
Software Accelerated Functional Fault Simulation for Data-Path Architectures*

M. Kassab, N. Mukherjee, J. Rajski†, and J. Tyszer

Microelectronics and Computer Systems Laboratory
McGill University, Montreal, Canada, H3A 2A7

†Mentor Graphics Corporation, Wilsonville, OR 97070, USA

Abstract - This paper demonstrates how fault simulation of
building blocks found in data-path architectures can be per-
formed extremely efficiently and accurately by taking advantage
of their simple functional models and structural regularity. This
technique can be used to accelerate the simulation of those blocks
in virtually any fault simulation environment, resulting in fault
simulation algorithms that can perform fault grading in a very
demanding BIST environment.

I. INTRODUCTION

Data-path architectures constitute a large portion of cir-
cuits manufactured by the ASIC industry, and are mainly used
in high performance computing systems like DSP circuits.
The proliferation of embedded systems and high-level synthe-
sis is expected to further increase the number of circuits com-
prising data-paths with such regular blocks as adders,
multipliers, multiplexers, shifters, register files, etc.

 Recently, it has been shown that for circuits with data-
path architectures, existing hardware on the chip, such as
arithmetic and logic units (ALUs), can be used to successfully
perform test pattern generation [1] and test response compac-
tion [2]. Consequently, for a given circuit, a built-in self test
(BIST) scheme can be devised such that the circuit tests itself
with virtually no area overhead and no performance degrada-
tion [3]. The test is applied at-speed, which allows the appli-
cation of a large number of cycles and increases the
probability of detecting dynamic and unmodeled faults.

 However, in order to assess the quality of a proposed
BIST scheme, fault grading has to be used. This requires fault
simulation to be performed for a relatively large number of
vectors with no fault dropping, which can be very computa-
tionally intensive for most known fault simulation techniques.

Existing fault simulators fall into several categories. Most
are gate-level simulators, such as PROOFS [4] and HOPE [5],
with very efficient structural simulation algorithms and the
flexibility of handling any circuit whose structural model is
known. However, they do not exploit the functionality of the
circuit and its building blocks to reduce simulation time; any
circuit is treated like random logic. Gate-level simulators

require the entire circuit to be modeled at the structural level.
This precludes simulating circuits which contains blocks that
are only modeled behaviorally. Some simulators [6] model
faults functionally at a higher level of abstraction. This
enhances performance at the expense of accuracy. Simulators
like MOZART [7] allow multilevel simulation, such that dif-
ferent blocks have the flexibility of being modeled at different
levels of abstraction. Blocks which are not to be fault-simu-
lated, or do not have a gate-level representation, can thus be
modeled at a higher level of abstraction. More recent develop-
ments, like FEHSIM [8], use enhanced scheduling techniques
to dynamically switch between different levels of abstraction
such as to maximize speed without losing accuracy.

 The simulation approach presented in this paper exploits
the fact that most modules in data-path architectures perform
arithmetic operations for which fault-free simulation can be
performed very efficiently. The regularity and functionality of
many arithmetic structures makes it possible to compute the
faulty output functionally, without resorting to structural sim-
ulation. This is done without loss of accuracy for any fault
model. Hence, behavioral-level speed can be obtained with
gate-level accuracy. Memory usage is also drastically reduced
as no netlist has to be instantiated for the module, and no val-
ues internal to the netlist need to be stored for the different
faulty machines.

II. FUNCTIONAL FAULT MODELING IN REGULAR BLOCKS

To analyze the fault coverage of a circuit, given a BIST
scheme, fault simulation has to be performed without fault
dropping [9], i.e., the entire fault list has to be simulated for
all vectors, making the process very computationally inten-
sive. The techniques presented in this paper exploit features of
data-path building blocks to speed up their simulation, and
hence make fault simulation of data-path circuits possible in a
BIST environment. Data-path architectures mainly consist of
building blocks, such as adders, subtractors, multipliers, com-
parators, etc. These blocks have regular structures and simple
functionality. Hence, their faulty behavior can often be mod-
eled and computed functionally with gate-level accuracy, as
will be shown in this section. Fault simulation for blocks with
functional fault models can thus be performed almost as fast
as functional simulation of the fault-free model.

This section examines the modeling of some of those
building blocks. The fault-free functionality can be repre-
sented by simple operations, which can be invoked for faults
external to the module. For faults internal to the module, the
faulty output of the module can be efficiently computed by
superposing the effect of the fault on the fault-free output.

 * This work was supported by a Cooperative Research and Development
grant from the Natural Sciences and Engineering Research Council of Canada
and Bell-Northern Research.

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

Two examples are covered in detail: a ripple-carry adder and
an array multiplier for unsigned numbers. In a similar way,
fault models were developed for a number of other building
blocks, such as Booth multipliers, ALUs, and multiplexers.

A. Adders, Subtractors, and Comparators

The modeling of an adder is illustrated using a ripple-carry
adder (Figure 1). Each bit-slice is implemented as a full-adder
cell. This simulation technique can be applied to a variety of
fault models. The single-stuck-at model will be used in this
paper. The uncollapsed stuck-at fault set for the full-adder cell
consists of faults. Hence, ann-bit adder contains
faults (uncollapsed fault set).

In the functional fault model, the faulty output due to an
internal fault will be computed by superposing the fault effect
on the fault-free sum. The faulty behavior of a full-adder cell
is known. A lookup table is used to model the behavior of the
cell by storing the outputs (sum and carry-out) of the full-
adder cell for all faults () and all possible inputs ().
The table in this example models single stuck-at faults.

Consider the -bit adder, with the fault-free sum outputS,
and an internal fault located in bit-slice . Lets andc be the
fault-free sum and carry-out values of bit-slice , respectively,
while sf and cf denote the faulty values ofs andc. The faulty
output of the adder can be computed according to the follow-
ing theorem:

Theorem 1: The output of the faulty adder is
.

Proof: To superpose the effect of the fault on the output of
the bit-slice, bit ofS has to change from tosf. This is equiv-
alent to adding to bit , or adding to S.
The carry-out from bit is an input to the adder formed by
bits to n-1. The difference in the output of the adder
formed by bits to , for the faulty adders, is equal to

Fig. 1: Ripple-carry adder.

30 30n

A

B

S

a
b

cout

cin

s

FA0

FA1

FAf

FAn-1

30 2
3

8=

n
f

f

S sf s–() 2
f cf c–() 2

f 1+⋅+⋅+

f
sf s–() f sf s–() 2

f⋅
f

f 1+
f 1+ n 1–

. Hence, the fault effect is realized by adding
to bit , or adding to S. The two effects are
superposed, such that is added to
S. ■

Based on Theorem 1, calculation of the output of the
faulty adder can be conducted as follows. First, variables ,

, , and have to be determined. To look up these values
in the corresponding table, the three inputs to faulty cell are
calculated. The two input bits to the cell, , and , are
directly extracted from primary inputs and , respectively.
The carry-in bit to the cell is equal to the carry-out of the sum
of bit-range 0 to . This is illustrated in Algorithm 1.

The functional model shown by the algorithm computes
the faulty output in constant time, independent of the adder
size. The use of table lookup for the full-adder cells allows
fast evaluation, as well as the flexibility to use different fault
models.

Subtractors and comparators can be modeled as extensions
of the adder. By inverting one of the adder’s inputs and feed-
ing a 1 to the carry-in of the least significant bit, the adder is
transformed into a 2’s complement subtractor. The functional
fault model then needs to distinguish whether the fault lies on
the adder or the input inverters, and inject the fault accord-
ingly. The comparator, with inputs and , is required to
check if . This can be realized by feeding and to
the negative and positive inputs of the subtractor, respectively.
The result bit is the carry-out of the adder. The result bit is a 0
when , and a 1 when .

adder(fault, x, y, cin)
case (fault location)of

external tomodule:
return ()

internal tomodule:
 = index of faulty full-adder

a =
b =
if (fault in least significant bit-slice)

c =
else

c = carry()

fault-free sum of =
fault-free carry of =

faulty sum of = table_sum(fault,a,b,c)
faulty carry of = table_carry(fault,a,b,c)

 = (faulty sum of) - (fault-free sum of)
 = (faulty carry of) - (fault-free carry of)

fault-free output =
correction =
faulty output = fault-free output + correction

return (faulty output)

Algorithm 1: Binary adder Functional fault model

cf c–() cf c–()
f 1+ cf c–() 2

f 1+⋅
sf s–() 2

f cf c–()+ 2
f 1+⋅ ⋅

s
c sf cf

f
Af Bf

A B

f 1–

x y cin+ +

f
x f[]
y f[]

cin

x f 1 0,–[] y f 1 0,–[] cin+ +

f a b c⊕ ⊕
f a b∧() b c∧() a c∧()∨ ∨

f
f

dsum f f
dcarry f f

x y cin+ +
dsum 2

f⋅() dcarry 2
f 1+⋅()+

A B
A B> A B

A B≤ A B>

B. Multipliers

The modeling of a multiplier is illustrated by an array mul-
tiplier for unsigned numbers [10] (Figure 2). The multiplier
uses an array of carry-save adders to add the partial products.
The structure consists of an array of full-adders. The multi-
plier accepts an -bit input and an -bit input . The
implementation shown contains full-adders.
Hence, the uncollapsed fault set consists of
stuck-at faults.

The fault-free model is a multiplication operation, which
is invoked for faults external to the multiplier. For internal
faults, the proposed fault model computes the faulty output of
the multiplier in the following 3 steps:

1. Determination of the coordinates of the faulty cell.
2. Computation of the three inputs of the faulty cell.
3. Computation of the output of the faulty multiplier.

As with the adder, the faulty output is determined by
superposing the fault effect on the correct multiplication
result. Given the cell in which the fault is located, the faulty
and fault-free outputs of the cell need to be determined before
the superposition can be performed. However, for the outputs
of the cell to be extracted from the full-adder lookup table, the
inputs of the faulty cell first have to be determined.

Let denote the full-adder cell with coordinates and
, where and are the column and row numbers, respec-

tively. The coordinates of the faulty cell can be extracted from
the fault identifier.

 Inputs of faulty cell

Each cell has two inputs and , a carry-in input
, a sum output , and a carry-out output . Let the sum

and carry-out outputs of for a fault located in the cell
be and respectively. We will also denote the result

Fig. 2: Array multiplier

m x n y
m n 1–()

30m n 1–()

FA

i

j

012

3

1

2

m-1

m

n-2

Pn+m-1 Pn+m-2 Pm+2 Pm Pm-1 P0P1P2P3Pm+1

xi+1yj-1

xiyj

0

0 0 0 0

Ci j, i
j i j

Ci j,

Ci j, ai j, bi j,
ci j, si j, ei j,

Ci j, f
si j f, , ei j f, ,

of the multiplication by for the fault-free multiplier, and by
 for the multiplier with fault . Note that the structure of the

circuit is very regular except for the last row, where the carry
ripples horizontally. Hence, the analysis to determine the three
inputs of is divided into two parts: the first is used for any
cell located in any row but the last one, while the second is
used for cells in the last row.

First, consider cells in any row except the last. The inputs
 and have masks applied to them, such that the value of

the desired line can be observed directly on the output of the
multiplier with the masked inputs. Hence, the appropriate
masks are applied to the inputs, functional multiplication is
performed, and the specific bit are extracted from the output.

Let represent the value of thei’th bit of . Also let
 be the masked value of input and the masked value

of input , such that:

(1)

(2)

The product of the masked inputs is . Bit
 of , contains the first input to . Hence,

= .

Theorem 2: The input to cell is the bit
of the product of and , where and are defined
by Equations 1 and 2, respectively.

Proof: First, we will prove that the value of is the
same for inputs and as it is for the original inputs
and . From the structure of the multiplier, it can be seen that

 is not affected by or by .
Hence, the bits which are masked in and are not used
in computing . Now we have to show that is observed
on bit of . propagates to the bit
of through a number of full-adder cells. The other two
inputs of each of these full-adders is reduced to zero by the
masks applied to and . Hence, the full-adders between

 and the primary output become transparent, and the value
propagates to the output of the multiplier unchanged. ■

The output of can be obtained in a similar way by
computing the input to . The carry-in signal
can then be deduced as follows: = =

. where .
Now consider cells in the last row. The output of cell ,

where , is: . Inputs
for any cell in the last row can be computed as previously
described for cells in other rows.

To calculate , the carry-out of cell is calculated
as presented in the previous case, by computing the three
inputs of , then calculating the carry-out, where the
carry-out is

.

p
pf f

Ci j,

x y

x i[] x
xm x ym

y

xm p[]
x p[] i 1+ p m 1–≤ ≤;

0 0 p i≤ ≤;{=

ym q[]
y q[] 0 q j 1–≤ ≤;

0 q j≥;{=

pm xm ym⋅=
i j+() pm ai j, Ci j,

ai j, pm i j+[]

ai j, Ci j, i j+() th

xm ym xm ym

ai j,
xm ym x

y
ai j, x q() q i≤,{ } y r() r j≥,{ }

xm ym
ai j, ai j,

i j+() xm ym⋅ ai j, i j+() th

pm

x y
ai j,

si j, Ci j,
ai j 1+, Ci j 1+, ci j,

ci j, si j, ai j, bi j,⊕ ⊕
ai j 1+, ai j, bi j,⊕ ⊕ bi j, x i[] y j[]∧=

Ci j,
j m= si j, p i j+[] p i m+[]= = ai j,

ci j, Ci j 1–,

Ci j 1–,

ai j 1–, bi j 1–,∧() ai j 1–, ci j 1–,∧() bi j 1–, ci j 1–,∧()∨ ∨

The input is 0 for the first cell of the last row (),
i.e. for , . For any other cell in the last row
(), is .

 Given , , and , the sum and carry-out can be
determined from the full-adder output lookup table. Note that
the table lookup technique is just one method of determining
the cell output. If the cell involved is large, the memory
requirements to store its outputs for all internal faults and all
input combinations may be impractical. In that case, some
other technique, like gate-level simulation of the cell, may be
performed to determine the faulty and fault-free cell outputs.

 Faulty output

Given the output and carry-out of the faulty cell, the faulty
multiplier output is calculated by superposing the fault effect
on the fault-free output. Let and denote the difference
between the faulty and fault-free values of the sum and carry-
out outputs of , respectively, i.e.

Theorems 3 and show the effect of changes to and
 on the multiplication result, respectively.

Theorem 3: The difference between the output of the
faulty and fault-free multiplier, due to the fault effect on the
sum output of , is .

Proof: From the structure of the multiplier, it follows that
the output of cell (or any input of) is added to the
final product, which is essentially a sum of the different rows,
at position . Due to the linearity of the circuit, the
change from 0 to 1, or 1 to 0, can be superposed on the prod-
uct by adding at position . That is, by adding
to the fault-free result of the multiplication. ■

Theorem 4: The difference between the output of the
faulty and fault-free multiplier circuits, due to the fault effect
on the carry-out output of , is .

Proof: The carry-out from is an input of .
According to Theorem 3, the effect of the change on the line
can be superposed on the product at position . That
is, by adding to the fault-free multiplication. ■

The effects of changes on both and , discussed in
Theorems 3 and , respectively, can be superposed to compute
the product of the faulty multiplier:

The multiplier functional fault model is shown in Algo-
rithm 2 . As with the adder, the evaluation of the multiplier
model requires constant time, i.e. the performance of the
model is independent of the size of the multiplier. Hence, the
efficiency of this simulation technique compared to gate-level
simulation increases with larger structures.

bi j, i 0=
C0 m, b0 m, 0=

i 0> bi j, si j, ai j, ci j,⊕ ⊕
ai j, bi j, ci j,

δs δe

Ci j,

δs si j f, , si j,–=

δe ei j f, , ei j,–=

si j,
ei j,

δs

Ci j, δs 2
i j+⋅

Ci j, Ci j,

i j+()

1± i j+() 2
i j+±

δe

Ci j, δe 2
i j 1+ +⋅

Ci j, Ci j 1+,

i j 1+()+
2

i j 1+ +±

si j, ei j,

pm p δs 2
i j+ δe 2

i j 1+ +⋅+⋅+=

III. EXPERIMENTAL RESULTS

The experimental results presented in this section demon-
strate the performance of the proposed fault simulation
scheme and its applicability to typical data-path architectures.
High-level synthesis benchmark circuits were simulated in a
computationally-demanding BIST environment. The experi-
ments are divided into two parts. First, some basic building
blocks are analyzed in Section III.A. This involves simulation
benchmarks using functional fault models, as well as testabil-
ity results. In the second part, covered in Section III.B, a num-
ber of high-level synthesis benchmark circuits are used to
evaluate the efficiency of the simulation technique.

High-level synthesis benchmark circuits are computing
structures with data-paths comprising building blocks with
regular structures. Each of these building blocks can consist of
thousands of gates, making the circuits too computationally

multiplier(fault, x, y)
case (fault location)of

external tomodule:
return ()

internal tomodule:
Determine coordinates and of faulty cell

if (faulty cell in any row except the last)
Input of =
Input of =
Output of = input of
Input of =

else
Input of =
Output of = Bit of
Compute the 3 inputs of , as done for
Output of =

Input of = cout of
Input of =

f.f. sum of =
f.f. carry of =

faulty sum of = table_sum(fault,a,b,cin)
faulty carry of = table_carry(fault,a,b,cin)

 = (faulty sum of) - (f.f. sum of)
 = (faulty carry of) - (f.f. carry of)

fault-free output =
correction =
faulty output = fault-free output + correction

return (faulty output)

Algorithm 2: Array multiplier functional fault model

x y⋅

i j Ci j,
pm x m 1 i 1+,–[] y j 1 0,–[]⋅=

a Ci j, pm i j+[]
b Ci j, x i[] y i[]∧

s Ci j, Ci j 1+,
cin Ci j, a b s⊕ ⊕

a Ci j, pm i j+[]
s Ci j, i j+() x y⋅

Ci j 1–, Ci j,
cout Ci j 1–,

a b∧() a cin∧() b cin∧()∨ ∨
cin Ci j, Ci j 1–,
b Ci j, a s cin⊕ ⊕

f a b cin⊕ ⊕
f a b∧() a cin∧() b cin∧()∨ ∨

f
f

dsum Ci j, Ci j,
dcarry Ci j, Ci j,

x y⋅
dsum 2

i j+⋅() dcarry 2
i j 1+ +⋅()+

intensive to simulate at the gate-level for a large number of
vectors with no fault dropping.

A. Analysis of Building Blocks

Four arithmetic building blocks were simulated with
pseudo-random test vectors: a multiplier, an adder, a subtrac-
tor, and a comparator. All simulations were run on a Sun
SparcStation 5 with 32 MB of RAM and the results are sum-
marized in Table I. A 16-bit data-path is used for all experi-
ments. The simulation times are provided for the case in
which detected faults are dropped from the list of active faults,
as well as the case in which no fault dropping is performed;
that is, all faults are simulated for all vectors. Complete fault
coverage is obtained for all blocks.

The simulation speed is also shown as the number of eval-
uations that can be performed per second for each of the
building blocks. This is done for both the faulty and fault-free
models, with the results shown in Table II. For example, the
faulty multiplier can be evaluated approximately
160,000 times per second. The time needed to evaluate a
fault-free multiplier is approximately one order of magnitude
less than that needed to evaluate the functional model of the
faulty multiplier. The rate of equivalent gate evaluations refers
to the performance achieved with the functional model, rela-
tive to structural simulation. That is, if the faulty multiplier
can be evaluated 160,000 times per second, and its circuit
consists of 1200 gates, then this is equivalent to simulating

 gates per second.

TABLE I: Simulation of building blocks

Module Observation Faults
Vectors CPU time (sec)

(100% FC) Dropping No dropping

mul16

32-bit product 7103 280 3.2 14.3
16 MSB (TRUNC) 7008 245096 857.2 12512
16 MSB (XOR4) 7032 661 1.7 35.5
16 MSB (XOR2) 7056 320 0.9 17.9
16 MSB (XOR1) 7109 280 0.8 17.0
16 MSB (ADD) 7103 280 0.7 14.8

adder16 16-bit sum (no carry) 456 26 0.003 0.040
sub16 16-bit difference 522 22 0.003 0.33

cmp16

1-bit (carry of adder) 445 178397 39.9 244.8
1-bit (XOR4) 463 154 0.020 0.24
1-bit (XOR2) 487 85 0.011 0.17
1-bit (XOR1) 540 67 0.009 0.16

TABLE II: Simulation performance of building blocks

Module No. gates
Block eval/sec Equiv. gate eval/sec

Fault-free Faulty Fault-free Faulty
mul16 1200 1,700,000 160,000 2,040,000,000 192,000,000
adder16 80 2,400,000 353,000 198,000,000 28,200,000
sub16 96 3,022,000 409,000 290,000,000 39,300,000
cmp16 96 2,600,000 394,000 250,000,000 37,800,000

16 16×

1.92 8×10

Memory requirements are drastically reduced when func-
tional fault modeling is used. No netlist or internal values
need to be stored for the module. Only one copy of the fault
model needs to be kept, as well as copies of the memory ele-
ments in the circuits (e.g. registers) for all faults. The lookup
table for the full-adder cell requires little memory. The cell
has 3 single-bit inputs (8 possible input combinations) and 30
internal faults (uncollapsed fault set). For those 240 possible
input-fault combinations, the values of the sum and carry-out
bits need to be stored. If those 2 bits for every input-fault are
stored in one byte of memory, the table requires 240 bytes. If
the fault-free outputs are stored in the table as well (instead of
being calculated using the boolean equations), then 248 bytes
are required for the table. This memory can be reduced 4
times (to 62 bytes) by making use of all 8 bits in each byte of
the array, instead of using only 2 bits.

 Since a 16-bit data-path is being used, the 32-bit output of
the multiplier is truncated by taking the most significant 16
bits. However, the truncation makes many faults in the circuit
hard to observe as they have to propagate through many full-
adder cells before reaching the observed outputs. This can be
seen by the large number of input vectors that need to be
applied to reach complete fault coverage. A number of modifi-
cations can be implemented to increase the observability of
most faults in test mode, and hence decrease the test length. In
the XOR1 scheme (Figure 3), the 16 least significant bits of
the output are XORed together, and the result is fed to the
carry-in of the adder chain in the last row of the multiplier, i.e.
to the input of which is normally set to 0. The XOR2
and XOR4 schemes are the same as XOR1, except that the
number of XOR gates is reduced as every second or fourth bit
is XORed, respectively. For example, in the XOR4 scheme,
the carry-in bit of is set to . These modifi-
cations reduce the test length by three orders of magnitude. In
the ADD scheme, the 16 LSBs are added to the 16 MSBs. The
applicability of the ADD scheme is dependent on how the
data-path is implemented, and whether it is feasible to per-
form the operation using existing hardware.

Fig. 3: Array multiplier with XOR gates

C0 m,

C0 m, P4 P8 P12⊕ ⊕

PmPm+1Pm+2Pn+m-2Pn+m-1

0 000

FA

xi+1yj-1

xiyj

The comparator circuit suffers from an observability limi-
tation similar to that of the multiplier. It is implemented as a
subtractor, with the carry-out of the adder being observed.
Hence, faults have to propagate through to the carry-out out-
put of the adder to be observed. The modifications in this case
consist of XORing selected output bits from the adder with
the output bit. This leads to a significant reduction in the test
length - more than three orders of magnitude.

In summary, a number of arithmetic building blocks were
simulated with and without fault dropping. The simulation
times illustrate the efficiency of the technique. Complete fault
coverage can be achieved for all the blocks. However, some
blocks feature limited observability that requires a large num-
ber of test vectors to achieve complete fault coverage. A num-
ber of modifications to these blocks can be devised to enhance
the observability, and hence drastically decrease the test
length required for complete fault coverage.

B. High-Level Synthesis Benchmarks

Two high-level synthesis benchmark circuits are analyzed
in this section: an elliptical wave filter and a band-pass filter.
The implementation of the elliptical wave filter contains 3
multipliers, 3 adders, and 17 registers. A total of 22677 faults
are injected on the adders and multipliers. For each input vec-
tor applied, the circuit performs a total of 34 operations: 26
additions and 8 multiplications.

The input vectors are generated using an additive genera-
tor, which uses existing adders in the circuit. Compaction is
done by converting the indicated addition operation to rotate-
carry addition [3].

Table III indicates the fault coverage achieved and simula-

tion time required to apply a given number of vectors. Note
that for each vector applied, all operations shown in the data
flow graph (DFG) are performed (26 additions and 8 multipli-
cations). This is the equivalent of simulating 11680 gates for
each of the 22678 machines - for every vector applied.

The fault coverage, when the 16 least-significant bits the
multipliers’ outputs are truncated, does not reach 100% due to
the observability limitation of the multiplier. Full fault cover-
age is reached for each of the modified circuits within a rea-
sonable test length.

 The second benchmark circuit simulated is the band-pass
filter. A total of 15640 faults are injected on the 2 multipliers,
2 adders, and 1 subtractor. There are 13 registers in the circuit.
A total of 29 operations are performed for each input vector:
12 multiplications, 10 additions, and 7 subtractions. The simu-

TABLE III: EWF benchmark simulation

No. vectors
CPU time Fault coverage (%)

(sec) TRUNC XOR4 XOR2 XOR1 ADD
10 10.9 71.896 84.513 89.772 93.043 95.251

100 105 87.924 99.283 99.902 99.943 99.921
1000 1050 94.377 99.982 100.00 99.996 100.00

10,000 10,485 98.214 100.00 100.00 100.00 100.00
100,000 10,9898 99.781 100.00 100.00 100.00 100.00

lation results are shown in Table IV. As with the elliptical

wave filter circuit, complete fault coverage is achieved for all
cases except when the multiplier output is truncated.

IV. CONCLUSIONS

In this paper, it has been shown that the regularity of the
structures of several building blocks commonly used in data-
path architectures can be used to derive accurate functional
fault models. The faulty response is typically computed by
isolating the fault effect and superposing it on the fault-free
result. This leads to very efficient fault simulation of these
blocks, reducing simulation of hundreds or thousands of gates
to a few instructions. The technique can be incorporated into a
variety of simulation environments for accelerating the fault
simulation of regular blocks that lend themselves to this mod-
eling approach. Furthermore, memory usage is significantly
reduced since no netlist needs to be instantiated for the blocks,
and no internal values need to be stored for the different faulty
machines.

 REFERENCES

[1] S. Gupta, J. Rajski, and J. Tyszer, “Test Pattern Generation Based on
Arithmetic Operations,”Proc. of the ICCAD, pp. 117-124, Nov. 1994.

[2] J. Rajski and J. Tyszer, “Accumulator-Based Compaction of Test
Responses,” IEEE Trans. on Computers, pp. 643-650, June 1993.

[3] M. Kassab, J. Rajski, and J. Tyszer, “Accumulator-Based Compaction
for Built-In Self Test of Data-path Architectures,”1st Asian Test Sympo-
sium, pp. 241-246, Hiroshima, Japan, Nov. 1992.

[4] T. M. Niermann and W. T. Cheng and J. H. Patel, “PROOFS: A Fast,
Memory Efficient Sequential Circuit Fault Simulator,”IEEE Trans. on
Computer-Aided Design, pp. 198-207, Feb. 1992.

[5] H. K. Lee and D. S. Ha, “HOPE: An Efficient Parallel Fault Simulator
for Synchronous Sequential Circuits,”Proc. 29th ACM/IEEE Design
Automation Conference, pp. 336-340, June 1992.

[6] S. Ghosh, “Behavioral-Level Fault Simulation,”IEEE Design and Test
of Computers, pp. 31-42, June 1988.

[7] S. Gai and P. L. Montessoro and F. Somenzi, “MOZART: A Concurrent
Multilevel Simulator,” IEEE Trans. on Computer-Aided Design, pp.
1005-1016, Sep. 1988.

[8] W. Meyer and R. Camposano, “Fast Hierarchical Multi-Level Fault
Simulation of Sequential Circuits with Switch-Level Accuracy,”Proc.
30th ACM/IEEE Design Automation Conference, pp. 515-519, 1993.

[9] N. Mukherjee, M. Kassab, J. Rajski, and J. Tyszer, “Arithmetic Built-In
Self Test for High-Level Synthesis,”VLSI Test Symposium, 1995.

[10] I. Koren, “Computer Arithmetic Algorithms,” Prentice Hall, 1993.

TABLE IV: BPF benchmark simulation

No. vectors
CPU time Fault coverage (%)

(sec) TRUNC XOR4 XOR2 XOR1 ADD
10 9.8 68.097 88.766 94.275 94.397 99.258

100 98 88.647 100.00 100.00 100.00 100.00
1000 974 95.573 100.00 100.00 100.00 100.00

10,000 10,739 99.592 100.00 100.00 100.00 100.00
100,000 99.987 100.00 100.00 100.00 100.00100 000,≈

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

