
Abstract
This paper addresses the problem of state assignment for
large Finite State Machines (FSM). This is an important
problem in the high performance digital system design
where added functionality often comes at the expense of a
larger (and slower) FSM to control the system. We present
a new method to solve the graph embedding problem which
is the main step in the state assignment process. The basic
idea is to place the state adjacency graph in a two-dimen-
sional grid while minimizing the total wire length. The grid
is then mapped into an n-dimensional hypercube while
nearly preserving the adjacency relations that is with dila-
tion at most 2. Experimental results are presented and
compared with those of NOVA.

1. Introduction
Controller synthesis is an important problem in the high
performance digital system design where added functional-
ity often comes at the expense of a larger (and slower)
FSM to control the system. State assignment which takes
high-level specifications such as control flowgraphs, state
transition tables or state transition graphs as inputs and pro-
duces binary codes for the states is an important step in the
synthesis of controllers. Once binary codes have been
assigned to the states, next-state and output equations are
defined and subsequently optimized with classical logic
minimization tools. State assignment must be therefore
performed in a way that favors simplification of the next-
state and output logic (implemented by PLA’s, standard
cells, ROM’s, etc.).
With the rapid advances in circuit complexity and chip
density, automatic synthesis tools have become a necessity
for integrated circuit design. Simply, the FSM synthesis
tools must be able to cope with the increasing complexity
of the machines (up to 500 states, equations with more than
1000 product terms) [12]. The existing state assignment
techniques are however either inefficient or inadequate for
handling large finite state machines. This motivated us to
develop a very fast state assignment procedure for handling
large machines which is comparable in quality to more
sophisticated and elaborate techniques. As PLA’s are used
extensively in the structured design of high-performance
controllers, we will focus on two-level implementation as
the target.
1.1. Previous Work

*This research was supported in part by ARPA under con-
tract no. DABT-63-93-C-0064 and by NSF’s Young Investigator
Award under contract no. MIP-9457392.

Approaches to state assignment can be divided into two
broad classes. The first class derives from the classical
structure-theory. Examples are [20] and [11] that use alge-
braic methods based on the partition theory and the
reduced dependency criterion. The second class is based on
the graph-embedding formulation since it formulates the
problem as a weighted or constrained graph embedding-
problem on Boolean hypercubes. This class is further
divided into two categories. The first category [1][7] for-
mulates the encoding problem as an embedding problem,
where an adjacency graph defining adjacency relations
between the states is mapped into the hypercube. The sec-
ond category [6][22] applies symbolic minimization on an
unencoded specification followed by extraction of a set of
face (input) constraints from the minimized symbolic
cover. These constraints are then enforced as much as pos-
sible during the encoding.
1.2. A Unified View
The concepts of adjacency graph and face constraints are
somewhat similar. Both of them describe the desire to
assign similar codes to a group of states. The main differ-
ences between the two categories of methods are twofold:
(1)The order of logic minimization and encoding is differ-
ent. (2) In the second category, distance relations are
required to be satisfied during graph embedding. Of
course, it may not be possible to satisfy all of them and
some constraints (which are heuristically picked) may be
relaxed. The first category is different in sense that the goal
is to minimize a cost function rather than attempting to sat-
isfy distance relations. Thepartial constraint satisfaction
described in [9] can be considered as a mixed method.
If we consider the state assignment problem as placing
states on ann-dimensional hypercube (n-cube), then we
can combine the structure-theory-based and graph-embed-
ding-based methods. From the structure theory point of
view, each state variableyi introduces a partitionτi on the
set of states, such that two states are in the same block ofτi
if and only if they are assigned the same value ofyi. There-
fore, we can think of each state variable assignment as a
hyperplane which cuts then-cube. This is similar to a line
separating cells in VLSI placement which cuts the chip
area into two parts. On the other hand, from the graph-
embedding point of view, the set of adjacency relations or
input constraints act like the nets or clustering constraints
in VLSI placement. As we can mix the partitioning and
clustering procedures in cell placement [14], we can
hybridize the structure-theory-based and graph-embed-
ding-based methods.
The graph embedding approach for state assignment is
attractive because it can be easily modified to optimize dif-
ferent objective functions. For example, in addition to the
minimum area objective mentioned above, the graph
embedding approach has been used in low power applica-
tions [17]. Furthermore, the formulation in [8] that requires
some state values to be encoded with non-adjacent binary
vectors to improve the testability can be easily modified to

A Fast State Assignment Procedure for Large FSMs*

Shihming Liu, Massoud Pedram and Alvin M. Despain
Department of Electrical Engineering - Systems

University of Southern California, Los Angeles, CA 90089

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

adjacency-relations. The state adjacency-graph can be
thought of as a physical netlist which must be embedded on
a Boolean hypercube so that the cost is minimum. Unfortu-
nately, this problem is NP-complete.
In this paper, we propose a very fast yet effective method
for solving this graph embedding problem. The basic idea
is to place the adjacency graph in a two-dimensional array
(grid) while minimizing the total wire length. The place-
ment solution is then mapped into ann-dimensional hyper-
cube while nearly preserving the adjacency relations. To
obtain good state assignment results, one has to decide
what kind of multi-pin net representation should be
adopted during the two-dimensional placement, what kind
of objective function should be used, and what kind of
hypercube mapping should be applied. Some of the contri-
butions of the present paper are exactly in answering these
questions either theoretically or empirically. Indeed, we
will show that the straight-forward choices arenot the right
choices for this application. Experimental results of this
approach are very promising in terms of both the CPU time
and the circuit area.
The rest of this paper is organized as follows. In section 2
an overview of our proposed approach is given. In section
3 the procedure for constructing the adjacency graph is pre-
sented. In section 4 the procedure for two-dimensional
placement of the graph is described. In section 5 the proce-
dure for mapping the placement solution into a hypercube
of given dimensionality is presented. Experimental results
and conclusions are given in section 6 and 7.

2. Outline of the Proposed Approach
We are given a weighted graph which describes the adja-
cency between various states or the desirability for giving a
group of states similar codes. The larger the weights, the
more desirable it becomes to give them adjacent codes.
The basic idea is the following. We translate the problem of
finding the best hypercube embedding into the following
mathematical one. We define the distancedij between two
verticesi and j of ann-cube to be the minimal number of
edges that must be traversed to get from i to j. Then then-
cube can be coded so that then-bit codes assigned to verti-
cesi andj differ in onlydij bits. We now wish to assign the
nodes of the adjacency graph to the vertices of then-cube
so as to minimize the function:

(EQ 1)

wherewij is the weight of edge(i, j) in the adjacency graph,
anddπ(i),π(j) is the distance ofπ(i) andπ(j) whereπ(i) and
π(j) are coordinates of vertices in the hypercube to whichi
and j have been assigned. Solving this problem directly is
difficult. Our strategy is to solve the problem by finding an
embedding on a two-dimensional array and then mapping
that solution to a hypercube.
Our approachHyper-Placeis composed of three proce-
dures to handle the state assignment problem (Figure 1).
Procedure 1. An adjacency graph is formed based on the
controller specification. In this graph, each node represents
a state and there exists a weighted edge between two nodes
if they should be given adjacent codes (i.e., codes that dif-
fer in only one bit).
Procedure 2. The adjacency graph is then placed on a two-
dimensional array. The placement procedure is interleaving

Cost wij dπ i() π j(),⋅
i j,
∑=

the global optimization step with a bi-partitioning step in
order to minimize the wire length while avoiding conges-
tion on the placement plane.
Procedure 3. The placement solution is mapped to a
hypercube. The question of interest is the following: how
can we map the nodes of any two-dimensional placement
to the nodes of a hypercube, on a one-to-one basis, so that
the relative distances between pairs of nodes in the place-
ment solution is intact after the mapping? A promising
result is that grid neighbors can be always mapped to
hypercube nodes such that the worst case distance between
grid-neighbors in the hypercube is 1 or 2 [4]. So, as long as
we keep vertices adjacent in grids, we can nearly achieve
our original goal which was to keep those vertices adjacent
in the hypercube.

3. Construction of the Adjacency Graph
An adjacency graph is formed from high-level FSM speci-
fication such as control flowgraphs, state transition tables
or state transition graphs. In an adjacency graph, each node
represents a state. Between any two nodes, there exists a
weighted edge if these two nodes (states) want to be adja-
cent. Two nodes should be made adjacent if that would
reduce the circuit area after state assignment and logic min-
imization [16].
We adopt the following scheme to generate the adjacency
relations. We use symbolic logic minimization to group
together states that are mapped by some input combination
into the same next-state and assert the same output values.
States in each group want to have adjacent codes. This kind
of grouping is actually the combination of Type-I and
Type-III adjacency heuristics in [16] and is also the state
grouping which creates face constraints in [6].
3.1. Connection Model of Nodes
There are two ways to describe the connections among
nodes representing states in the same state group. The
hyperedge model forms one net (hyperedge) connecting all
the nodes (states) in each group. That is, the adjacency
graph is a hypergraph. The weight of each net is the num-
ber of nodes connected by that net. Theclique model cre-
ates a clique on the nodes belonging to each group. In this
case, all connections are two-terminal edges. Modern VLSI
placement algorithms tend to use the hyperedge model as it
more accurately reflects the connection strengths. In the
remainder of this section, we will however show that the
clique model is better for the state assignment application.
Definition: An m-subcube of a hypercubeH is an m-
dimensional hypercube contained inH.

Figure 1: Main steps of Hyper-Place

Build the weighted adjacency graph

Place the graph in a two-dimensional grid

Map the placement solution to a hyper-
cube of given dimensionality

Definition: The supercube of a graphG embedded on a
hypercubeH, is the smallestm-subcube inH which con-
tainsG.
Definition: The supercube isoptimal if G hasn nodes and
m = log2n.
Theorem3.1: The minimum edge length embedding of an
N-node clique on a hypercubeH is always contained in an
optimal supercube.
Proof. Omitted.
By Theorem 3.1, the group of nodes connected using a
clique can be mapped to an optimal supercube. On the
other hand, the group of nodes connected by a hyperedge
does not necessarily map to an optimal supercube. That is,
the clique model tends to generate biggergroup faces [6]
than the hyperedge model. Figure 2 illustrates the concepts
described above. Four nodes belonging to a group are
placed in a 3-dimensional hypercube. For the hyperedge
model, all configurations (Figure 2(a), (b) and (c)) have the
same connection cost. Any one of these configurations may
be the placement solution that minimizes the total connec-
tion length. For the clique model, Figure 2(c) has the mini-
mum total connection length. We note that Figure 2(c) is
the configuration that minimizes the final circuit area after
logic minimization.

4. Placement on a Two-Dimensional Grid
To minimize the cost function EQ1, we use a two-phase
approach. First, we relax the grid constraints and place the
nodes in a continuous plane. Then, this global placement is
modified to map the nodes to the grid points [21][14].
4.1. Global Placement
During global placement the total edge length among
nodes is minimized while neglecting slot constraints. Glo-
bal placement is interleaved with netlist partitioning. The
set of nodes is recursively divided into smaller subsets
while the placement area is dissected into subregions. The
slicing procedure generates constraints for the next global
placement step in subregions. These constraints aim at a
better distribution of the nodes over the placement.
4.1.1 Influence of Various Distance Measures
The distance functiondπ(i),π(j) in EQ1 can be measured in
various ways and this in turn affects the final state assign-
ment solution.
Definition: An l-norm distance measure isD(xi,xj) := |xi -

xj|
l. For l = 1, we have the Manhattan distance measure |xi -

xj|. For l = 2, we have the Euclidean square distance mea-

sure(xi - xj)
2.

We will describe the impacts of a quadratic and a linear
objective function on the placement [19] and discuss how

Figure 2: Examples of total connection lengths using
different models

3
10

3
9

3
8

Hyperedge model:
Clique model:

(a) (b) (c)

that influences the state assignment. It is difficult to make
strong statements about which objective function is better
in the context of the state assignment problem. Examples
are used to demonstrate the impacts of using different
objective functions.
Figure 3 shows a placement scenario: two fixed nodes X, Y
and a movable mode Z. They are connected by netsa, b, c
with lengths la, lb, lc, respectively. Minimizing the qua-

dratic objectionΦq = la
2 + lb

2 + lc
2 yields the placement in

Figure 3(a) withla = lb = 1/2 lc. The minimization of the

linear functionΦl = la + lb + lc results in the placement in
Figure 3(b) withla = lb = 0.

It is generally observed that the quadratic objective func-
tion tends to make long nets (netc in Figure 3) shorter, at
the expense of increasing the length of the short nets (nets
a andb in Figure 3). In other words, the standard deviation
of the net lengths is smaller for a quadratic objective func-
tion.
Modern VLSI cell placement tools tend to use a linear
objective function [19]. This is because more tracks as well
as more feedthroughs are needed in placement using qua-
dratic objection. For example, wire segmentsa, b in
Figure 3(a) may cause more tracks or feedthroughs than
zero wire segmentsa, b in Figure 3(b). However, the costs
of tracks and feedthroughs play no role in the state assign-
ment application. On the other hand, the linear objective
function tends to change the ratio of distances between one
pair of nodes to another. For example, in Figure 3(b), the
ratio of distance of X-Y to Y-Z is 0 which overstates the
adjacency desirability of X-Y to Y-Z. Therefore, a qua-
dratic objective function seems to reflect the actual adja-
cency demands more accurately than the linear objective
function in our application. The statements made here are
experimentally confirmed in section 6.
4.1.2 Quadratic Programming Formulation
The objective function of the global optimization step is
then the weighted sum of the squared rubber band lengths
of the edges of the given adjacency graph:

where cij represents the total number of connections
between vertexvi and vj. (xi,yi) and (xj,yj) represent the
locations of vi andvj. The cost function can then be rewrit-
ten using matrix notation as follows [13]:

(EQ 2)

wherex is a vector of the x-coordinates of the vertex loca-
tions andy is a vector of the y-coordinates.B is a symmet-
ric matrix withB = D - C where C = [cij] is the connectivity
matrix andD is a diagonal matrix withdii = ∑cij . It has

X Y Z X Y Zc
a

b

Figure 3: Optimal placement for different objectives

quadratic objective function linear objective function

ca

b
(a) (b)

L 1 2⁄ cij xi xj−() 2 yi yj−() 2+()⋅
vivj i j≠()

∑⋅=

L x y,() xTBx yTBy+=

been shown that if the nodes (vertices) cannot be parti-
tioned into disconnected subsets, thenB is positive semi-
definite [13]. That means the objective function is a convex
function. This fact allows the calculation of a unique global
optimum solution and plays an important role in our
approach. In addition,B is almost always sparse for practi-
cal cases. This enables efficient numerical techniques to be
applied to the matrix. Since the coordinate vectorsx andy
enter separately in the sum of two quadratic forms, we may
consider each coordinate independently.
To avoid collapsing all nodes to the center of the placement
region, in our implementation, we choose four nodes to be
connected to four dummy nodes in the four corners of the
placement region. These four dummy nodes will enable us
to obtain a non-trivial placement solution. This corre-
sponds to assigning distant codes to these four nodes and
thus we pick 4 nodes that are not connected or are weakly
connected.
The above scheme leads to a global placement as shown in
Figure 4.

4.2. Mapping to Grid Positions
Since the global placement does not restrict the nodes to be
placed on grid, a detailed placement step has to be per-
formed. The goal of this step is to change the global place-
ment as little as possible while mapping the nodes to the
grid positions.
This mapping procedure is done by a minimum squared
error linear assignment which maps all movable modules
from the global placement to the legal positions simulta-
neously. The error to be minimized is

 wherexi, yi are the coordi-

nates of theith module andmj,lj are the coordinates of the
jth legal slot.δij ∈{0,1} is the selection variable.
Figure 5 shows the final placement for the solution shown
in Figure 4.

5. Mappings of Grids into Hypercubes
We want to embed the adjacency graph into hypercube.
However, the problem of deciding whether a given graph is
embeddable into any dimensioned hypercube is NP-com-

a

b

c
f

h
g

j

i

e
d

Figure 4: Global placement of adjacency graph

δi j xi mj−() 2 yi l j−() 2+[]
i j, 1=

m

∑

i h

gj

d
e

fca
b

Figure 5: Final Placement

plete [15] and the problem of embedding a given graph into
a fixed-sized hypercube is also NP-complete [5]. We thus
try to achieve the best partial embedding according to the
cost function shown in EQ1. Therefore, this section
addresses the following graph-mapping problem: given a
placement solution on a two-dimensional grid and a hyper-
cube with at least as many nodes as grid points, how can
we assign the grid points to hypercube nodes so that the
placement cost on the hypercube remains nearly the same
as that on the grid? In both cases, the costs are calculated as
in EQ1.
In the following discussion, we define the desired proper-
ties for the optimal mapping between grids and hyper-
cubes. When these properties are absent we will describe
conditions under which those sub-optimal properties can
be achieved.
Let G andH denote graphG and hypercubeH andd denote
the distance function.

Definition: A map f: G→H is distance-preserving if ∀a,b
∈G, d(f(a),f(b)) = d(a,b). We also say thatG is adistance-
preserving subgraph ofH.
Definition: A mapf: G→H is full if a, b∈G are adjacent if
and only iff(a), f(b) ∈H are adjacent. We also say thatG is
a full subgraph ofH.
If we can make a distance-preserving mapping for grids
into hypercubes, then we will have the same placement
cost in hypercubes as we have in grids.
Theorem5.1 [10]: If a graphG is a distance-preserving
subgraph of some hypercubeH, thenG must be full.
Definition: The optimal hypercube of a two dimensional
array is the smallest hypercube with at least as many nodes
as the array.
Theorem5.2: A k-node two-dimensional array (grid) can-
not be a distance-preserving subgraph of its optimal hyper-
cube whenlog2 k > 4.
Proof. SupposeG is ak-node two dimensional array andH
is an-dimensional hypercube, wheren= log2 k, and there

exists a map f: G→H. Because 2n-1 < k ≤ 2n, we can
always find a vertexvx∈G and its corresponding vertex
f(vx) in H wheref(vx) is adjacent ton other vertices which
are all mapping nodes ofG. On the other hand, vertexvx in
a two dimensional array has at most 4 vertices which are
adjacent tovx. Becausen > 4, we can always find at least
one vertexf(vy)∈H which is adjacent tof(vx) but vy is not
adjacent tovx in G. According to Theorem 1,G is not a dis-
tance-preserving subgraph of hypercubeH.
Unfortunately, by Theorem 5.2, we know that most of the
two-dimensional grids are not distance-preserving sub-
graphs of their optimal hypercubes. Specifically, for those
FSM’s with more than 16 states, we need to find other
mapping properties that could be applied to their sizes of
grid.
Definition: The dilation of a grid-hypercube mapping is
the worst case distance of grid-neighbors in the hypercube.
We want the dilation of the grid-hypercube mapping be
minimum. For example, if dilation 1 mapping can be
achieved, then we will have at most the same placement
cost in hypercubes as we have in grid. An example of grid-
hypercube mapping with dilation 1 is shown in Figure 6. A

number of researchers have studied this problem in parallel
processing domain, with the following results. Over 61
percent of all two-dimensional grids can be embedded into
their optimal hypercubes with a dilation 1 by using binary-
reflected Gray codes [18]. Recently, Chan introduced an
embedding strategy which makes all two-dimensional
grids to be embeddable in their optimal hypercubes with at
most dilation 2 [4].

Note that we can always get grid-hypercube mappings with
dilation 1 if we allow the bigger size of hypercubes.
Definition: Theexpansion of a grid-hypercube mapping is
the ratio of the size (in number of nodes) of the embedding
hypercube to the size of the optimal hypercube.
Theorem5.3 [2]: The smallest hypercube that can embed a
d1 × d2 × ... × dk grid using unit dilation has dimension

log2 d1 + log2 d2 + ... + log2 dk.
As a direct consequence of Theorem 5.3, we know that all
two-dimensional grids can be embedded in hypercubes
with dilation 1 using an expansion of at most 2. However,
the trade-off is that when we use expansion 2 mappings,
we need to add one more bit to encode the states. We adopt
the approach in [4] to embed the grid in its optimal hyper-
cube with dilation at most 2.

6. Experimental Results
To increase the flexibility of this assignment method, we
distinguish the nodes into two sets, fixed and movable.
Fixed nodes correspond to the states whose codings have
been decided in advance. For example, in microprocessors
some instructions (states) that invoke co-processors are
often assigned fixed codes in advance. Their coordinates
could be obtained easily by a reverse transformation of
their codes. Also, we choose the ratio of the two dimen-
sions of plane (grid) to be 1. This is based on the simple
heuristic that the minimum cost of placement solution is
often obtained on a square grid. In current implementation,
we use GORDIAN [14] to generate the placement solution.
Table 1 shows the statistics of examples tested. These
examples include all of the large FSM examples (state
number > 20 and product number > 200) in the MCNC
logic synthesis and optimization benchmarks [23]. We also
generated random examples to cover a more complete
range of the size of circuits to be tested. In Table 2, we
compare our results with NOVA [22]. In both cases, the
code lengths were limited to the minimum number of bits
and the number of cubes (product terms) after logic mini-
mization [3] were compared. Basically, NOVA has three
modes. Theexact mode which produces the best results.

2,3
3,3

4,2 4,3

1,31,2

4,1

1,1

3,1

2,1 2,2
3,2

4,4

1,4

2,4

3,4

Array edges are shown with solid lines, the unused
hypercube edges are shown with dashed lines.

Figure 6: Embedding of a 4×4 grid in a 16-node hypercube

However, its CPU run time is very high. For most of these
examples, NOVAexact could not produce an answer
because the run time (SUN SPARC 1+) was over one week
and the process had to be terminated. Therefore, we com-
pare with itsdefaultandhybrid modes.

Table 2: Comparisons of NOVA and our Hyper-Place

Table 1: Statistics of benchmark examples

FSM Name Inputs Outputs Products States

s820 18 19 232 25
s832 18 19 245 25
s1494 8 19 250 48
s1488 8 19 251 48
x3643 3 3 368 64
x4322 4 2 383 32
d5326 5 6 384 32
d5322 5 2 427 32
x4326 4 6 449 32
d5324 5 4 511 32
d5323 5 3 730 32
x5322 5 2 767 32
x5321 5 1 809 32
x5324 5 4 920 32
s298 3 6 1096 218

x5643 5 3 1464 64
x5642 5 2 1535 64

tbk 6 3 1569 32
x5641 5 1 1617 64
x63210 6 10 1649 32
x6326 6 6 1793 32
m6325 6 5 2048 32

Exam-
ple

NOVA(default) NOVA(hybrid) Hyper-Place

cubes
area
ratio

CPU
time
(s)

CPU
time
ratio

cubes
area
ratio

CPU
time
(s)

CPU
time
ratio

cubes
CPU
time
(s)

s820 85 1.13 1.3 0.24 76 1.01 4.2 0.78 75 5.4

s832 71 0.97 1.3 0.25 72 0.99 4.2 0.79 73 5.3

s1494 149 1.14 3.1 0.09 139 1.06 388.8 10.83 131 35.9

s1488 141 1.07 2.7 0.07 133 1.01 416.6 11.23 132 37.1

x3643 271 1.04 7.8 0.17 251 0.97 2560.2 55.90 260 45.8

x4322 261 1.30 2.7 0.18 155 0.77 732.6 50.18 201 14.6

d5326 295 1.15 19.2 1.14 233 0.91 3621.9 215.60 257 16.8

d5322 217 1.10 5.5 0.28 233 1.18 984.4 50.74 197 19.4

x4326 359 1.24 29.7 1.62 266 0.92 3322.0 12.08 290 18.3

d5324 374 1.34 26.1 1.43 248 0.89 2148.0 118.02 279 18.2

d5323 423 1.16 59.7 3.21 330 0.90 3212.3 172.70 365 18.6

x5322 428 1.33 28.3 1.46 232 0.72 1718.4 88.58 323 19.4

x5321 525 1.24 7.1 0.53 378 0.89 2301.0 171.72 423 13.4

x5324 557 1.37 8.9 0.49 388 0.95 2284.8 125.54 408 18.2

s298 723 1.07 58.1 0.65 624 0.92 5460.1 60.67 678 90.0

x5643 750 1.48 75.1 0.65 656 1.09 4020.3 34.84 518 115.4

x5642 840 2.20 129.9 0.95 347 0.91 3070.7 22.50 382 136.5

tbk 176 1.76 17.1 0.85 154 1.54 922.9 45.92 100 20.1

x5641 936 1.37 28.4 0.33 833 1.22 3889.7 45.12 682 86.2
x63210 1072 1.23 21.0 2.66 859 0.99 988.4 125.11 872 7.9

x6326 421 1.49 23.2 1.27 278 0.98 388.9 21.25 283 18.3

m6325 1675 1.19 228.1 11.46 1341 0.95 6619.5 332.64 1406 19.9

Total 1.29 1.005 0.99 62.84

In Table 2, area ratio is the ratio of the number of cubes of
NOVA to that of our Hyper-Place. CPU time ratio is the
ratio of the CPU time (SUN SPARC 1+) of NOVA to that
of our Hyper-Place. On average, NOVAdefaultmode pro-
duces results with 29% higher area (number of cubes) and
almost the same CPU time compared to Hyper-Place.
NOVA hybrid mode takes over 62 times the CPU time
required by Hyper-Place and produces almost the same
quality of results (in terms of the number of cubes).
Table 3 compares the results of state assignment using dif-
ferent objective functions in the placement phase. The
approach using the linear objective function costs 6% more
cubes than the one using the quadratic objective function
which confirms our statements in Section 4.1.1.

7. Conclusions
In this paper, we presented a new state assignment
approach Hyper-Place which runs as fast as the NOVA’s
default mode but produces same quality results as the
NOVA’s hybrid mode. This was made possible by breaking
the hypercube embedding problem into two steps: (1) map-
ping of the adjacency graph to a grid; (2) mapping the solu-
tion on the grid to one on a minimum dimensionality
hypercube with dilation at most two. Hyper-Place is thus
able to handle large FSM’s (up to 500 states, equations
with more than 1000 product terms) efficiently and
robustly.

Table 3: Comparisons of using linear and quadratic
objective functions

Example
Linear obj. fun.

Quadratic
obj. fun.

cubes area ratio cubes

s820 80 1.07 75
s832 68 0.93 73
s1494 139 1.06 131
s1488 133 1.01 132
x3643 253 0.97 260
x4322 184 0.92 201
d5326 264 1.03 257
d5322 188 0.95 197
x4326 293 1.01 290
d5324 278 1.00 279
d5323 370 0.99 365
x5322 310 0.96 323
x5321 477 1.13 423
x5324 402 0.99 408
s298 713 1.05 678

x5643 593 1.14 518
x5642 388 1.02 382

tbk 188 1.88 100
x5641 777 1.14 682
x63210 935 1.07 872
x6326 280 0.99 283
m6325 1534 1.09 1406

Total 1.06

References
[1] D. B. Armstrong, “A programmed algorithm for assigning in-

ternal codes to sequential machines,” IRE Trans. Elect.
Comp. , vol. EC-11, pp. 466-472, 1962.

[2] J. E. Brandenburg and D. S. Scott, “Embeddings of communi-
cation trees and grids into hypercubes, Intel Scientific Com-
puters Report #280182-001, 1985.

[3] R. K. Brayton, G. D. Hatchtel, C. T. McMullen and A. L. San-
giovanni Vincentelli, “Logic Minimization Algorithms for
VLSI Synthesis,” Kluwer Academic, 1984.

[4] M. Y. Chan, “Dilation-2 embeddings of grids into hyper-
cubes,” Proceedings of the 1988 International conference on
Parallel Processing, pp. 295-298, 1988.

[5] G. Cybenko, D. W. Krumme and N. Venkataraman, “Fixed
hypercube embedding,” Information Processing Letters, v.25,
pp.35-39, 1987.

[6] G. De Micheli, R. K. Brayton and A. L. Sangiovanni Vincen-
telli, “Optimal state assignment for finite state machines,”
IEEE Trans. on CAD, pp.269-284, 1986.

[7] S. Devadas, H. T. Ma, A. R. Newton and A. L. Sangiovanni
Vincentelli, “MUSTANG: state assignment of finite state ma-
chines for multi-level logic implementations,” IEEE Trans.
on CAD, pp. 1290-1300, 1988.

[8] S. Devadas, H. T. Ma, A. R. Newton and A. L. Sangiovanni
Vincentelli, “A synthesis and optimization procedure for fully
and easily testable sequential machines,” IEEE Trans. on
CAD, pp. 1100-1107, 1989.

[9] S. Devadas, A. R. Wang, A. R. Newton and A. L. Sangiovanni
Vincentelli, “Boolean decomposition in multilevel logic opti-
mization,” IEEE Journal of Solid-State Circuits, vol. 24, pp.
399-407, 1989.

[10] D. Z. Djokovic, “Distance-preserving subgraphs of hyper-
cubes,” J. Combinatorial Theory (B), pp.263-267, 1973.

[11] T. A. Dolotta and E. G. McCluskey, “The coding of internal
states of sequential machines,” IEEE Trans. Elect. Comput.,
vol. EC-13, pp.549-562, 1964.

[12] C. Duff and G. Saucier, “State assignment based on the re-
duced dependency theory and recent experimental results,”
ICCAD-91, pp. 222-225, 1991.

[13] K. M. Hall, “An r-Dimensional Quadratic Placement Algo-
rithm,” Management Science, vol. 17, pp.219-229, 1970.

[14] J. M. Kleinhans, G. Sigl and F. M. Johannes, “GORDIAN: A
new global optimization/rectangle dissection method for cell
placement,” ICCAD-88, pp. 506-509, 1988.

[15] D. W. Krumme, N. Venkataraman and G. Cybenko, “Hyper-
cube embedding is NP-complete,” Proc. Hypercube Conf.,
SIAM, 1985.

[16] D. Lewin,Computer-aided design of digital systems, Crane/
Russak, 1977.

[17] K. Roy and S. Prasad, “SYCLOP: synthesis of CMOS logic
for low power applications,” IEEE International Conference
on Computer Design, pp.464-467, 1992.

[18] Y. Saad and M. H. Schultz, “Topological properties of hyper-
cubes,” Res. Report 389, Department of Computer Science,
Yale univ., 1985

[19] G. Sigl, K. Doll and F. M. Johannes, “Analytical placement:
a linear or quadratic objective function?” 28th DAC, pp.427-
432, 1991.

[20] R. E. Stearns and J. Hartmanis, “On the state assignment
problem for sequential machines II,” IRE Trans. Elect. Com-
put., vol. EC-10, pp.593-603, 1961.

[21] R-S Tsay, E. Kuh and C-P Hsu, “Proud: a sea-of-gates place-
ment algorithm,” IEEE Design & Test of Computers, pp.44-
56, Dec. 1988.

[22] T. Villa and A. L. Sangiovanni-Vincentelli, “NOVA: State
Assignment of Finite State Machines for Optimal Two-Level
Logic Implementations,” IEEE Trans. on CAD, pp. 905-924,
1990.

[23] S. Yang, “Logic synthesis and optimization benchmarks user
guide,” Version 3.0, MCNC, 1991.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

