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Abstract - This paper describes a RAM compiler for generating
and characterizing highly manufacturable optimized SRAMs us-
ing GaAs E/D MESFET technology. The compiler uses a con-
straint-driven design flow to achieve process tolerant RAMs.
This compiler was built using a flexible design framework that
can be easily adapted to optimize and characterize memories in
different MESFET processes.

I. I NTRODUCTION

RAM compilers have grown in sophistication from early imple-
mentations which were merely layout generators[1] to more re-
cent implementations[2,3] which also perform automatic buffer
sizing to meet delay requirements. The compiler presented in this
paper incorporates additional features which are needed to pro-
duce manufacturable memories in GaAs.  The principles used in
this compiler have evolved over the design, test, and yield analy-
sis of numerous GaAs SRAMs[5].

Two compilers which represent the approaches currently used in
SRAM compilers are the Memorist compiler reported in [3] and
the Cascade Design Automation (CDA) multi-port RAM com-
piler reported in [2].  Both compilers strive to provide flexibility
for the user. The Memorist compiler provides this by allowing a
choice of either look-up table or SPICE delay calculations, and
by allowing the user to choose from a wide range of physical or-
ganizations that best meet their power-delay-area requirements.
The CDA compiler uses timing driven buffer sizing and process
independent layout generators to provide flexibility.

The Aurora RAM compiler shares the general goals of these com-
pilers, while introducing the following new objectives:

1. Develop a CAD tool which can provide process-tolerant
sub-2.5ns memory designs of up to 8Kb in size using GaAs
E/D MESFETs.

2. Build a compiler framework that can easily adapt to
changes in processing technology.

3. Develop a framework that allows the systematic trad-
ing of power for speed in an intelligent manner by pro-
viding timing-driven automatic transistor sizing.

A new design methodology was developed to build a com-
piler to meet these goals.

A. Motivation for New Methodology

Look-up tables or equation-based macromodels are com-
monly used in CMOS SRAM compilers for calculating de-
lays and power dissipations. An advantage of this approach is
that the calculations are orders of magnitude faster than per-
forming simulations using a transistor level circuit simulator
such as HSPICE. Another advantage is that SRAM compilers
which are developed as part of a larger CAD framework can
make extensive use of lookup tables and macromodels that
are already in place. There are, however, a number of serious
limitations associated with this approach, especially when
applied to E/D MESFET GaAs SRAM design.

The first disadvantage is the considerable cost associated
with macromodel development. Once the macromodels are
developed, they are tied to circuit structures that are de-
signed in a specific process. If the compiler were to be used
for a more advanced process, or if new and improved circuit
structures were needed to provide enhanced performance,
new macromodels would need to be developed to provide
fits to the new process, or to provide good fits to the new cir-
cuit structures.

Another drawback of the macromodel approach is related to
E/D MESFET GaAs circuit design. The signal swing of
most logic signals is only 550mV and noise margins are typi-
cally below 150mV. Also, leakage currents in GaAs are or-
ders of magnitude higher than those found in MOS devices.
Thus, even when a transistor is turned off, its output conduc-
tance is high enough that it can have a substantial impact on
the voltages of the nodes to which it is connected.  These
low noise margins require macromodels for signal levels as
well as delays, to ensure signal integrity in critical portions
of the RAM. The low noise margins of GaAs would demand
very accurate macromodels since errors in the modeling can
reduce the already low circuit noise margins. As transistor
equations evolve to cope with the ever-shrinking channel
lengths, the long-term cost associated with maintaining tran-
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sistor models and a circuit simulator within the compiler be-
comes very large.

A final deficiency of conventional approaches to delay modeling
and transistor sizing used in CMOS RAM compilers is that they
lack the fundamental notion of process tolerance. The large pro-
cess variations in GaAs make it essential to use a methodology
that is rooted in process tolerant design. Even CMOS manufactur-
ers are finding that as feature sizes shrink below 0.35µm, nonuni-
formity in channel lengths are making it very important to invest
time and effort in modeling process variations.

These issues have led to the development of a design framework
for the compiler that makes extensive use of SPICE simulations
and relies on a functionality and a timing-constraint driven de-
sign methodology.

In Section II, we briefly describe the SRAM produced by the
compiler. The objective functions and constraints involved in the
transistor sizing problem are formally defined in Section III.
This definition has guided the development of the compiler
framework, which is described in Section IV. In Section V, we
show examples of RAMs that were generated with this compiler.
Finally, concluding remarks are offered in Section VI.

II. C IRCUIT  DESCRIPTION

The Aurora RAM compiler has read and write ports that are ac-
cessed synchronously during each clock cycle. Both 1-read, 1-
write and 2-read, 1-write configurations are supported.  A mem-
ory clock signal is used to initiate read or write operations at the
beginning of each cycle. This signal is used to generate an inter-
nal equalization pulse which is used to precharge the bit lines.
Details of the circuits used in this compiler can be found in [4]
and [5].

The major cells used in the RAM are shown in the block diagram
of Fig. 1. The pulse generator, sense-amplifiers, write circuitry,
equalization circuitry, memory cell array, cell-ground drivers, and
word-line drivers are tiled so that routing is achieved by simply
abutting the cells. The row and column address buffers and prede-
coders are made using standard cells and are routed using auto-
mated place-and-route tools.

The layout generators for these cells were written using CDA's
Compiler Development System. This environment provides a lay-
out generation language which readily facilitates variable transis-
tor sizing.  This allows transistors in each of the cells to be sized
independently so that the compiler can use buffer sizes that are
most appropriate for the size of the generated RAM.

Extensive simulations have shown that fifteen transistor sizes and
ratios have significant impacts on the noise margins, functional-
ity, and overall speed of the RAM.  In the next section, we define
the problem of finding these sizes.

III. T RANSISTOR SIZING
PROBLEM  DEFINITION

The transistor size selection problem can be defined as fol-
lows. We are in search of a set ofn transistor sizes,
x1,x2,.,xn, which minimize an objective functionf of thesen
sizes, subject to a number of constraints. Formally, this can
be written as a search for

where

 (O-1)

subject to

wherex is the vector of transistor sizesx1,x2,..,xn, P(x) is the
power dissipated by the RAM,t(x) is the larger of the access
time and the write time, andttarget is the target clock period
for the RAM.

The solution to the objective function, O-1, represents a
RAM that will achieve the desired access and write times
while minimizing the power-delay product.

To guarantee that the vector ofn sizes,x, will produce a pro-
cess tolerant, functional design, the objective function needs
to be minimized with respect to a number of additional con-
straints. Before introducing these constraints, we present
some definitions.

We define the operation of successfully writing dataD to a
cell in row i and columnj, given a previous operation or con-
dition Y, as

Cell
Ground
Drivers

Word
Line
Drivers

MEMORY CELL ARRAY

EQUALIZATION CIRCUITRY

WRITE CIRCUITRY

SENSE AMPLIFIERS

DATA-IN DATA-OUT

Address Buffers and Predecoders

MEMCLK

Pulse Generator

Column
Decoders

Fig. 1. Block Diagram of the RAM Layout.
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The write operation is said to be successful if the cell is properly
written to, and all cells not being written maintain their state.

Similarly, the output voltage of a sense-amplifier after reading
dataD from a cell in rowi and columnj, following a previous
condition Y, is defined as

To perform process-tolerant design, the functionality constraints
must be met at each process corner that defines the process space.
Thus, if our process space is defined byk=1,2,...,m process cor-
ners, and we have n different functionality constraints, then
constraints must be satisfied to produce a process tolerant func-
tional design.

Using this notation, the functional constraints,g(x), that must be
met by the RAM can be defined as

 (C-1)
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g1 k, x( ) : W0 Ci j,( ) Ci j, 1=

g2 k, x( ) : W1 Ci j,( ) Ci j, 0=

g3 k, x( ) : W1 Ci j,( ) Ci j, 1=

g4 k, x( ) : W0 Ci j,( ) Ci j, 0=

g5 k, x( ) : R1 Ci j,( ) W0 Cz j,( ) VIH≥( )

g6 k, x( ) : R0 Ci j,( ) W1 Cz j,( ) VIL≤

g7 k, x( ) : R1 Ci j,( ) W1 Cz j,( ) VIH≥( )

g8 k, x( ) : R0 Ci j,( ) W0 Cz j,( ) VIL≤

g9 k, x( ) : R0 Ci j,( ) R1 Cz j,( ) VIL≤( )

g10 k, x( ) : R1 Ci j,( ) R0 Cz j,( ) VIH≥( )

g11 k, x( ) : W0 Ci j,( ) Ci j,{ 1 Cz j,, 0 }= =

g12 k, x( ) : W1 Ci j,( ) Ci j,{ 0 Cz j,, 1 }= =

g13 k, x( ) : W1 Ci j,( ) Ci j,{ 0 Cz j,, 0 }= =

 (C-14)

 (C-15)

 (C-16)

These 16 constraints are applied for all m process corners
that define the process space, i.e.,k=1,2,..,m. In C4, C5 and
C9-C14, we specify that , while in C6 and C7 there are
no constraints onz.

The first four constraints are very basic and state that the
write operation should be able to store a value in a cell re-
gardless of the previous state of the cell.  Constraints five
through eight ensure that a read operation is successful when
the read occurs immediately after writing the opposite data or
the same data to another cell in the same column.  The ine-
quality in these constraints ensures that the sense-amp be-
haves functionally and that the output voltage of the sense-
amp meets minimum noise margin requirements.  Constraints
nine and ten assure that the sense amplifiers can successfully
read either data value from a cell after reading the opposite
value from a cell in another row of the same column.

Constraints eleven through fourteen are related to an effect
specific to the memory cell used in this design, in which the
states of the memory cells within a column influence how
low the bit lines can be brought during a write.  If all of the
cells in a column store the same data value, then when the
bit line associated with the high-voltage storage node side is
pulled down, it is prevented from being completely lowered
to ground. This can cause slow or incorrect write operation.

Constraint fifteen is used to minimize the leakage currents
associated with unselected rows during a read or write opera-
tion. Arbitrary scaling of the transistors in the memory cell,
word line driver and cell-ground driver may reduce this re-
verse bias. In order to produce a RAM tolerant of this
known problem, constraint fifteen is used to ensure that the
reverse bias achieved across process variations maintains a
minimum, predetermined value. The final constraints place
physical bounds on the sizes of transistors chosen.

The transistor sizing problem has been cast as a classical
nonlinear optimization problem, where we are trying to opti-
mize an objective functionf, (i.e., the power dissipation) of a
set of n transistor sizes that will satisfy a number of con-
straints,g, that include achieving a target read access and
write time, and ensuring functional behavior over a range of
possible failure modes, given the physical bounds on the
transistor sizes that can be used.

g14 k, x( ) : W0 Ci j,( ) Ci j,{ 1 Cz j,, 1 }= =

g15 k, x( ) : Vrevbias Vword Vcell storage,− leak>=

g16 k, x( ) : xmin x xmax≤ ≤( )

z i≠



A number of techniques can be used to solve such a problem.
Since the nature of the solution space is well understood, a sim-
ple gradient search approach was taken to guide the transistor
size selection.  This approach is described in the next section.

IV. Compiler Framework

A flow-chart showing the organization of the RAM compiler is
given in Fig. 2. The compiler takes as input a Verilog description
of the RAM. This description includes a specification of the num-
ber of rows and columns in the RAM, and the number of address
bits.  The user must also specify a target cycle time.

The RAM compiler consists of two main software modules. They
are the physical design module and the transistor sizing module.
Considerable communication takes place between these modules.

An important feature of these modules is that they operate in a
flexible framework that can adapt to changes in processing tech-
nology. This feature is illustrated by items in the shaded boxes in
the flow chart which denote process definition files.

The transistor sizing module, for instance, uses the transistor
HSPICE models and process spread information as input. Since
the transistor sizing and RAM characterization rely on this infor-
mation, the compiler can be used to construct memories in a dif-
ferent process technology that has different transistor
transconductances, thresholds, or process control by simply using
a new transistor model file or a new process spread file.

As a second example of its flexibility, the compiler performs itera-
tive transistor sizing, parasitic extractions, and simulations to
achieve desired delay goals. The extraction is performed using an

inter-layer capacitance file and a metallization sheet-resis-
tance file. Thus, transistor sizing decisions, delay calcula-
tions, and power dissipation calculations can readily adapt to
process changes such as different metallization thicknesses or
changes in dielectrics, by updating the appropriate process-
files.

The compiler produces three outputs. The first is a design-
rule-correct and layout-versus-schematic correct layout of the
RAM. The second output is a SPICE net-list for the RAM in
case further verification is desired. The third output is a de-
lay-annotated Verilog file containing the read and write
times, and address and data setup and hold times.   In the fol-
lowing sections, we describe in greater detail the physical de-
sign module, a circuit simulation used to characterize the
generated RAM, and the transistor sizing module.

A. Physical Design Module

The physical design module consists of a layout generator, a
capacitance extractor and a cell area program. These pro-
grams take as input the Verilog description of the SRAM
which contains physical organization information, and a file
containing transistor sizes and power rail sizes.

Since the RAM is a very regular structure, the extraction of
capacitances on the bit-lines, word and cell-ground lines, pre-
decode address lines, and a handful of control signals is ade-
quate for accurate circuit simulation.

The dimensions of individual cells and of the entire SRAM
array are calculated in the cell area program by using the de-
sign-rule independent variables, the transistor sizes, and the
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power-rail sizes. This process is very rapid and does not require
any layout generation.

At various stages in the sizing, there are a number of different
ways in which the circuit can be sized to improve performance.
The components of the physical design module are used to per-
form accurate circuit simulation to help guide the transistor siz-
ing.

B. Circuit Simulation

In Section III, a number of constraints were defined which ensure
a process tolerant, functional memory design. In this section we
describe a simulation that has been developed which allows these
constraints to be checked using only a small number of simula-
tion cycles.

Due to the symmetrical nature of the memory cell and the read
and write operation, a number of pairs of constraints can be col-
lapsed into individual constraints. Also, a number of constraints
can also be checked simultaneously.

A timing diagram of the simulation used to check these con-
straints is given in Fig. 3. The sequence of operations consists of
two writes followed by three reads followed by two writes and
one read.

The first two writes check that the same and the opposite type of
data can be written to a cell. These simulations also check the
ability of the memory to write with and against the grain of all of
the cells in the column.  The first read is to the same address that
was just written. This tests the seventh and eighth constraints,
reading after the same data was written to a cell in the memory.
This also checks the ability of the sense-amplifier to read a zero.
This set of three reads performs a read-0, read-1, read-0, check-
ing constraints C-9 and C-10.  The following two writes cause
new data to be written to each of the memory cells. Thus, after
these operations, we have checked for writes which cause a
change in data with and against the grain of the data stored within
the column.  The last read is a read after a write of the opposite
type of data within the column. Using symmetry, this checks for
constraints C-5 and C-6.

Clock
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Address

Data

Cell A

Cell B

Output

Fig. 3. Timing Diagram of the Simulation to
Verify the Functionality Constraints.

In addition to checking the functionality constraints, this sim-
ulation is also used to properly determine worst-case read
and write times. By subjecting the memory to a range of op-
erating sequences, we can measure the read access time after
a write of the same or opposite data type, and after a read of
the opposite type of data. The write times can similarly be
measured with and against the grain of data in a column, and
immediately after a read or immediately after a write.  This
characterization methodology is much more comprehensive
than the methodologies currently employed which use a sin-
gle “worst-case" operation sequence for measuring these de-
lays. While it can be argued that a particular sequence of
operations tends to produce the "worst-case" delay, the dif-
ferent sensitivities of circuits to process variations make the
validity of these arguments suspect.

C. Transistor Sizing and Characterization

The purpose of the transistor sizing and characterization
module is to find a set of transistor sizes that achieve a pro-
cess tolerant SRAM meeting a target clock frequency.  The
module consists of an initialization stage, a transistor sizing
loop, and a post-processing stage.

All of the buffers are first set to their minimum sizes during
the initialization stage.  Parasitic resistances and capaci-
tances are then extracted to generate an accurate simulation
model of the RAM.  The simulation described in the previous
section is used to exercise this model to determine propaga-
tion delays, signal edge rates, power dissipation, functional-
ity, and noise margins in the RAM.

In the timing-driven transistor sizing loop, we first check the
edge rates on the buffered address lines, read/write lines, and
predecode lines. If the rising or falling edge rate for a given
line is too large, then the size of the buffer driving that line
is increased. The edge rate of a signal can have as much as a
40% impact on the delay of subsequent stages. As a result,
poor edge rates early in the readout or write paths can signifi-
cantly degrade the performance of the memory. The specifi-
cation of a maximum edge rate on these lines is a sound
approach to minimizing the delay of the first few stages of
logic.

The second step is to determine which of the read access
time or the write time is more critical. Depending upon
which time is more critical, a different set of transistor sizes
is considered for variation.

There is a large amount of inherent parallelism in selecting
which transistor size will be the most cost effective in pro-
viding improved performance.  Thus, we have developed a
framework which first finds the least loaded work stations on
a network. Parallel simulations are then distributed to these
machines to minimize the total computation time.  The re-



sults of these simulations are then analyzed to choose the appro-
priate transistor sizing direction.

If any of the circuitry associated with the bit-lines is altered, this
may impact the desired sensitivity range of the sense-amplifier.
Hence, the sense-amplifier is re-optimized within the loop. Since
an increase in the speed of the path may require a modification in
the precharge pulse width to achieve better performance, the pulse
width is also re-optimized within the loop.

Once the target access and write times are achieved, or all possi-
ble circuit parameters have been improved, or no improvement
could be found for the more critical of the read and write time
while maintaining the specified noise margins, we exit this loop
to perform the post-processing.

In the post-processing stage, the address and data setup and hold
times are determined by sweeping signal edges until one of the
first fifteen constraints is not met.

V. EXAMPLES  OF GENERATED RAMs

The RAM compiler was used to attempt to generate 1ns parts for
various organizations, including a 128x64, 64x64, 64x32, 32x32
and 32x16 organization. The power-delay curves that were traced
while traversing the transistor size space are shown in Fig. 4.
This graph shows that for larger sized memories, the tool allows
a considerable amount of speed to be traded for power dissipa-
tion.  Fig. 5 shows layout plots for three different sizes of the
RAM.  The entire layout and routing time for the largest of these
SRAMs took only 6 minutes.  Each of the SRAMs was optimized
in approximately 5 hours, using a small network of six HP 710
machines.
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Fig. 4. Compiler-Generated Power-Delay Curves.

VI. CONCLUSIONS

In summary, the RAM compiler described in this paper rep-
resents a departure from the conventional methodologies
used in RAM compilers. Because of the low noise margins
and large process variations in GaAs circuits, we developed
a compiler which uses HSPICE as a simulation engine for
performing delay as well as signal noise margin calculations.
A process tolerant design flow has been developed for this
RAM compiler which performs simulations over a sequence
of operations and process corners to achieve a high design
yield. This new approach should prove useful not only for
GaAs SRAM compilers, but also for CMOS compilers as
transistor nonuniformities become problematic with feature
sizes below 0.35µm.
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Fig. 5. Sample Compiler Generated Layouts (clockwise,
starting at the top left corner) 256b, 8Kb, and 4Kb SRAMs.
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