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Abstract

To save memory, layout-to-circuit extractors that use the
Finite-Element Method for resistance extraction usually solve
the corresponding set of equations with a frontal solution
method. We show that this method is inefficient when used
with a scanline ordering of the elements. As an improvement,
we introduce theDelayed Frontal Solutionalgorithm, which
allows us to replace the scanline ordering by the minimum-
degree ordering. Thus, extraction times are reduced with
more than one order of magnitude at a small cost of extra
memory.

1 Introduction

The values of the interconnect resistances in modern inte-
grated circuits tend to increase. This is caused by the fact
that, due to down-scaling, the widths of the wires are de-
creased. Also, due to the increase in chip size, the average
length of the wires increases.

Significant values for interconnect resistances in integrated
circuits may cause malfunctioning of the circuit, e.g. because
of too large delay time values or because of too great a drop
in voltage along supply lines. Therefore, it is important to
compute the values of the interconnect resistances from the
layout of the circuit, so that the behavior of the circuit can
be verified before it is fabricated.

Common approaches to the extraction of VLSI intercon-
nect resistances include the Finite-Element Method (FEM)
[1, 2, 3] and the Finite-Difference Method (FDM) [4]. These
methods solve the resistance extraction problem by discretiz-
ing the governing differential equation (i.e. the Laplace equa-
tion) and solving the resulting set of algebraic equations.
This set of equations is sparse, symmetric and positive defi-
nite, and is usually solved by Gaussian elimination [2, 3, 5].

When compared to other methods for resistance extrac-
tion, such as Polygonal Decomposition (as in [6]), Conformal
Transformation (as in [7]) and the Boundary-Element Method
(BEM) (as in [8]), the advantages of the FEM include general
applicability, robustness, good accuracy and the possibility
of accurately extracting RC models [2, 9]. Disadvantages,
however, are those of longer computation times and higher
memory requirements.

Thus, significant improvements of the efficiency of the
FEM will be valuable. This paper will present such an im-
provement, which is based on optimizing the order in which
the Gaussian elimination steps are applied. Since the FDM
is a special case of the FEM, this paper will discuss the FEM
only but the results will also be valid for the FDM.

Although there exist good heuristic ordering methods [5 ],
most notably the minimum degree heuristic [10, 11], it is
a problem to apply these heuristics in a circuit extraction
context. In order to minimize storage requirements, a cir-
cuit extractor usually solves the equations ’on the fly’ in a
so-called frontal solution method. There is no freedom to
change the elimination order, because this is fixed by the
extraction method (often a scanline method).

This paper shows that the frontal solution method can
be combined with the minimum-degree heuristic (or other,
similar, heuristics) by reserving extra storage for the vari-
ables/nodes of the set of equations. It gives a detailed de-
scription of the proposedDelayed Frontal Solutionalgo-
rithm. Combined with the minimum-degree heuristic, this
algorithm improves the overall time– and/or space–efficiency
by producing fewer fill-ins, and is compatible with a typi-
cal scanline implementation of extraction. Particular results
include the following:

� A small amount of extra node memory can provide a
2-times speedup while simultaneouslyreducingthe total
amount of memory that is needed.

� A larger amount of extra node memory will increase
the total amount of memory but can provide a 10-times
speedup.

The rest of this paper is structured as follows. Section
2 presents a background on the FEM and a typical imple-
mentation of it in a circuit extractor. Section 3 discusses the
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properties of the frontal solution method and the minimum-
degree heuristic, and describes the new Delayed Frontal So-
lution algorithm. Section 4 presents an implementation in a
layout-to-circuit extractor and a comparison with the standard
frontal solution method. Section 5 presents the conclusions
and additional remarks.

2 Background

2.1 Matrix Formulation of the FEM

For the purpose of resistance extraction, the finite-element
method can be cast into a modeling method that directly
produces an equivalent circuit model instead of a specific
field solution. Thus, the result is an admittance matrixY
that relates the terminal currents to the terminal potentials.
The terminals are formed by the pins and the connections of
the wires to the active devices.

Without going into detail (but see, e.g. [1 , 12]), we state
that the finite-element method discretizes the interior of the
interconnections and produces a system of equations that can
be formulated as a matrix problem as in Equation (1):

Ax = b: (1)

Here,A is a symmetric, positive definite and sparse matrix,
x is a vector of unknown potentials andb is a vector of
currents fixed by the boundary conditions.

If A, x andb are partitioned into parts associated with the
terminals (subscriptt) and the internal variables (subscripti),
Equation (1) may be written as
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wherebi is zero and it is not required to knowx i because
we seek a compact relation between the terminal currents
and voltages only. Hence, we can eliminatexi and obtain
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�
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This solution procedure is in fact equivalent to Gaussian
elimination.

From the admittance matrixY, we can directly create an
admittance network where an admittance between nodesi

andj has a valueGij = �Yij. Thus, we directly obtain an
equivalent circuit model of the layout, without solving a set
of field problems.

2.2 Graph Formulation of the FEM

Instead of solving the system of equations and determining a
resistance network only afterwards, from the resulting matrix
Y, we can begin with a circuit formulation of Equation (1).
Such an interpretation of the FEM [1, 2, 12] initially pro-
duces a complex resistance network that models the resistive

interconnections in detail. Subsequently, this network is re-
duced by a set of node eliminations. Each node elimination
is in fact a Gaussian elimination step. IfGk

ij
is the admit-

tance between nodei and j before the elimination of node
k, andGk+1

ij
after the elimination of nodek (we assume that

nodek is eliminated in stepk), we have
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Equation (4) states that the star network of the node that is
eliminated is replaced by a full network (aclique) on the
remaining nodes.

Layout-to-circuit extractors usually use this circuit circuit
or graph formulation [2]. It is easier to implement efficiently
and is compatible with the data structures for the device con-
nectivity. This paper will therefore use this circuit context,
but the results will also be valid for an array-based imple-
mentation.

2.3 Frontal Solution Method

Equation (4) shows that a nodek can be eliminated as soon
as all the admittancesGkx connected to nodek are known.
Doing this for each node can significantly reduce the amount
of storage required (see the results in Section 4), when com-
pared to first building the complete network and then doing
the eliminations. Early elimination is in fact of paramount
importance when large layouts must be handled.

The admittances connected to a node are all known when
all the finite elements incident to that node have been pro-
cessed (or assembled, in finite-element parlance). If the ele-
ments are processed systematically from one side of the lay-
out to the other, the operations occur in a front that moves
along the layout. Hence, this method is called thefrontal
method[13].

The frontal method can efficiently be implemented in a
scanline based layout extractor [2]. Given the scanline pro-
cessing sequence, the frontal method will result in the lowest
possible number of network nodes that are in the core mem-
ory of the computer at any time.

3 Elimination Ordering

3.1 Standard Methods

The computational complexity of Gaussian elimination de-
pends on the elimination order. For a discussion, we need
the following notations:

Nt The number of terminal nodes.

Ni The number of internal nodes, usuallyNi � Nt.

N The total number of nodes,N = Ni + Nt.



d
(0)
k

The degree (number of admittances connected to it) of
nodek in the original, uneliminated circuit.

dk The elimination degree of nodek; the number of ad-
mittances connected to it just prior to its elimination.

Without loss of generality, we assume that the nodes are
eliminated in the order 1: : : Ni.

The calculation ofY as in Equation (4) requires a total of
Ni = O(N ) eliminations. Equation (4) shows that the cost
of eliminating a nodek is O(d2

k
) (provided that an adequate

graph data structure is used). If the circuit graph would be
dense,dk = O(N ) and the total complexity would become
O(N 3). This is in agreement with the matrix inversion in
Equation (4). However, our circuit graphs are sparse and we
can havedk < O(N ).

Note, however, that in generaldk is not equal tod(0)
k

. It
can be smaller, equal or (much) larger. This depends on the
elimination order.

It is often assumed, see e.g. [2, 3], that the scanline based
frontal elimination scheme provides a reasonably good or-
dering scheme. This is in fact an implicit ordering scheme,
since it is determined by the scanline direction and the input
data. However, it suffers from directional dependencies, as
can be seen from the results in Section 4.2. Exploiting this
dependency by rotating the input data is only helpful in a
limited number of trivial cases and therefore not practical.

Furthermore, as is confirmed in Section 4.3, the method
is not efficient in the case of large, rectangular regions with
a fine discretization because of the generation of so-called
fill-ins. This is, for example, the case with N-well resistance
extraction.

In order to improve the running times for such unfavorable
(but fairly common) layout geometries and discretizations,
we must improve the order in which the nodes are eliminated.

Since the problem of computing an optimal elimination
order is NP-complete [14], heuristic methods are needed.
Indeed, many heuristics have been suggested (see [5] for
a summary and comparison) and one of the best heuristics
for the type of problems considered (i.e. symmetric, sparse
and positive definite) is the minimum degree heuristic [10,
11]. With this heuristic, nodes are eliminated in order of
ascending elimination degreedk. Ties are broken arbitrarily.

The minimum degree heuristic can, for example, be used
in a pre-processing phase to derive a good order for frontal
processing. However, this approach is incompatible with a
scanline-based extraction program that performs all extrac-
tion steps (including device recognition, connectivity extrac-
tion and parasitics extraction) in one pass over the layout
data.

3.2 Delayed Frontal Solution

Since a pre-processing step for determining a good elimi-
nation order cannot be used, we need another way to com-

bine the advantages of frontal solution (low memory require-
ments) with those of the minimum degree heuristic (low com-
putation complexity).

A discussion of our solution needs the following prelimi-
naries:

� A conductor is a collection of resistively connected
nodes (a connected component in the circuit graph).

� We call a nodeready when all its admittances are
known, and we call a conductor ready when all its nodes
are ready.

� Thedegree(not the elimination degree) of a node is the
number of admittances connected to it. The degree may
change during the elimination process.

� A priority queueis a data structure over an ordered set
of elements that supports the following operations:

insert Insert a new item into the queue.
deleteMin Delete and return the item which is

first in the order.
changeOrder Change the ordering-key of an item.

We also need a delete operation:

delete Delete and return a specified item.

Our method now combines the frontal solution method with
the minimum-degree heuristic using theDelayed Frontal So-
lution algorithm as presented in Algorithm 1.

Algorithm 1 (Delayed Frontal Solution) The
algorithm requires two priority queues,Q1 andQ2, that will
contain the nodes ordered by their degree.Q1 andQ2 have
a maximum capacityjQ1jmax

= jQ2jmax
= Qmax, assumed

fixed for the moment.

1. [Node ready] If a node is ready, insert the node into
Q1. Do not yet eliminate the node.

2. [Queue full] If, after insertion,Q1 is full, delete the
node with the lowest degree fromQ1 in order to make
room for the next insertion. Also, eliminate the node
from the admittance network. As a result of this elimi-
nation, the degree of other nodes still inQ1 may change.
Execute the correspondingchangeOrder operations for
the affected nodes.

3. [Conductor ready] When a conductor becomes ready,
first delete all nodes (if any) of that conductor from
Q1 and insert them intoQ2. Then, delete them from
Q2 in minimum-degree order and eliminate them from
the admittance network (also execute thechangeOrder
operations) untilQ2 is empty.



The description of Algorithm 1 needs the following addi-
tional remarks.

� Step 3 is not strictly necessary, it can be replaced by
empty-ing the queue at the end of the extraction. How-
ever, it reduces memory requirements without a neg-
ative effect on the minimum-degree order because the
elimination of these nodes cannot alter the degree of the
nodes from the other conductors.

� Qmax is a parameter of the method that can be used
to trade memory for CPU time. WhenQmax � 1, the
method reduces to the frontal solution method and when
Qmax =1, the method reduces to the minimum-degree
method. Section 4 shows that relatively small values of
Qmax can already significantly improve the efficiency.

� A sophisticated implementation of Delayed Frontal So-
lution may makeQmax adaptive: an absolute maximum
amount of memory available (possibly an OS/hardware
limit) minus what is necessary for other data structures.
In that case, whenever the memory allocator would fail,
it tries to obtain some memory by eliminating nodes
(in minimum-degree order). Such an implementation is
especially feasible if only the nodes are dynamically al-
located or if all other allocations are of (approximately)
the same size.

� Because the ordering priorities forQ1 andQ2 are posi-
tive integer numbers, a simple priority queue implemen-
tation using an array (indexed by the degree) of doubly
linked lists (each list containing all nodes with the same
degree) is adequate (efficient). Moreover,Q1 andQ2

may then be merged by keeping the elements ofQ2 in
the front of each, shared, doubly linked list.

4 Results

4.1 Implementation

The data in this section are obtained from an actual imple-
mentation of the method in the Space layout-to-circuit ex-
tractor [15, 16]. Space is a scanline based layout-to-extractor
with a vertical scanline that sweeps over the layout from left
to right. All extraction operations are performed in one scan-
line pass over the layout. These operations include device
recognition, connectivity extraction, capacitance extraction
and finite-element based resistance extraction. For resistance
extraction, the finite element mesh is created while scanning,
the nodes are eliminated when they leave the queues and the
memory is reclaimed immediately.

The computation times times and storage requirements re-
ported in this section are ’all-in’. They include, for example,
program start-up time and input-output time. The experi-
ments were done on an HP-9000/735 computer.

4.2 Spiral Resistor

Consider the extraction of the spiral resistor as shown in Fig-
ure 1. When using the frontal method in a scanline based
layout-to-circuit extractor, the computation times for the ori-
entation shown will be much larger than for the same resistor
but rotated over 90 degrees.

The extraction results are summarized in Table 1. For
Qmax = 0, the method is the standard, frontal method. The
results show a significant directional dependency: The ex-
traction times are 9.1 and 1.0 seconds for the unrotated and
the rotated resistor, respectively. On the other hand, the
minimum-degree ordering does not suffer from such direc-
tional dependencies. This is reflected by the caseQmax =

1. For large values ofQmax, the computation times are the
lowest but this is at the cost of memory requirements.

These data also show that a small number of extra node
storage already provides a significant improvement. The
computation times decrease and become less dependent on
the orientation. In addition, the total memory that is required
is decreased.

Figure 1: Layout and discretization of a spiral resistor.

4.3 Standard Cell Chip

The results in this section refer to a part of a standard cell
chip in CMOS. It is taken from the top-right corner of a
large chip, including the pad ring. The core-part contains
1753 transistors. For this high-performance industrial de-
sign, it was required to know the N-well resistances. When
extracting poly, active layer and N-well resistances, the stan-
dard frontal elimination method results in long computation
times. This is caused by the shape of the N-well regions. De-
layed frontal elimination, however, works very well. Also
for the case of only poly and active layer resistance extrac-
tion, Delayed Frontal Solution gives a significant speedup.
These results are summarized in Table 2.



Table 1: Extraction results of the spiral resistor. The elimination cost is defined as
P

d2
k

over all nodes.

Qmax 0 2 5 100 1

rotation (degrees) 0 90 0 90 0 90 0 90 0 90
elimination cost/1000 8894 493 1010 206 355 178 155 163 74 74
maximum degreedk 77 68 36 31 20 15 9 7 4 4
# nodes in core 153 116 153 118 158 119 285 819 4336 4336
# resistances in core 3005 2348 1042 852 566 459 759 551 7231 7231
cpu time (sec) 9.1 1.0 1.6 0.7 0.8 0.6 0.6 0.6 0.6 0.6
total memory (kbyte) 429 389 322 289 285 265 305 353 1157 1157

Table 2: Extraction results of the standard cell chip. The elimination cost is defined as
P

d2
k

over all nodes. Without
resistances, the cpu time is 3.9 sec and the memory is 0.661 Mbyte.

with N-well without N-well
Qmax 0 1000 5000 1 0 1000 5000 1

elimination cost/1000 811238 76178 42332 1656322019 3515 2932 2792
maximum degreedk 214 165 162 156 151 151 151 151
cpu time (min:sec) 20:58.1 2:11.6 1:30.6 59.0 48.5 27.3 27.9 29.2
total memory (Mbyte) 4.06 3.88 8.53 25.6 2.24 2.36 3.17 9.22
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Figure 2: Elimination degree frequency for the standard-
cell chip for three different values ofQmax, with N-well
resistance extraction.

Figure 2 shows the elimination degree frequency, the num-
ber of times that a node with a certain degree is eliminated,
with Qmax as a parameter, for the case of N-well resis-
tance extraction. This figure can help to explain the speed-
improvement, when considering that the cost of eliminating
a node with degreedk is O(d2

k
).

Figure 3 shows the effect of varyingQmax. It displays
normalized computation times and memory requirements as
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Figure 3: Normalized computation time and memory, as a
function of Qmax, for the standard cell design and the ex-
traction of poly, active layer and well resistance.

a function ofQmax. Normalization is with respect to the
caseQmax = 0. The curves are not smooth because the
minimum-degree method is aheuristic method. Thus, al-
though elimination orders for a largerQmax are actually
’not less minimum degree’ than those for a smallerQmax,
they can be less optimal. Figure 3 also shows that, for this
example, aQmax around 1000� 5000 does not significantly
increase the memory requirements but already provides a 10
times speedup.



5 Conclusion and Additional Remarks

We have shown that the frontal method for Gaussian elim-
ination is inefficient when used with a scanline ordering of
the elements. As an improvement, we have introduced the
Delayed Frontal Solutionalgorithm, that allows to use the
minimum-degree ordering heuristic. When combined with
this heuristic, Delayed Frontal Solution can easily provide
one or two orders of magnitude speed-up. The running times
become much more linear with the problem size and will not
depend strongly on the geometric structure and the discretiza-
tion of the problem.

Delayed frontal solution needs extra storage for the nodes,
and it can require extra total memory. The amount of extra
memory depends on a parameterQmax of the method. With
small values ofQmax, the total amount of memory required
can actually be less than what would be required with frontal
solution while a significant speed-up is still achieved. In
practice, a good default value forQmax is around 1000�
5000. This provides a significant speedup at a small cost.

We can make the following additional remarks:
� For the accurate extraction of RC models that include cou-
pling capacitances, [17] has introduced a method where the
capacitances ’go along’ in the Gaussian elimination process
and the resulting reduced RC models have a correct first or-
der time constant. In this method, the elimination degrees
of the nodes will be much higher than in the case of only
resistance extraction. Hence, the algorithm of this paper will
have an even greater effect on the performance.
� Although the discussion of Delayed Frontal Solution took
place in the context of a graph formulation, the ideas are also
valid for a matrix formulation of the problem.
� Instead of the minimum-degree heuristic, other heuristics
such as the minimum local fill-in heuristic (see, e.g. [5]),
can also be used.
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