Software Accelerated Functional Fault Simulation for Data-Path Architectures

M. Kassab, N. Mukherjee, J. Rajkand J. Tyszer

Microelectronics and Computer Systems Laboratory
McGill University, Montreal, Canada, H3A 2A7

TMentor Graphics Corporation, Wilsonville, OR 97070, USA

_Abstract - This paper demonstrates how fault simulation of require the entire circuit to be modeled at the structural level.
building blocks found in data-path architectures can be per- Thjs precludes simulating circuits which contains blocks that

formed extremely efficiently and accurately by taking advantage : :
of their simple functional models and structural regularity. This are only modeled behaviorally. Some simulators [6] model

technique can be used to accelerate the simulation of those blocksfaults functionally at a higher level of abstraction. This
in virtually any fault simulation environment, resulting in fault ~ enhances performance at the expense of accuracy. Simulators

simulation algorithms that can perform fault grading in a very like MOZART [7] allow multilevel simulation, such that dif-

demanding BIST environment. ferent blocks have the flexibility of being modeled at different
levels of abstraction. Blocks which are not to be fault-simu-
|. INTRODUCTION lated, or do not have a gate-level representation, can thus be

; : ; : .modeled at a higher level of abstraction. More recent develop-
Data-path architectures constitute a large portion of cif! nts, like FEHSIM [8], use enhanced scheduling techniques

cuits manufactured by the ASIC industry, and are mainly us) ; ; !
in high performance computing systems like DSP circuit 0 dynamically switch between different levels of abstraction
The proliferation of embedded systems and high-level synth%lilCh as t‘? manrmze speed without 'OS'”Q acc?uracy.)
sis is expected to further increase the number of circuits com- | he simulation approach presented in this paper exploits

prising data-paths with such regular blocks as addet§€ fact that most modules in data-path architectures perform
Recently, it has been shown that for circuits with daté)_erforme_:d very efficiently. The regu_larlty a_nd functionality of

X any arithmetic structures makes it possible to compute the

u

path architectures, existing hardware on the chip, SUChF Ity output functionally, without resorting to structural sim-

arithmetic and logic units (ALUs), can be used to successfulﬁ?ﬁon This is done without loss of acouracy for anv fault
perform test pattern generation [1] and test response comp ' y y

tion [2]. Consequently, for a given circuit, a built-in self tesfriodel- Hence, behavioral-level speed can be obtained with

(BIST) scheme can be devised such that the circuit tests its%?fte'level accuracy. Memory usage is also drastically reduced

with virtually no area overhead and no performance degrac "° netlist has to be instantiated for the module, and no val-

tion [3]. The test is applied at-speed, which allows the app Jes internal to the netlist need to be stored for the different

cation of a large number of cycles and increases t %ulty machines.
probability of detecting dynamic and unmodeled faults.
However, in order to assess the quality of a proposed”- FUNCTIONAL FAULT MODELING IN REGULAR BLOCKS

BIST scheme, fault grading has to be used. This requires fault 1 analyze the fault coverage of a circuit, given a BIST
simulation to be performed for a relatively large number afcheme, fault simulation has to be performed without fault
vectors with no fault dropping, which can be very computairopping [9], i.e., the entire fault list has to be simulated for
tionally intensive for most known fault simulation techniquesg vectors, making the process very computationally inten-

Existing fault simulators fall into several categories. Mosgive. The techniques presented in this paper exploit features of
are gate-level simulators, such as PROOFS [4] and HOPE [Bhta-path building blocks to speed up their simulation, and
with very efficient structural simulation algorithms and thénence make fault simulation of data-path circuits possible in a
flexibility of handling any circuit whose structural model isBIST environment. Data-path architectures mainly consist of
known. However, they do not exploit the functionality of thebuilding blocks, such as adders, subtractors, multipliers, com-
circuit and its building blocks to reduce simulation time; anparators, etc. These blocks have regular structures and simple
circuit is treated like random logic. Gate-level simulatorgsunctionality. Hence, their faulty behavior can often be mod-
eled and computed functionally with gate-level accuracy, as
" This work was supported by a Cooperative Research and Developmawill be shown in this section. Fault simulation for blocks with
grant from the Natural Sciences and Engineering Research Council of Cangdactional fault models can thus be performed almost as fast
and Bell-Northern Research. as functional simulation of the fault-free model.

This section examines the modeling of some of those
32nd ACM/IEEE Design Automation Conference [J building blocks. The fault-free functionality can be repre-
Permission to copy without fee all or part of this materia is granted, provided sented by simple operations, which can be invoked for faults

that the copies are not made or distributed for direct commercia advantage, ;

the ACM copyright notice and the title of the publication and its date appear, external to the module. For faults '”te”.“"!' to the module, the
and notice is giventhat copying is by permission of the Association for faulty output of the module can be efficiently computed by
Computing Machinery. To copy otherwise, or to republish, requiresafee superposing the effect of the fault on the fault-free output.
and/or specific permission. [0 1995 ACM 0-89791-756-1/95/0006 $3.50

Two examples are covered in detail: a ripple-carry adder ar(d; —c) . Hence, the fault effect is realized by addifog—c)
an array multiplier for unsigned numbers. In a similar wayp bit f+ 1, or adding(c,—c) (2'** to S. The two effects are
fault models were developed for a number of other buildinguperposed, such th&s; —s) @'+ (c;—c) 2" is added to
blocks, such as Booth multipliers, ALUs, and multiplexers. S. |

A. Adders, Subtractors, and Comparators Based on Theorem 1, calculation of the output of the
] o] . faulty adder can be conducted as follows. First, variables ,
The modeling of an adder is illustrated using a ripple-carry, s., andc, have to be determined. To look up these values
adder (Figure 1). Each bit-slice is implemented as a full-addigrthe corresponding table, the three inputs to faultyfcell are
cell. This simulation technique can be applied to a variety @hlculated. The two input bits to the ceN, , aBd , are
fault models. The single—stuck—at model will be used in thiéirecﬂy extracted from primary inpum asd respective|y_

paper. The uncollapsed stuck-at fault set for the full-adder cqthe carry-in bit to the cell is equal to the carry-out of the sum
consists of30 faults. Hence, anbit adder contains30n of bit-range 0 tof —1 . This is illustrated in Algorithm 1.

faults (uncollapsed fault set).

adderfault, X, y, &)
case(fault location)of
external tamodule
return (x+y+c;,)

r— —| — 1 internal tomodule
| [Faf | === f = index of faulty full-adder

| FAq - Cout I a=x[f]

A—pt T b=y[f]
| o LE I | if (fault in least significant bit-slice)
11 il | | c=ci
H- FA; H | | | else
c=carryk[f—1,0 +y[f-1,0Q] +¢;
1 s e s Y& [f-1,00 +y[f-10] +c;y)
L — 14— fault-free sumof =aOb0Oc
T s

: || F/L | Cin fault-free carry off =(a Ob) O (b Oc) O (aOc)

| 1 (|
| [| faulty sum off =table_ surfgult,a,b,9

B —Pl- T ea | faulty carry off =table_carrfdult,a,b,9

| 0

L — ﬂ - - d.,m = (faulty sum off) - (fault-free sum df)
d...ry = (faulty carry off) - (fault-free carry df)
Fig. 1: Ripple-carry adder. fault-free output = +y +c,,,
correction =(dg,, (2) + (dary 271
In the functional fault model, the faulty output due to an faulty output = fault-free output + correction

internal fault will be computed by superposing the fault effect
on the fault-free sum. The faulty behavior of a full-adder cell
is known. A lookup table is used to model the behavior of the Algorithm 1: Binary adder Functional fault model
cell by storing the outputs (sum and carry-out) of the full-

adder cell for all faults30) and all possible inpUB € 8). The functional model shown by the algorithm computes
The table in this example models single stuck-at faults. — the faulty output in constant time, independent of the adder
Consider then -bit adder, with the fault-free sum ouut size. The use of table lookup for the full-adder cells allows

and an internal fault located in bit-sli¢e . Issandc be the fast evaluation, as well as the flexibility to use different fault
fault-free sum and carry-out values of bit-slfce , respectivelyhodels.

while § and ¢ denote the faulty values efandc. The faulty Subtractors and comparators can be modeled as extensions
output of the adder can be computed according to the folloys ihe adder. By inverting one of the adder’s inputs and feed-
ing theorem: ing a 1 to the carry-in of the least significant bit, the adder is
Theorem 1: The output of the faulty adder i%ransformed into a 2's comple_ment subtractor. The func_tional
S+ (s,—s) 2+ (c,—c) 2. ault model then needs to distinguish whether the fault lies on
f f the adder or the input inverters, and inject the fault accord-
Proof: To superpose the effect of the fault on the output gfigly. The comparator, with inputs& ar®l , is required to
the bit-slice, bitf ofShas to change from & This is equiv- check ifA>B . This can be realized by feedinAg ~d@hd to
alent to adding(s;—s) to bif , or addings;—s) (2 to S.the negative and positive inputs of the subtractor, respectively.
The carry-out from bitf is an input to the adder formed byhe result bit is the carry-out of the adder. The result bit is a 0
bits f+1 to n-1. The difference in the output of the addefyhenA<B , and a1 wheA>B
formed by bitsf+1 tan -1 , for the faulty adders, is equal to

return (faulty output)

B. Multipliers of the multiplication byp for the fault-free multiplier, and by
| Pr for the multiplier with faultf . Note that the structure of the

The modeling of a multiplier is illustrated by an array mul-_.* _ "~
tiplier for unsigned numbers [10] (Figure 2). The muItipIierCIrCUlt is very regular except for the last row, where the carry

X ripples horizontally. Hence, the analysis to determine the three
uses an array of carry-save adders to add the partial produ&%%ts ofC. . is divided into two parts: the first is used for any

The structure consists of an array of full-adders. The mulle) 5210 in any row but the last one, while the second is
plier accepts am -bit input and an -bit input . Th sed for cells in the last row

implementation shown containam (n-1) full-adders.
Hence, the uncollapsed fault set consists30fm (n — 1) First, consider cells in any row except the last. The inputs
stuck-at faults. x andy have masks applied to them, such that the value of

the desired line can be observed directly on the output of the
multiplier with the masked inputs. Hence, the appropriate
masks are applied to the inputs, functional multiplication is
i performed, and the specific bit are extracted from the output.

Xis1Yj1 /“'2 v 2 /1/0 Let x[i] represent the value of thieh bit of x. Also let
’ X,, be the masked value of input apg the masked value

of inputy , such that:
— 1
, x[p]; i+l<spsm-1
T Xm[p] = 0; Ospsi (1)
s ylal; O0=<gs<j-1
j ymlal = { 0; q2] (2)
e e—m The product of the masked inputs ps, = x,, G, . Bit
(i+j) of p,, contains the first inpua;; t€;; . Hence,
em a;=Pm[i+]] .
Poems Pramz Pz Poea P Py B P PR Theorem 2: The inpu,; to ce®t;; s tha +)™" bit

of the product ok,, ang, ,where, ary, are defined
by Equations 1 and 2, respectively.

Proof: First, we will prove that the value of;,; is the
same for inputx,, ang, as itis for the original inpxts
andy . From the structure of the multiplier, it can be seen that

The fault-free model is a multiplication operation, whicha, ; is not affected by{x (q),q<i} or byy(r),r=j}
is invoked for faults external to the multiplier. For internaHence, the bits which are maskedxjp and are not used

Fig. 2: Array multiplier

faults, the proposed fault model computes the faulty output nf computinga; ; . Now we have to show trat; is observed
the multiplier in the following 3 steps: on bit (i+j) ofx, 0y, .a;; propagates to th(ai +)™ it
1. Determination of the coordinates of the faulty cell. ~ ©f P through a number of full-adder cells. The other two
2. Computation of the three inputs of the faulty cell. inputs of each of these full-adders is reduced to zero by the
3. Computation of the output of the faulty multiplier. masks applied toc ang . Hence, the full-adders between

a; ; and the primary output become transparent, and the value

: IN€d D¥ropagates to the output of the multiplier unchanged. =
superposing the fault effect on the correct muItlpllcan}? pag P P g

result. Given the cell in which the fault is located, the faulty The outputs;; ofC;; can be obtained in a similar way by

and fault-free outputs of the cell need to be determined befaremputing the inpug, ;,, t&;;,, . The carry-in sigral

the superposition can be performed. However, for the outputan then be deduced as follows;; s50a;;0b;; =

of the cell to be extracted from the full-adder lookup table, the, ;., O a; ;0 b; ;. whereb; ; = x[i] Oy [j]

inputs of the faulty cell first have to be determined. Now consider cells in the last row. The output of || ,
Let C;; denote the full-adder cell with coordinates andavhere j = m , isis;; = p[i+]j] = p[i+m] . Inputsa;;

j, wherei andj are the column and row numbers, respdos any cell in the last row can be computed as previously

tively. The coordinates of the faulty cell can be extracted froalescribed for cells in other rows.

the fault identifier. To calculatec, ; , the carry-out of cell, ;_, s calculated
as presented in the previous case, by computing the three
Inputs of faulty cell C; ; inputs of C;;_, , then calculating the carry-out, where the

Each cellC,; hastwoinputs; amg, ,a carry-ininpufarmy-out is
c;;, asumoutpus,; ,and acarry-outoutpyt . Letthe surf@i -1 Obij_0) O(ay ;. 0¢;.4) O(by;_,0c¢;;.,) -
and carry-out outputs of;; for a fauit located in the cell

bes,;; ande,;, respectively. We will also denote the result

The inputb, ; is O for the first cell of the last row{ 0),
i.e. for Cy ., by, = 0. For any other cell in the last row
(i>0),b;;iss;;0a;;0¢;;.

Givena;; ,b;; , andc;; , the sum and carry-out can be
determined from he full-adder output lookup table. Note that
the table lookup technique is just one method of determining
the cell output. If the cell involved is large, the memory
requirements to store its outputs for all internal faults and all
input combinations may be impractical. In that case, some
other technique, like gate-level simulation of the cell, may be
performed to determine the faulty and fault-free cell outputs.

Faulty output

Given the output and carry-out of the faulty cell, the faulty
multiplier output is calculated by superposing the fault effect
on the fault-free output. Le;, amdl denote the difference
between the faulty and fault-free values of the sum and carry-

out outputs ofC, ; , respectively, i.e.

Os = Sij=Si
O = € =8
Theorems 3 and show the effect of changes; o

e;; on the multiplication result, respectively.

and

Theorem 3: The differencd, between the output of the
faulty and fault-free multiplier, due to the fault effect on the
sum output o, ; , i, 2"’

Proof: From the structure of the multiplier, it follows that
the output of cellC;; (or any input of;;) is added to the
final product, which is essentially a sum of the different rows,
at position (i +j) . Due to the linearity of the circuit, the
change from 0 to 1, or 1 to O, can be superposed on the prod-
uct by addingt1 at positiofii +j) . That s, by addi@) ™’
to the fault-free result of the multiplication. |

Theorem 4: The differencd, between the output of the
faulty and fault-free multiplier circuits, due to the fault effect
on the carry-out output of,; , 1§, 27"

multiplier(fault, x, y
case(fault location)of

external tomodule
return (x 0y)
internal tomodule
Determine coordinates and of faulty cell,
pm = X[m_11i+1] W[J_ll 0]
if (faulty cell in any row except the last)
Inputa of C;; =p,[i+]]
Inputb of C;; =x[i] Oy[i]
Outputs ofC;; =inputofC,;,,
Inputc;, ofC;; =alb0s
else
Inputa of C;; =p,[i+]]
Outputs ofC;; =Bit(i+j) ofxy
Compute the 3 inputs &, ; , , as done @y,
Outputc,,, ofC;; ;, =
(aOb) O(alc;y,) O(bOcy)
Inputc;, ofC;; =¢uofC;;
Inputb of C;; =alsOg,

f.f.sumoff =aObOc;,
f.f.carry off = (alb) O (alc;,) O(b0Oc;,)

faulty sum off = table_surfgult,a,b,g,)
faulty carry off = table_carrfgult,a,b,g,)

dg,m = (faulty sumofC; ;) - (f.f. sumo€C,;)
d..rry = (faulty carry ofC; ;) - (f.f. carry ofC;;)
fault-free output > 0y o
correction = (dg,, (2'7') + (dggryy 2771
faulty output = fault-free output + correction

return (faulty output)

Proof: The carry-out fromC;; is an input o€, ;,,
According to Theorem 3, the effect of the change on the line
can be superposed on the product at positiorj + 1) . That
is, by addingt2' /" to the fault-free multiplication. =

The effects of changes on bath; ang

Algorithm 2: Array multiplier functional fault model

I1l. EXPERIMENTAL RESULTS

The experimental results presented in this section demon-
. discussed §irate the performance of the proposed fault simulation

Theorems 3 and , respectively, can be superposed to comp‘iﬁBeme and its applicability to typical data-path architectures.

the product of the faulty multiplier:

High-level synthesis benchmark circuits were simulated in a

computationally-demanding BIST environment. The experi-

pm — p+65 [2i+j+6e |:2i+j+l

The multiplier functional fault model is shown in Algo-
rithm 2 . As with the adder, the evaluation of the multiplief;
model requires constant time, i.e. the performance of tIB%
model is independent of the size of the multiplier. Hence, t'lﬁ/
efficiency of this simulation technique compared to gate-level
simulation increases with larger structures.

ments are divided into two parts. First, some basic building
blocks are analyzed in Section Ill.A. This involves simulation
benchmarks using functional fault models, as well as testabil-
results. In the second part, covered in Section I11.B, a num-
r of high-level synthesis benchmark circuits are used to
aluate the efficiency of the simulation technique.

High-level synthesis benchmark circuits are computing
structures with data-paths comprising building blocks with

regular structures. Each of these building blocks can consist of
thousands of gates, making the circuits too computationally

intensive to simulate at the gate-level for a large number of Memory requirements are drastically reduced when func-

vectors with no fault dropping. tional fault modeling is used. No netlist or internal values
. . need to be stored for the module. Only one copy of the fault
A. Analysis of Building Blocks model needs to be kept, as well as copies of the memory ele-

ments in the circuits (e.g. registers) for all faults. The lookup

pseudo-random test vectors: a multiplier, an adder, a subtri@2!€ for the full-adder cell requires little memory. The cell
tor, and a comparator. All simulations were run on a S s 3 single-bit inputs (8 possible input combinations) and 30

SparcStation 5 with 32 MB of RAM and the results are Surr&r_ﬂernal faults (uncollapsed fault set). For those 240 possible
marized in Table I. A 16-bit data-path is used for all exper{lPUt-fault combinations, the values of the sum and carry-out
ments. The simulétion times are provided for the case ts need to be stored. If those 2 bits for every input-fault are

) tored in one byte of memory, the table requires 240 bytes. If

which detected faults are dropped from the list of active fau'ﬁie fault-free outputs are stored in the table as well (instead of

Four arithmetic building blocks were simulated with

;sa;/viil,l :‘"ngljtsc Z‘Tz g%ﬁ;gdﬂ%:aatjl:tviggfslr_l%fm%el;gge king cal'culated using the bool'ean equations), then 248 bytes
coverage is obtained for all blocks. are required for the table._ This memory can be reduced 4

times (to 62 bytes) by making use of all 8 bits in each byte of

] . o the array, instead of using only 2 bits.

TABLE I: Simulation of building blocks Since a 16-bit data-path is being used, the 32-bit output of

) It Vectors CPU time (sec) the multiplier is truncated by taking the most significant 16

Modulq Observation | Faull§ 100 i Bropping No dropping Dits. However, the truncation makes many faults in the circuit
32-bit product 710 28D > 1413 hard to observe as they have to propagate through many full-
16 MSB (TRUNC) | 7008 245096 2 12512 adder cells before reaching the observed outputs. This can be
16 MSB (XOR4) 7032 661 17 355 Seen by the large number of input vectors that need to be
i)
D 3
4

mull6

16 MSB (XOR2) 7056 32 179 applied to reach complete fault coverage. A number of modifi-
16 MSB (XOR1) 7104 28 170 cations can be implemented to increase the observability of
16 MSB (ADD) 7103 28 0. 148 Most faults in test mode, and hence decrease the test length. In
adderl$ 16-bit sum (no carry) 4 0.003 hao the XOR1 scheme (Figure 3), the 16 least significant bits of
subl6 | 16-bit difference 542 22 0.003 ola3 the output are XORed together, and the result is fed to the
1-bit (carry of adder] 445 178397 3d.9 2248 carry-in of the adder chain in the last row of the multiplier, i.e.

ot
e}
N
3}
i

4.
1-bit (XOR%) 2463 154 0.020 024 to the input ofC, which is normally set to 0. The XOR2
CMP16 I it (XOR?) 287 88 001l oy and XOR4 schemes are the same as XOR1, except that the
1-bit (XOR1) 540 67 0.000 0.6 nhumber of XOR gates is reduced as every second or fourth bit
is XORed, respectively. For example, in the XOR4 scheme,
't?%; carry-in bit ofC, . issett®, 0 Ps0P,, . These modifi-

The simulation speed is also shown as the number of evalyiqns reduce the test length by three orders of magnitude. In
uations that can be performed per second for each of ADD scheme, the 16 LSBs are added to the 16 MSBs. The
building blocks. This is done for both the faulty and fault-freg, plicability of the ADD scheme is dependent on how the
models, with the results shown in Table Il. For example, t ta-path is implemented, and whether it is feasible to per-

faulty 16> 16 multiplier can be evaluated approximatel¥tyrm the operation using existing hardware
160,000 times per second. The time needed to evaluate a P g g '

fault-free multiplier is approximately one order of magnitude
less than that needed to evaluate the functional model of the
faulty multiplier. The rate of equivalent gate evaluations refers

to the performance achieved with the functional model, rela- e
tive to structural simulation. That is, if the faulty multiplier l
can be evaluated 160,000 times per second, and its circuit XiYj

consists of 1200 gates, then this is equivalent to simulating
1.92x10° gates per second.

TABLE Il: Simulation performance of building blocks

Module| No. gate Block eval/sec Equiv. gate eval/sec
Fault-free | Faulty Fault-free Faulty
mull6 12090 1,700,00p 160,00 2,040,000,000 192,000,000
adder1§ 8¢ 2,400,000 353,0p0 198,000,000 28,200,000 .
sub16 9¢q 3,022,000 409,00 290,000,000 39,300,000
cmpl6 9q 2,600,00p 394,000 250,000,000 37,800,000 Prmi Prim2 Pniz Pmia Pm

Fig. 3: Array multiplier with XOR gates

The comparator circuit suffers from an observability limidation results are shown in Table IV. As with the elliptical
tation similar to that of the multiplier. It is implemented as a
subtractor, with the carry-out of the adder being observed.

TABLE IV: BPF benchmark simulation
Hence, faults have to propagate through to the carry-out out-

put of the adder to be observed. The modifications in this casg, | ociord CPY time Fault coverage (%)

consist of XORing selected output bits from the adder with 1 (sec) TRUNC | XOR4| XOR2 XOR1 ADD

the output bit. This leads to a significant reduction in the test 10 9.8] 68.097 88.76p 94.275 94.397 99.258

length - more than three orders of magnitude. 100 98] 88.647 100.00 100.00 100{00 100.00
In summary, a number of arithmetic building blocks were 1000 974 95578 100.00 100.p0 100j00 100.00

simulated with and without fault dropping. The simulatio 10,000 10,73 99.592 100.00 100{00 100.00 10p.00

times illustrate the efficiency of the technique. Complete fault100.009 =100 000f 99.98f 100.G0 100.p0 10000 104.00

coverage can be achieved for all the blocks. However, some

blocks feature limited observability that requires a large nunjyave filter circuit, complete fault coverage is achieved for all
ber of test vectors to achieve complete fault coverage. A nugyses except when the multiplier output is truncated.
ber of modifications to these blocks can be devised to enhance

the observability, and hence drastically decrease the test

length required for complete fault coverage. IV. CONCLUSIONS

. i In this paper, it has been shown that the regularity of the
B. High-Level Synthesis Benchmarks structures of several building blocks commonly used in data-
Two high-level synthesis benchmark circuits are analyze®fith architectures can be used to derive accurate functional
in this section: an elliptical wave filter and a band-pass filtef@ult models. The faulty response is typically computed by
The implementation of the elliptical wave filter contains 3solating the fault effect and superposing it on the fault-free
multipliers, 3 adders, and 17 registers. A total of 22677 faulf§Sult. This leads to very efficient fault simulation of these
are injected on the adders and multipliers. For each input vé0cks, reducing simulation of hundreds or thousands of gates

tor applied, the circuit performs a total of 34 operations: 2@ & few instructions. The technique can be incorporated into a
additions and 8 multiplications. variety of simulation environments for accelerating the fault

The input vectors are generated using an additive geneﬁ- mulation of regular blocks that lend themselves to this mod-
tor, which uses existing adders in the circuit. Compaction @g approach. Furthermore, memory usage is significantly
do,ne by converting the indicated addition operation to rotatEQduced since no netlist needs to be instantiated for the blocks,

carry addition [3]. ?nnadcﬂi?]gernal values need to be stored for the different faulty

Table Il indicates the fault coverage achieved and simula-

REFERENCES
TABLE Ill: EWF benchmark simulation [1] S. Gupta, J. Rajski, and J. Tyszer, “Test Pattern Generation Based on
No. vector CPU timel Fault coverage (%) , ?ritgmelt(ic Op;r?tio_?s,Proc. c:the ICICADrép. 1](.17-(:;24, Nov. 1994;. .
. 9 3 . Rajski and J. Tyszer, “Accumulator-Base ompaction of Test
10 (se% 3 TR%NSC;(X804R54‘;L3 ngR;Q X;)SROL43 ASI)35D751 o Respcj)nsles,lEEE Traynsz. on Com:ut:rpp. 643-650, Junz 19I93.
- . - - 'C T [8] M. Kassab, J. Rajski, and J. Tyszer, “Accumulator-Based Compaction
100 109 87.924 99.283 99.902 99.943 99.p21 for Built-In Self Test of Data-path Architecture4st Asian Test Sympo-
1000 1050 94.37F 99.982 100.p0 99.996 100.00 sium pp. 241-246, Hiroshima, Japan, Nov. 1992.
10,0000 10,48 98.214 100.00 100/00 104.00 100.00 [4] T. M. Niermann and W. T. Cheng and J. H. Patel, “PROOFS: A Fast,
100,009 10,9898 99.761 100.p0 100{00 100.00 100.00 Memory Efficient Sequential Circuit Fault Simulatolf?EE Trans. on

Computer-Aided Desigmpp. 198-207, Feb. 1992.

. . . . 5
tion time required to apply a given number of vectors. Not[e]

that for each vector applied, all operations shown in the data
flow graph (DFG) are performed (26 additions and 8 multiplifs]
cations). This is the equivalent of simulating 11680 gates for
each of the 22678 machines - for every vector applied. [7]
The fault coverage, when the 16 least-significant bits the
multipliers’ outputs are truncated, does not reach 100% due[P
the observability limitation of the multiplier. Full fault cover-
age is reached for each of the modified circuits within a rea-
sonable test length. [9]

The second benchmark circuit simulated is the band-pass
filter. A total of 15640 faults are injected on the 2 multipliers10]
2 adders, and 1 subtractor. There are 13 registers in the circuit.
A total of 29 operations are performed for each input vector:
12 multiplications, 10 additions, and 7 subtractions. The simu-

H. K. Lee and D. S. Ha, “HOPE: An Efficient Parallel Fault Simulator
for Synchronous Sequential Circuitftoc. 29th ACM/IEEE Design
Automation Conferenc@p. 336-340, June 1992.

S. Ghosh, “Behavioral-Level Fault SimulationPEE Design and Test
of Computerspp. 31-42, June 1988.

S. Gai and P. L. Montessoro and F. Somenzi, “MOZART: A Concurrent
Multilevel Simulator,” IEEE Trans. on Computer-Aided Desigop.
1005-1016, Sep. 1988.

W. Meyer and R. Camposano, “Fast Hierarchical Multi-Level Fault
Simulation of Sequential Circuits with Switch-Level Accuradyroc.
30th ACM/IEEE Design Automation Conferengp. 515-519, 1993.

N. Mukherjee, M. Kassab, J. Rajski, and J. Tyszer, “Arithmetic Built-In
Self Test for High-Level SynthesisyLSI Test Symposiyrh995.

I. Koren, “Computer Arithmetic Algorithms,” Prentice Hall, 1993.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

