ~Df;Z is de�ned. It is initially set to
the constant function 1. During a symbolic fault simulation
this function will be used for the construction of the detection
function Df;Z . At the end of fault simulation it holds ~Df;Z =
Df;Z . More in detail, the symbolic fault simulation works as
follows: First a symbolic true value simulation is carried out
which determines the symbolic value of each lead implied by
the test vector and the present state vector. Subsequently an
explicit fault simulation is carried out. For each fault f and
time frame t of(x; t) and sf(x; t) are determined by an event-
driven single fault propagation. This means that the faults are
injected one by one. The e�ects are propagated towards the
primary outputs and the memory elements. If in course of this
process the i-th primary output is reached we check whether
the fault is observable. Depending on the di�erent observation
time test strategies there are three possibilities:

1. SOT Test Strategy: The fault is marked as detectable if

oi(x; t); o
f

i (x; t) 2 f0;1g and oi(x; t) 6� o
f

i (x; t).
2. Restricted MOT (rMOT) Test Strategy: We compute

~Df;Z(x; x) ~Df;Z(x; x) � [oi(x; t) � o
f

i (x; t)]

if oi(x; t) 2 f0;1g. If ~Df;Z is evaluated to 0 the fault is
marked as detectable.

3. MOT Test Strategy: First we have to compute o
f

i (y; t)
for all i; 1 � i � l; where y = [y1; : : : ; ym] denotes the un-
known initial state of the faulty circuit. Since the OBDD-
representation for ofi (x; t) is given this can e�ciently be
done by a compose operation. (Another possibility to
compute o

f

i (y; t) would be to initialize the state of the
faulty circuit with y at the beginning of the fault simula-
tion. But in doing so we would not pro�t by the event-
driven single fault propagation.) Then we compute

~Df;Z(x;y) ~Df;Z(x; y) �

lY
i=1

[oi(x; t) � o
f

i (y; t)]

If ~Df;Z is evaluated to 0 the fault is marked as detectable.

Of course faults which are marked as detectable are dropped
and will not be considered during following simulation steps.
If the symbolic values are represented by Ordered Binary De-
cision Diagrams, the fault simulation procedure as described

above works e�ciently for many circuits. Moreover the inte-
gration of this procedure in the hybrid fault simulator allows
the application of the MOT strategy even to large circuits. If
the space requirements of the symbolic fault simulation exceed
a given limit the hybrid fault simulator changes to the SOT

strategy and works as described in [8]. After a few simulation
steps using the three-valued logic which can reduce the space
requirements of the symbolic simulation the hybrid fault sim-
ulator returns to the MOT strategy again. In doing so the
detection function ~Df;Z has to be re-initialized with the con-
stant function 1.
The di�erence betweenMOT and rMOT lies in the space re-

quirements and in the accuracy which can be achieved. MOT

works more accurately than rMOT. On the other hand the
space requirement of MOT is larger than that of rMOT be-
cause MOT requires di�erent variables for encoding the initial
state of the fault-free and the faulty circuit. A further im-
portant advantage of rMOT is that it allows the standard test
evaluation.

B. Test Evaluation

The problem of test evaluation with respect to a given input
sequence Z can be described as follows: Let (c(1); : : : ; c(n)) be
the output sequence which is obtained by applying Z on the
circuit-under-test. Decide whether or not the circuit-under-
test is faulty.
In case of a test sequence which is determined with respect

to the SOT approach or the rMOT approach the test evalua-
tion can easily be done. The circuit-under-test is faulty if there
are t � n and i � l with ci(t) 6� oi(x; t) where oi(x; t) 2 f0;1g
denotes the value at the i-th primary output after simulation
step t. In case of a test sequence which is determined with re-
spect to the MOT approach the test evaluation is more compli-
cated. The implementation proposed in [13] requires to check
whether the output sequence (c(1); : : : ; c(n)) is contained in a
set of output sequences which can be computed by a fault-free
circuit depending on the initial state. Since the number of out-
put sequences may be exponential in the number of memory
elements test evaluation may be very time-consuming. To re-
duce the time requirements we propose the comparison of the
sequence c(1); : : : ; c(n) with the symbolic representation of the
output sequence o(1); : : : ; o(n). The comparison can be done
by evaluating step by step the product

nY
t=1

lY
j=1

[oj(x; t) � cj(t)]

If the result of this computation is 0 the circuit-under-test is
faulty. Obviously, the tractability of this approach depends on
the size of the symbolic representation and the time needed for
evaluating the product of the symbolic output values. It turns
out that, if the symbolic representation is based on OBDDs,
both space and time are of moderate size for many circuits.

V. Experimental Results

To investigate the performance and the accuracy of our
OBDD-based approach and the advantage of theMOT strategy
we implemented the fault simulation procedures as previously
described. For the implementation we used C++. Our mea-
surements were performed on a SUN SPARC station 10 Mod.



Table I: Inuence of ID X red on the run time of three-valued fault

simulation for random test sequences of length 200.

Circ. jF j X-red. jFdj X01 X01p ID X-red

s208.1 217 195 15 1.58 0.09 0.05
s298 308 71 168 1.04 0.91 0.05
s344 342 17 291 1.10 1.10 0.07
s349 350 18 297 1.14 1.10 0.07
s382 399 174 49 2.05 1.64 0.07
s386 384 63 179 0.57 0.48 0.06
s400 424 51 51 2.23 1.76 0.08
s420.1 455 419 22 4.70 0.22 0.11
s444 474 211 53 2.42 1.98 0.08
s510 564 564 0 5.35 0.09 0.10
s526 555 283 48 3.20 2.52 0.10
s641 467 72 345 0.64 0.51 0.10
s713 581 94 417 0.94 0.78 0.13
s820 850 114 236 2.14 2.02 0.18
s832 870 116 235 2.23 2.11 0.20
s838.1 931 867 38 15.11 0.51 0.27
s953 1079 852 90 23.31 1.85 0.24
s1196 1242 31 807 2.11 2.09 0.31
s1238 1355 43 822 2.58 2.46 0.32
s1423 1515 368 333 9.66 8.54 0.43
s1488 1486 51 820 4.31 4.27 0.37
s1494 1506 51 817 4.61 4.48 0.40
s5378 4603 1647 2327 23.68 18.44 1.35
s9234.1 6927 4417 366 183.25 132.21 2.56
s13207.1 9815 7476 858 318.53 67.58 3.85
s15850.1 11725 6138 1645 326.11 223.12 4.61
s35932 39094 4306 22527 267.34 264.94 11.82
s38417 31180 29172 1098 1034.19 183.17 12.07
s38584.1 36303 6634 12585 2321.08 2065.98 20.35

20 with 32 MBytes of memory. For our experiments we consid-
ered a subset of the ISCAS-89 benchmark circuits [3]. A space
limit of 30; 000 OBDD nodes was used to guarantee that our
procedures work e�ciently. At �rst we investigated the e�ect
of the procedure ID X-red for eleminating the X-redundant
faults in order to accelerate three-valued fault simulation. Ta-
ble I shows the results. We simulated 200 random vectors. jF j
denotes the number of faults. X-red denotes the number of
faults that are identi�ed by the procedure ID X-red as unde-
tectable with respect to the three-valued logic and the SOT

strategy. On average 38% of the faults are undetectable if a
three-valued fault simulation is used. jFdj denotes the num-
ber of faults that are detected by the test sequence using the
three-valued logic. In order to investigate the inuence of the
elimination of the X-redundant faults on the performance of
fault simulation the run times for fault simulation without per-
forming ID X-red (X01) and with performing ID X-red (X01p)
are given. Moreover the run times for ID X-red are given. As it
can be seen the application of ID X-red leads to a considerable
acceleration of the three-valued fault simulation. Even if the
time needed by ID X-red is added to X01p this acceleration
can still be observed for most circuits. If the execution time
increases the run time of ID X red is negligible.

To compare the performance and the accuracy of the dif-
ferent observation strategies we performed a symbolic fault
simulation based on the SOT, rMOT and MOT strategies,
respectively. Thereby we considered the X-redundant faults
and the faults which are not detected by the three-valued fault

Table II: Comparison of SOT with rMOT and MOT for random

test sequences of length 200.

faults detected CPU time [sec]
Circ. jF j jFuj SOT rMOT MOT SOT rMOT MOT

s208.1 217 202 0 10 51 47.52 48.26 49.07
s298 308 140 5 6 �6 6.71 7.08 58.94
s344 342 51 4 6 �6 29.84 7.61 336
s349 350 53 4 6 �6 30.13 7.54 307
s382 399 350 0 1 1 31.56 25.81 35.10
s386 384 205 0 0 0 0.58 0.64 0.75
s400 424 373 0 1 1 33.21 27.11 36.62
s420.1 455 433 0 13 �13 533 529 401
s444 474 421 0 1 �1 71.91 64.05 56.37
s510 564 564 395 477 531 507 440 585
s526 555 507 0 �1 �1 95.32 105 101
s641 467 122 4 4 4 1.77 5.64 8.75
s713 581 164 4 4 4 2.15 7.93 11.39
s820 850 641 1 1 1 1.91 2.55 3.68
s832 870 635 1 1 1 1.94 2.65 3.92
s838.1 931 893 �0 �12 �11 1801 1759 1041
s953 1079 989 513 516 516 86.90 116 182
s1196 1242 435 0 0 0 1.39 1.49 1.63
s1238 1355 533 0 0 0 1.77 1.88 2.16
s1423 1515 1182 �2 �6 �6 34.77 51.50 62.18
s1488 1486 666 2 2 2 2.56 3.31 9.82
s1494 1506 689 2 2 2 2.72 3.34 12.59
s5378 4603 2276 �7 �12 �99 115 401 651P

944 1082 1263 3441 3618 3957

simulation. Table II shows the results for 200 random test vec-
tors. Results on the largest benchmarks are not listed in the
table because the hybrid fault simulator mainly uses the SOT
strategy due to the space requirement of rMOT and MOT. jF j
denotes the number of faults. jFuj denotes the number of faults
that were not classi�ed as detected by the three-valued fault
simulation. For each strategy execution times with respect to
these faults and the number of faults marked as detectable are
given. Results which were obtained by a temporary change to
the three-valued logic during hybrid fault simulation are in-
dicated by an asterisk. Due to the OBDD-based simulation
all strategies permit a further classi�cation of detectability of
faults. In general fault simulation based on the rMOT strat-
egy detects more faults than SOT-based fault simulation. In
14 out of 23 examples we even succeeded in computing the
exact MOT fault coverage of the test sequences. In 12 out of
these 14 examples already the rMOT strategy computed the
exact fault coverage. Only for three of all circuits considered
additional faults were detected by MOT (s208.1, s510, s5378).
On the other hand, in all cases where MOT was not exact we
at least succeeded in improving the accuracy compared to the
three-valued fault simulation and the SOT approach as well. In
case of s838.1 MOT detects fewer faults than rMOT. This can
be explained by the space requirement of MOT which is larger
than the space requirement of rMOT. Due to this fact the hy-
brid fault simulator based on MOT selects more frequently the
fast three-valued fault simulation which works less accurately.
Comparing the execution times for some circuits an accelera-

tion can be observed by using rMOT instead of SOT. Moreover
SOT and rMOT are generally faster than MOT.
The same measurements were repeated for deterministic test

sequences which are also considered in [10]. Table III shows



Table III: Comparison of SOT with rMOT and MOT for determin-

istic test sequences.

faults detected CPU time [sec]
Circ. jT j jF j jFuj SOT rMOT MOT SOT rMOT MOT

s208.1 111 217 200 0 4 46 35 35 36
s298 162 308 44 4 7 7 3.23 1.73 4.11
s344 91 342 13 4 6 6 3.68 1.08 1.13
s349 91 350 15 4 6 6 3.86 1.07 1.17
s382 2463 399 36 3 12 12 377 22 24
s400 1282 424 73 6 13 13 208 30 35
s420.1 173 455 432 0 10 �6 672 667 417
s510 200 564 564 549 549 549 265 250 380
s526 754 555 137 2 11 11 201 32 41
s641 133 467 64 4 4 4 0.89 2.84 3.57
s713 107 581 111 4 4 4 1.15 3.45 5.14
s820 411 850 154 2 2 2 1.35 1.94 2.41
s832 377 870 162 1 1 1 1.04 1.29 1.58
s953 16 1079 995 132 143 171 27 31 73
s1238 349 1355 72 0 0 0 0.85 0.87 0.88
s1488 590 1486 110 3 3 3 3.10 2.54 3.40
s1494 469 1506 134 5 5 5 2.51 2.58 3.79
s5378 408 4603 1196 �11 �19 �19 61 347 543P

734 799 865 1867 1433 1576

Table IV. Results on symbolic test evaluation.

Random Sequences Deterministic Sequences
Circ. PO jT j BDD Size Time jT j BBD Size Time

s208.1 1 200 250 0.02 111 111 0.02
s510 7 200 439 0.05 200 339 0.07
s953 23 200 179 0.23 16 198 0.05
s5378 49 200 �69 0.36 408 �21 0.90

the results. rMOT and MOT are also successful in this case:
Again they classify more faults than SOT. In all but two exam-
ples we succeeded in computing the exact MOT fault coverage
of the test sequences. (Only in two of these cases (s208.1 and
s953) general MOT is superior to rMOT and thus was really
necessary.) With respect to the execution times a superiority
of SOT over rMOT cannot be observed. Sometimes rMOT

works more e�ciently than SOT. The speed-up can be ex-
plained by an earlier detection of faults. In order to investigate
the space needed for the test evaluation we measured the size
of the symbolic output sequences with respect to the random
and deterministic test sequences. We considered only the cir-
cuits for which the MOT strategy detects faults which cannot
be detected neither by the SOT nor by the rMOT strategy.
A symbolic output sequence consists of the OBDD assigned
to each output during a symbolic true value simulation. In
Table IV the sizes of these output sequences are given. PO de-
notes the number of primary outputs of each circuit. In most
cases the symbolic representations have a moderate size. The
asterisk indicates that in case of circuit s5378 only a partial
symbolic output sequence is computed due to the space re-
quirements. The �rst 7 test vectors are simulated using the
three-valued logic. Then the symbolic simulation starts. (This
change is also done during fault simulation for this circuit.)
In order to estimate the time needed for the test evaluation
we computed a possible test response of the fault-free circuit.
This can be done by initializing the memory elements at the
beginning of the simulation. (Note that a test response of a

fault-free circuit requires the computation of the product of all
symbolic output values.) The experiments show that at least
in this case the test evaluation can e�ciently be performed.

VI. Conclusions

In this paper we described procedures for e�cient fault simu-
lation for synchronous sequential circuits based on the multiple
observation time test strategy. On the one hand we presented
an algorithm for identifying faults which cannot be detected by
a conventional three-valued fault simulation due to the inaccu-
racy of the three-valued logic and the single observation time
test strategy. The run time of this procedure is negligible. The
elimination of the so-called X-redundant faults based on this
procedure leads to a considerable speed-up of fault simulation.
On the other hand we described how fault simulation based on
the multiple observation time test strategy can e�ciently be
handled by using Ordered Binary Decision Diagrams. We also
investigated a restricted multiple observation time test strat-
egy. The experiments have shown that these strategies can
help to improve the accuracy and the e�ciency of fault simula-
tion. In addition we have shown that fault simulation based on
these strategies is feasible. The test evaluation can e�ciently
be done by comparing the test response of the circuit-under-
test with a symbolic output sequence. As a rule it can be said
that fault simulation based on the restricted multiple obser-
vation time test strategy is often su�cient to determine the
exact fault coverage with respect to the multiple observation
time test strategy.
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