
procedure for performing power factorization. In section 5. we
discuss the effect of algebraic substitution on the power cost
of a Boolean network. Selective collapse targeting low power
is presented in section 6. Results and concluding remarks are
presented in sections 8. and 9.

2. Estimating power consumption of a node
In order to accurately estimate the power consumption of a
functionf, we need to estimate the switching activity and load
at the output of the gate implementingf.

In this paper we use the signal probabilities of the pri-
mary inputs to compute the signal probability of each internal
node by building its global OBDD [6]. We then compute the
switching activity of the node assuming temporal indepen-
dence at the primary inputs. Given the signal probabilityp(n)
for an internal noden, thent(n)=2*p(n)*(1-p(n)) wheret(n) is
the switching activity of noden.

We also use the following definitions to compute the out-
put loads for nodes in the network. Given a nodeni and fanin
nodenj, we define thefactored load of nj with respect toni,
FL(nj, ni) as the number of times variablenj is used (in posi-
tive or negative form) in the factored form expression of node
ni. We also define thecube load of nj with respect toni,
CL(nj,ni) as the number of times variablenj is used (in positive
or negative form) in the sum-of-products form of nodeni.

Using these definitions we define two power cost func-
tions for a node. Note that the cost functions presented here
represent the contribution of a node to the power consumption
of the network since they include both the power at the input
and the output of the node.

 The sum-of-products cost function gives the power con-
sumed by the node if the node was to be implemented in a
sum-of-products form. Given a nodeni with output functionf
and cubes(c1,.. cN), the power cost ofni in the sum of prod-
ucts form is computed as:

(1)

The first term in this equation corresponds to the power
consumption at the output of the node. The second term corre-
sponds to the power consumption at the output of the gates
implementing each product term of the function and the last
term accounts for the power on the inputs to the node.

Given a nodeni, the power cost of the node in the fac-
tored form is computed as [3]:

(2)

whereInternal(ni) is the set of all internal nodes in the fac-
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Abstract
This paper describes algebraic procedures for node

extraction and factorization that target low power consump-
tion. New power cost functions are introduced for the sum-of-
products and factored form representations of functions.
These cost functions are then used to guide the power optimi-
zation procedures. It is also shown that using the proposed
SOP power cost function, all extractions resulting in a power
reduction will not result in an increase in the number of liter-
als in the network. The procedures described in this paper
were implemented and results show 16% average improve-
ment in power at the cost of 7% average increase in area.

1. Introduction
With the increasing use of portable computing devices, size
and battery lifetime are becoming important factors in today’s
digital systems. Meanwhile the amount of data to be processed
is increasing at a rapid pace. This also places a severe demand
on the speed of digital devices. The circuit power is also be-
coming the limiting factor in the amount of logic that can be
placed in a VLSI chip and the determining factor in the pack-
aging cost. These considerations have resulted in a growing
need for minimizing power in today’s digital systems.

Power consumption in a digital circuit can be optimized
at different stages of the design process. However in order to
maximally reduce the circuit power consumption, power has
to be considered at all levels of the design hierarchy. These
include optimizations performed at the behavioral, logic and
physical levels [2][11][9][1].

Logic optimization based on algebraic operations has
provided an efficient method for minimizing the area of a
Boolean network. Algebraic based extraction algorithms [5]
have provided fast methods for identifying logic sharing
among different nodes. Substitution algorithms have helped in
reducing the area by taking advantage of functions that have
already been implemented. Algebraic factorization algorithms
have provided fast techniques for estimating the area of a net-
work by computing the number of literals in the factored form
of the network. The application of these procedures during
technology independent phase of logic synthesis has proved to
be quite effective [7][12].

In this paper we address the problem of reducing power
consumption during the technology independent phase of the
logic synthesis using algebraic techniques. We first define new
cost functions that measure the power cost of Boolean func-
tions and then using these cost functions we extend the exist-
ing algebraic techniques to minimize power consumption.

The rest of this paper is organized as follows. In section
2. we give background information for power optimization
and propose new power cost functions. In section 3. we dis-
cuss kernel and cube extraction operations for area and power.
Section 4. describes the basics of factorization and describes a
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tored form representation ofni.
Note that is equations (1) and (2), the load for internal

nodes is assumed to be 1. This is a valid assumption since for
SOP representation, each node implementing a product term
only fans out to one node. The procedure for factorizing a
node [12] and its extension to consider power also guarantee
that each internal node has only one fanout node.

These cost functions are used at different stages of tech-
nology independent power optimization. TheSOP power cost
function is used to guide the algebraic extraction and decom-
position algorithms since the underlying assumption for alge-
braic operations is a SOP form implementation. The FAC
power cost is used to guide the procedure for selective col-
lapse when the goal is to minimize the power of the network
in the factored form.

3. Common sub-function extraction
Algebraic extraction identifies common kernel and cubes and
introduces them as new nodes into a network in order to opti-
mize the area cost of a network. These techniques use the SOP
cost of nodes to minimize the total number of literals in the
SOP form of the network. Algebraic extraction techniques uti-
lizing kernels and cubes are used extensively and result in sig-
nificant reduction in the area of the mapped network [5].
3.1. Motivation
In area optimization the area value of a kernel is defined as the
reduction in the number of SOP literals in the network when
the kernel is extracted. We define the power value of a kernel
as the reduction in the network power assuming a SOP imple-
mentation.

Example 1:
AssumeF = a b c d e + d e f g h i + f g i j k. Also assume
p(f)=0.1 and signal probability for all other fanins is 0.5.
All kernels of functionF are:

K1 = a b c + f g h i co-kernel: d
K2 = d e h + j k co-kernel: e f h

FunctionF can be represented as:
F1 = K1 d e + f g i j k

or F2 = a b c d e + K2 f g i
Assuming an SOP implementation, extractingK1 will reduce the
number of literals by 1 and the power by 0.523. ExtractingK2
will reduce the number of literals by 2 and the power by 0.137.

■

For area optimization, maximum reduction in literals is
obtained by extracting a kernel with maximum value. Extract-
ing a kernel with maximum area value does not however
always result in maximal reduction in the SOP form power of
the network as illustrated in the previous example. In this
example extractingK2 will result in maximal reduction in the
number of literals in the network. However more power
reduction is obtained ifK1 is extracted.
3.2. Previous work
In [8] a modification of kernel extraction algorithm is present-
ed which generates multiple level circuits with low power con-
sumption. The procedure is as follows.

Let d=d(v1,...vM), M>0 be a common sub-expression of
function F=(f1,...fL), L>1. Let (J1,...JP), P>0 be the nodes
internal tod. Whend is factored out offi, the signal probabili-
ties and switching activities at all nodes of the network remain
unchanged. However the load at the output of the driver gates
(v1,..vM) change. Each gate now drivesL-1 fewer gates. At the
same time, since there is only one copy ofd instead ofL cop-
ies, there areL-1 fewer copies of internal nodes (J1,..JP). The

power saving in extractingd is thus given as:

(3)

wherenvi gives the number of gates belonging to d and driven
by signalvi andnJi is the number of gates internal tod and
driven by signalJi. One shortcoming of this method is that
first a factored form for the functions is assumed and the sub-
expressions are extracted based on these factored form repre-
sentations. However once these sub-expressions are extracted,
they will not necessarily have the assumed factorized form.
This introduces an inconsistency in the flow of the procedure
which will potentially lead to inconsistent results.
3.3. Kernel extraction targeting low Power
In the following, we describe an alternative approach for com-
puting the power value for extracting a common sub-expres-
sion from a set of boolean equations. This power value uses the
power cost of a node in the SOP form to compute the value for
extraction. Using power cost in SOP form is consistent with
the assumption made for computing the literal-savings value of
a candidate divisor during algebraic extraction.

Consider a multiple-output Boolean functionF={f 1,..,fL}
with cubes(c1,...,cN) and input set(v1,...vM). LetD=d1+..+dP
represent a kernel of functionF used as a divisor. Also assume
Q={q1,..qR} is the set of co-kernels for kernelD in functionF.
The area value for extractingD is given by equation (4). In
this equation the first term accounts for literals saved by not
repeating the kernel, the second term accounts for literals
saved by not repeating the co-kernels and the last term
accounts for the number of literals introduced by extracting
kernelD [7] .

(4)

We compute the power_value for extracting kernelD
using equation (5). In this equation, the first term accounts for
the reduction in the load on the inputs of the kernel. The sec-
ond term accounts for the reduction in the load on the inputs to
the co-kernels of the given kernel. The third term accounts for
the cubes of the function that are removed from the original
SOP representation of the function. (Note that in this represen-
tation (di.qj) corresponds to a cube of the original SOP repre-
sentation of the function.) The fourth term corresponds to
power consumption at the output of the new node which is
inserted into the network. The fifth term corresponds to the
power consumption at the output of the cubes of the new node
that is inserted in the network. The last term accounts for the
power at the output of the new cubes inserted in the SOP rep-
resentation of functionF.

(5)
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The following example uses equations (4) and (5) to
compute the area and power values for extracting a kernel.

Example 2:
Assume:

F1 = a x y + a u w + v z
F2 = b c x y + b c u w = v z

and D = x y + u w⇒ q1 = a, q2 = bc and R = P = 2
Also assume the following signal probabilities for the circuit
inputs:

p(a) = 0.97 p(u) =  0.91 p(x) = 0.67
p(b) = 0.02 p(v) =  0.93 p(y) = 0.47
p(c) = 0.51 p(w) = 0.35 p(z) = 0.65

Using the given values, we compute the switching activity for
the following product terms and functions:

t(axy)   = 0.424 t(auw)   = 0.427 t(vz) = 0.478
t(bcxy) = 0.006 t(bcuw) = 0.006
t(aD)    = 0.500 t(bcD)   = 0.011
t(xy)     = 0.431 t(uw)     = 0.439
t(D) = 0.498 t(F1) = 0.309 t(F2)= 0.011

If D is extracted fromF1 andF2, then
F1 = a D + v z, F2 = b c D
D = x y + u w + v z

Using equation (4), the area value for kernelD is computed as:
(2-1)*4 + (2-1)*(1+2) - 2 = 5

In fact the number of literals of the functions is reduced by 5
afterD is extracted.
Using equation (5), the power value for this extraction is com-
puted as follows:

(2-1) * ( t(x) + t(y) + t(u) + t(w) )
+ (2-1) * ( t(a) + t(b) + t(c) )
+ ( t(axy) + t(auw) + t(bcxy) + t(bcuw) )
- 2 * t(D)
- ( t(xy) + t(uw) )
- ( t(aD) + t(bcD) )

where each line in this equation corresponds to one term in
equation (5). Then
power_value =1.559+0.597+0.863-0.996 -0.865-0.511

= 0.647
■

Low power kernel extraction proceeds as follows: We
first computeK, the set of all kernels for all the nodes in the
network using a procedure described in [7]. We then generate
D, the set of all kernel intersections for kernels inK. We then
extract the sub-expressionDi ∈D which has maximum power
value. This operation is performed while there exists a sub-
expressionDi with a positive power value.

The kernel extraction procedure as described here mini-
mizes the power by reducing load on high activity nodes and
also introducing new nodes which have lower output activi-
ties. These conditions guarantee a reduction in power if the
final area of the power optimized circuit is not significantly
larger than the area of the circuit optimized for area. The fol-
lowing lemma shows that for all extractions that improve the
power cost of the network as computed in equation (5), the lit-
eral count of the network will not be degraded.
Lemma.1. Given a set of functions F={f1, ..,fL}, and a candi-
date sub-expression D with co-kernels Q={q1,..q1}, if power
value of D is greater than or equal to zero then area value of
D is greater than or equal to zero.
Proof: AssumeK is the number of literals in kernelD andC
is the number of literals in co-kernels ofD. Then area value
of D as given in equation (4) can be negative only whenK=1
or whenR=2 andP=1. Equation (5) shows that under these

conditions power value ofD will also be negative. This
means that a negative area value results in a negative power
value which in turn implies the claim of the lemma.

■

3.4. Cube extraction
Consider a Boolean functionF={f 1,..,fL} with cubes(c1,...,cN)
and input set(v1,...vM). Let D = ci ∩ cj be a sub-cube of the
function withT literals that is shared byR(>1) cubes of the
function. The area value for extractingD is given by [7]:

(6)
We compute the power value for extracting cubeD using

equation (7). The first term in this equation accounts for the
load reduction on the inputs fanning out toD. The second
term accounts for the power introduced in the network by add-
ing a gate into the network. The load for this new gate is
CL(f,D)which is equal toR.

(7)

The procedure for power cube extraction proceeds as fol-
lows: We first computeC, the set of all cube intersections for
all the nodes in the network using a procedure described in
[7]. We then extract the sub-expressionCi ∈C which has max-
imum power value. This operation is performed while there
exists a sub-expressionCi with a positive power value.

As with kernel extraction, the following lemma guaran-
tees that any cube extraction for power will not degrade the
number of literals in the network.
Lemma.2. Given a set of functions F={f1, ..,fL}, and cube C
with T literals to be extracted from F, if the power value of C
is greater than or equal to zero then area value of C is
greater than or equal to zero.
Proof: It is similar to the proof for Lemma 1.

■

3.5. Quick power extract
The shortcoming of the power value as presented in equations
(4) and (5) is that for each sub-expression being extracted, the
switching activity of all the cubes being removed and being in-
serted have to be computed. Correct computation of the
switching activity for any internal node or function (under a
zero delay model) [9] [4] requires that the global OBDD and
then the signal probability of the function be computed. This
operation proves to be very time consuming. In order to speed
up the extraction procedure we use the signal probability val-
ues on immediate fanins of the node to approximately compute
their switching activity.

4. Factorizing logic functions
Factorization is the process of deriving a factored form from a
sum-of-products form of a function. For example if
F=a.b+a.c+b.c then one possible factorization of F is
a.(b+c)+b.c. Since the area of a Boolean network is more ac-
curately estimated by the number of literals in the factored
form of the network, efficient factoring algorithms are needed
to guide the optimization problems.

In [12] a recursive procedure calledgeneric_factor, is
presented for factorizing a function. At each step of the recur-
sion the functionF passed to the procedure is transformed into
F=Q.D+R whereD is the divisor,Q is the quotient andR is
the remainder of dividingF by D. The procedure guarantees
that the resulting factorized form ofF is maximally factorized.
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The procedureDIVISOR passed to the function is used to find
a candidate divisor for the function. By changing this proce-
dure, trade-offs in terms of speed and quality of results can be
made. QuotientQ is computed by performing weak divi-
sion[12] onF andD.

Two commonly used factorization techniques are “quick”
and “good” factorization which are performed by using differ-
ent DIVISOR procedures with thegeneric_factor routine. In
“good” factorization, at each level of the recursion in
generic_factor, a kernel is returned byDIVISOR which results
in maximum reduction in the number of literals in the SOP
form of the function being factored. This kernel is selected by
generating the set of all kernels and then selecting the one
with maximum area value.

In “quick” factorization,DIVISOR returns a level 0 ker-
nel [7] of the function which is generated using a recursive
procedure calledbest_literal. At each step of the recursion,
best_literal divides the function by the most occurring literall
in the SOP form. This choice ofl for the given functionF
guarantees that at each step of the recursion, the number of lit-
erals in the resulting expression,Q.l + R is maximally
reduced.
4.1. Factorizing for power
The goal of factorization for low power is to produce a factored
from where the weighted sum of the literals in the factored
form is minimized where each literal is weighted by its switch-
ing activity. In this paper, the proceduregeneric_factor is used
to ensure that the resulting factored forms are maximally fac-
tored. The procedures for finding a divisor however, are modi-
fied to take into account the switching activity of the literals in
the factored form representation.

In “good_power” factorizationDIVISOR finds the best
power divisor by generating the set of all kernels in the func-
tion and then returning the kernel with the best power value.
The power value of kernels are computed using equation (5).

In “quick_power” factorization, DIVISOR will return a
level 0 kernel as is done in “quick” factorization. The proce-
dure for generating this level 0 kernel however is modified to
take into account the switching activity of the literals. proce-
durebest_power_literal is a variation ofbest_literal where at
each step of the recursion the functionF is divided by the lit-
erall with the highest valueCL(l,F)*t(l) .
Lemma.3. Given an algebraic expression F, selecting literal l
which maximizes CL(l,F)*t(l) will result in minimum
weighted sum of the literals in the factored form of the
expression Q.l+R obtained by dividing l into F.
Proof: Reduction in the weighted sum of the literals is given
by (CL(l,F)-1)*t(l). Maximally reducing the weighted sum
of literals is thus equivalent to maximizingCL(l,F)*t(l) .

■

5. Substitution
Substitution of a functionG intoF is the process of re-express-
ingF in terms of variableG and the original inputs of the func-
tion F[12] . Substitution can be performed using algebraic or
Boolean division algorithms. Even though Boolean division in
general yields better results, algebraic division is a much faster
heuristic which produces comparable results. If algebraic divi-
sion is used for substituting variableG into functionF and the
quotient of the result is not 0, then we can conclude thatG was
a sub-expression of functionF. In fact if a non-trivial expres-
sionG (a function other than buffers or wires) can be substitut-

ed in functionF using an algebraic division procedure (i.e.
weak division), then the area value as defined in equation (4) is
always greater than zero. The important consequence of this is
that if a functionG can be substituted into a functionF, then it
is guaranteed that this substitution will result in a decrease in
the number of literals of the network in the SOP form.

Substitution is also used to minimize the network power
consumption. However substitution does not always guaran-
tee a reduction in the power cost of the network. This means
that an operation which decreases the number of literals in the
network can potentially increase the power cost of the net-
work in the SOP form.

Example 3:
Assume F1 = a b candF2 = a b

also p(a) = p(b) = p(c) = 0.9, p(F2) = 0.5
Note thatp(F2) ≠ p(a)*p(b). The cause for this is spatial depen-
dence between inputsa andb[4] .
F1 can be expressed in terms ofF2 as follows:

F1 = F2 c
After the substitution, only the input plane forF1 is changed in
the network and the power at the input ofF1 is increased from
0.54 to 0.68 even though literal count is decreased.

■

Once it has been determined that a nodenj can be substi-
tuted into a nodeni, we compute the power cost function ofni
as given in equation (1) for both SOP implementations ofni
before and after substitutingnj. We proceed with the substitu-
tion if the power cost ofni is reduced after substitution.

6. Selective collapse
Selective collapse is the process of selectively eliminating
nodes in a network in order to reduce the area cost of the net-
work. Selective collapse is performed on an initial Boolean
network to provide a better starting point for the extraction pro-
cedures. This is done since the initial network might have fac-
tors identified which are not good candidates for extraction.
During area optimization, two value functions are used to de-
cide if a node should be eliminated by collapsing it into its
fanout nodes. One is the sum-of-products value of the node.
This value is the reduction in the number of literals in the sum-
of-products form of the network if the node is collapsed into all
its fanout nodes. The area value and power value for a nodeni
are given by equations (4) and (5).

The second value function is the factored form value.
This value gives the reduction in the number of literals in the
factored form of the network if the node is collapsed into its
fanout nodes. The area value in the factored form of a node is
defined as follows[7]:

(8)

whereL(ni) is the number of literals in the factored form of the
nodeni. The first term in this equation accounts for the dupli-
cation of the literals in the factored expression ofni once it is
collapsed into its fanouts. The second term is the decrease in
the number of literals by removing the literals corresponding
to ni from its fanout nodes. The last term account for the
removal of ni from the network whereL(ni) literals are
removed from the network.

We define the factored form power value for selective
elimination as follows:
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(9)

The first term in this equation gives an estimate of the
power added to the network by duplicating the node function.
The second term accounts for the power at the output of the
node which is removed from the network.

7. Optimization scripts
Logic optimization scriptscript.algebraic provided in the SIS
package is used as the starting point for a power optimization
script. Algebraic commands in this script are replaced by
equivalent commands for power to generatescript.power_alg.

A power recovery stage is also performed at the end of
script.power_alg. The following example illustrates the moti-
vation behind this step.

Example 4:
AssumeF = a b c + a d e + e f g. Also assume signal probability
for all inputs is 0.5.
FunctionF has two kernelsK1 = b c + d e andK2 = a d + f g .
Thepower value(K1) = power_value(K2) = - 0.646. This means
that any further decomposition of this function will result in an
increase in the power consumption of the network.

■

In script.algebraic all nodes are fully decomposed before
mapping is started. However this will not be true for
script.power_alg since some decompositions will result in an
increase in the power. A power recovery stage is added after
the decomposition procedure inscript.power_alg where all
nodes are first decomposed into n-input NAND gates. Elimi-
nation for power is then performed to eliminate all nodes
which increase the node node in the factored form. This oper-
ation is followed by extraction and decomposition for power.

8. Results
The procedures outlined in this paper have been imple-

mented in SIS andscript.power_alg has been created.
Each circuit in the benchmark set was first optimized for

area usingscript.algebraic and then mapped for minimum
power using an industrial library and the power driven tech-
nology mapper presented in [10]. The same circuits were then
optimized for minimum power usingscript.power_alg and
then mapped using the same library and technology mapper. .
It is difficult to accurately estimate the switching activity
under a real delay model for circuits before technology map-
ping. Therefore we adopt a zero delay model for computing
the node switching activities. Table 1 shows the results when
the circuits are optimized usingscript.algebraic. Column 1, 2
give the power and area of the circuit after mapping. Column
3 gives the average switching activity of internal nodes in the
network after technology mapping. Power is measured using
the library loads and area is measured as the sum of the gate
areas. Columns 4, 5 and 6 show the power, area and average
switching activity for the nodes in the network before the
technology mapping is started. Here power is measured
assuming an SOP implementation and area is given as the
number of literals in the network. The results in Table 2 are
also normalized with respect to the results in Table 1. As the
results show, power after mapping has been reduced by 21%
at a cost of increasing the area by 7%. The average switching
activity has also been reduced by 24%. As shown by the
results, the extraction procedure has been very effective in
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introducing new nodes in the network with small switching
activities. There is also a 22% decrease in the total sum of the
power for all circuits being optimized at the expense of
increasing the total area by 10%.

Table 3 and 4 show the same results starting with multi-
level examples. Results show an average 10% improvement
in power at the cost of increasing the area by 5%. Average
switching activity in the network is also reduced by 12%. The
total sum of power over these circuits is also reduced by 6% at
the expense of increasing the area by 6%.

The run-time forscript.power_alg is much more than
that ofscript.algebraic. This is due to the fact that at start up
and after each extract(but not during candidate kernel evalua-
tion) global OBDDs were built for computing the switching
activities in the network. More efficient techniques have been
proposed for computing the network switching activities [4].
Using these efficient methods, the run time of
script.power_alg can be significantly improve.

9. Conclusions
In this paper we have proposed a unified approach to

power optimization using algebraic based methods. The
results show that in general it is possible to slightly increase
the network area in order to reduce the power consumption of
the technology mapped network. This is accomplished by
reducing load on high activity nets and also by introducing
new nodes which have a lower switching activity. Power cost
functions were proposed to find the quality of extractions per-
formed for low power which proved to be quite effective.
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Table 2.script.power_alg for two-level circuits

Post-Map Pre-Map

ex 1 2 3 4 5 6
apex2 0.75 1.18 0.65 0.68 1.08 0.50

apex4 0.74 1.06 0.81 0.72 1.09 0.62

b12 0.96 1.14 0.68 0.92 1.10 0.74

clip 0.79 0.90 0.81 0.82 0.94 0.80

cps 0.85 1.16 0.76 0.79 1.14 0.61

duke2 0.76 1.11 0.75 0.71 1.06 0.52

ex4 0.94 1.07 0.84 0.91 1.05 0.82

inc 0.70 0.92 0.87 0.66 0.95 0.72

misex2 0.94 1.01 0.94 0.95 1.02 0.84

misex3 0.77 1.14 0.65 0.75 1.15 0.55

misex3c 0.78 1.07 0.70 0.82 1.10 0.63

pdc 0.80 1.08 0.67 0.90 1.10 0.73

rd53 0.65 0.81 0.89 0.59 0.69 0.79

rd73 0.78 1.08 0.65 0.72 1.15 0.53

rd84 0.76 1.19 0.63 0.78 1.28 0.56

sao2 0.67 1.19 0.52 0.62 1.03 0.44

spla 0.73 1.16 0.61 0.73 1.11 0.55

squar5 0.80 0.95 0.84 0.84 1.00 0.71

Avg 0.79 1.07 0.74 0.77 1.06 0.65

Table 4.script.power_alg for Multi-level circuits

Post-Map Pre-Map

ex 1 2 3 4 5 6
C1355 0.91 0.98 0.87 0.97 1.00 0.95

C1908 0.94 0.90 1.00 0.94 1.01 0.89

C432 0.92 0.90 1.10 0.96 1.01 1.03

C880 0.92 1.00 0.94 0.91 0.99 0.88

alu2 0.85 1.01 0.78 0.87 1.05 0.78

alu4 0.65 1.07 0.57 0.87 1.10 0.68

apex6 0.98 1.05 0.95 0.93 1.06 0.89

b9 0.99 0.99 1.03 0.99 1.08 0.90

dalu 1.07 1.14 0.90 1.12 1.12 0.91

des 0.99 1.02 1.12 0.94 1.05 0.88

f51m 0.89 1.11 0.74 0.96 1.23 0.72

frg1 0.85 1.05 0.72 0.87 1.10 0.72

k2 0.94 1.24 0.89 0.71 1.28 0.57

rot 0.99 1.00 1.02 0.93 1.01 0.91

t481 0.78 1.07 0.68 0.98 0.99 0.82

ttt2 0.85 1.15 0.78 0.86 1.11 0.79

x2 0.89 0.97 1.01 0.88 0.94 0.89

9symml 0.83 1.16 0.75 0.77 1.14 0.61

Avg 0.90 1.05 0.88 0.91 1.07 0.82

Table 3.script.algebraic for multi-level circuits

Post-Map Pre-Map

ex 1 2 3 4 5 6
C1355 1.80 69.6 0.27 214.1 556 0.290

C1908 1.50 84.4 0.19 170.2 565 0.238

C432 0.62 36.5 0.14 75.06 250 0.178

C880 1.23 57.3 0.19 152.7 445 0.256

alu2 0.88 64.4 0.10 105.0 467 0.208

alu4 1.28 130. 0.08 102.9 864 0.108

apex6 2.19 113.2 0.16 272.2 827 0.300

b9 0.32 17.4 0.16 38.66 131 0.251

dalu 2.43 158. 0.14 288.1 1239 0.193

des 8.65 568. 0.12 1068. 3765 0.280

f51m 0.35 18.4 0.17 43.28 140 0.298

frg1 0.40 17.8 0.20 46.73 146 0.277

k2 1.39 174. 0.05 119.8 1069 0.058

rot 1.62 99.8 0.15 204.9 773 0.235

t481 0.85 122. 0.06 70.93 915 0.052

ttt2 0.47 26.11 0.13 57.41 214 0.188

x2 0.15 6.93 0.18 14.98 54 0.290

9symml 0.61 34.1 0.12 79.68 266 0.262

Table 1.script.algebraic for two-level circuits

Post-Map Pre-Map

ex 1 2 3 4 5 6
apex2 0.88 48.6 0.13 108. 379 0.22

apex4 4.39 414. 0.06 496. 272 0.11

b12 0.19 11.0 0.14 22.5 93 0.21

clip 0.41 17.1 0.24 50.1 141 0.30

cps 1.80 174. 0.08 207. 118 0.14

duke2 0.86 60.3 0.12 87.8 418 0.15

ex4 1.38 67.3 0.16 176. 556 0.21

inc 0.46 18.8 0.18 54.6 148 0.30

misex2 0.23 15.7 0.10 23.2 109 0.10

misex3c 0.97 85.5 0.08 111. 601 0.15

misex3 1.88 118. 0.11 220. 844 0.20

pdc 1.47 81.1 0.15 150. 570 0.17

rd53 0.28 7.00 0.38 33.0 62 0.46

rd73 0.21 19.1 0.10 29.8 143 0.21

rd84 0.43 24.0 0.15 53.4 178 0.27

sao2 0.47 21.7 0.16 60.6 182 0.25

spla 1.39 86.9 0.13 154. 616 0.17

squar5 0.11 8.96 0.12 13.0 70 0.19
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