
AbstractThe PowerPC logic verification methodology is a gen-
eral purpose approach suitable for a large class of chip designs
that can exceed five million transistors in size. Several validation
techniques are integrated into an automated logic verification
strategy. The success of this methodology has been demonstrated
by realizing three PowerPC microprocessor chips that were func-
tional the first time.

I. INTRODUCTION

Logic verification is a crucial element in the success of a
microprocessor chip design. The goal is to verify that the
functional specification matches the switch-level implementa-
tion. Traditional techniques rely on massive amounts of event
driven simulation at both the gate and switch levels. This type
of simulation suffers from slow performance (number of sim-
ulation cycles per second) and poor functional coverage [1],
[2], [3]. This situation can be drastically improved by apply-
ing specific point solutions to a variety of verification prob-
lems within an automated environment. This technique
demonstrates the benefits received from exploiting the use of
hierarchy within the microprocessor chip design to enable a
divide and conquer strategy. Boolean comparison is used to
verify logic models represented at the gate and block levels.
For switch-level circuits, exhaustive or ATPG patterns are
simulated to demonstrate equivalence.

In the following section, the design methodology will be
introduced to define some of the concepts used in the overall
verification flow. Next, the logic verification strategy will be
presented and details provided for each of the methods
employed for the different design types. Finally, elements of
the automated environment will be highlighted and explored.

 PowerPC is a trademark of International Business Machines Corpo-
ration.

II. ELEMENTS OF THE METHODOLOGY

The functional specification for each chip design is defined
in terms of a Register Transfer Level (RTL) description and is
the primary (golden) model used to determine functional
accuracy. This model, which is code-compiled and verified
using a cycle simulator, is state equivalent with the physical
implementation; that is, each storage element found in the
physical implementation must correspond to a component
specified within the RTL description. Simulation vectors are
generated using a Random Test Pattern Generator (RTPG) [4]
and are supplemented with designer specified functional pat-
terns. These patterns are simulated on the RTL description and
the results are compared against the expected response from
an architectural model which is presumed to be correct.

The RTL model is constructed to be hierarchically similar
to the actual partitioning used in the chip floorplan. The logic
design of the PowerPC microprocessor is partitioned within
functional boundaries for which various design strategies are
applied. One such partition, known as a Random Logic Macro
(RLM), is a control logic structure which instantiates func-
tional components. RLMs are implemented using techniques
that range from automated logic synthesis [5], [6] to full cus-
tom design.

A fundamental concept within the PowerPC microproces-
sor design methodology is the use of library elements called
building blocks. A building block is the lowest level element
that can be referenced within the RTL model hierarchy. It is a
self contained unit which has a functional specification, a
logic schematic implementation, and a physical layout. The
circuit design and construction of building block libraries
takes place in parallel with the development of the RTL
model. Building block circuits represent simple functions
such as Boolean logic gates, latches, and multiplexors as well
as more complex datapath elements including adders, shifters,
rotators, and arrays. A building block may be used just once
or it may be used a number of times to take advantage of
reuse. Building blocks are assembled in the construction of
RLMs and are instantiated in higher level hierarchical struc-
tures which make up the chip design. Astructurerefers to a
level of hierarchy within the RTL model that represents a
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physical boundary in the chip floorplan which is above the
building block and RLM levels. A structure may reference an
RLM, building block or another structure. A structure is also
used to represent the top (highest) level in the chip design
hierarchy. Fig. 1 shows a representative chip design hierarchy
which illustrates the relationships between the different types
of levels.

The logic schematic of each building block may be hierar-
chical and will consist of objects called cells and transistors,
the transistor being the atomic primitive element in the hierar-
chy. A cell is a node in the schematic hierarchy that contains
transistors and/or other cells and is represented by a pictorial
representation called a symbol. The logic schematic for the
building block is used to represent two distinct views. One is
called the gate-level model and the other is called the switch-
level model. For those cells in the hierarchy that do not con-
tain transistors, the gate-level model and switch-level model
refer to the same schematic.

A separate gate-level schematic model is manually con-
structed for any cell within the building block schematic hier-
archy that contains transistors, including cells that contain
references to cells and transistors. The gate-level view is a
Boolean equivalent logic representation of the stuck-at fault
model for these transistor circuits. Gate-level models are used
by Automatic Test Pattern Generation (ATPG) tools to create
production test patterns. The ATPG tools understand a small
set of primitive logic functions or test primitives (AND, OR,
NAND, NOR, INVERT, TRI-STATE, LATCH, RAM). The
switch-level model refers to the cells within the building
block schematic hierarchy which represent the transistor net-
work that implements the functional model. Fig. 2 shows an
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example building block schematic and the resulting gate-level
and switch-level representations

III. V ERIFICATION STRATEGY

Since the RTL model is used to determine functional verifi-
cation, the goal of the logic verification methodology is to
determine equivalence between the functional specification
(RTL model) and the switch-level implementation. The
switch-level implementation is represented by the combina-
tion of the structure interconnect within the chip level netlist,
the building block interconnect contained within RLMs, and
the logic schematic which represents the building block’s cir-
cuit design. This verification is accomplished hierarchically in
three steps:

1) Determine the equivalence of the three building block
level models: functional, gate-level, and switch-level.

2) Verify that the RLM’s logic equations match the
synthesized or customized technology mapped
implementation.

3) Verify that the interconnect of RLMs and building
blocks within the RTL description matches the interconnect of
these blocks described by the chip level netlist.
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IV. FORMAL VERIFICATION USING BOOLEAN COMPARISON

A Boolean Equivalence Checker known as BEC is a design
verification tool which compares static Boolean networks for
logical equivalence using Shannon’s expansion [7] to build
binary decision diagrams (BDDs) [8], [9]. In general, given
enough time and space, BEC can compare any two networks
of logic; but, because Boolean comparison is an NP complete
problem, there is no guarantee that a comparison will be com-
pleted within the specified time and space constraints.

BEC is used to verify building blocks, RLMs, and struc-
tures. In the case of building blocks and RLMs, the simulation
model (RTL) is translated into a technology independent
Boolean logic network. During this translation, heuristics are
applied to transform complex or high level RTL expressions
into a logic structure containing low-level primitive logic
functions.

The first application, known as building block BEC, veri-
fies that the functional model and gate-level model are equiva-
lent. The second application, RLM BEC, verifies that the
functional specification for RLMs matches the technology
mapped netlist created either by logic synthesis or by custom
design. The third application, called structure BEC, verifies
that the interconnect within the upper levels of the hierarchy
in the technology mapped chip netlist matches the intercon-
nect specified within the RTL simulation model.

V. BUILDING BLOCK LEVEL VERIFICATION

The verification of the three views: functional model, gate-
level model, and switch-level model, is accomplished using
one of three methods depending on the type of building block.
Method 1 makes use of the transitive property: if A=B and
B=C, then A=C. In this application, the verification methodol-
ogy states that if the switch-level model can be proven equiva-
lent to the gate-level model using exhaustive pattern
simulation (A=B), and the gate-level model can be proven to
be equivalent to the functional model using BEC (B=C), then
the switch-level model is equivalent to the functional model
(A=C); that is, all three are equivalent. This method is limited
to combinatorial building blocks whose transistor cells have
sixteen or fewer inputs.

Method 2 is used for building blocks that contain either
sequential logic or transistor cells with more than sixteen
inputs. This method uses test and functional patterns to verify
the switch-level and gate-level models. BEC is still applied to
verify that the gate-level and functional models match.

One type of building block called anarray represents func-
tional units which read and write memory structures contain-
ing multiple data locations. Circuits classified as arrays

include caches, registers, block address translators, and con-
tent addressable memories. This type of building block does
not lend itself to verification methods 1 or 2 because it is typi-
cally very difficult to describe the actual logic inside of arrays
in terms of a functional and gate level model. The cycle simu-
lator, ATPG fault simulator, and BEC support a high level
behavioral construct called a RAM primitive which models
the address decoding, read/write clocking, and output data
latching. When this primitive is used in the functional and
gate-level models of the array, the real logic implemented in
the switch-level schematic is not represented. The actual
switch-level implementation is usually very complex in terms
of clock timing and data presented at the outputs, whereas the
RAM primitive behaves in a very simplistic manner. To solve
this problem, some of the analog logic and internal timing
details are not modeled at the gate-level or functional levels.
For these reasons, method 3 is used to verify arrays. This
method simulates a set of verification vectors on all three
models (functional, gate-level, switch-level). These patterns
are a collection of test patterns, functional patterns, and pat-
terns derived from RTPG.

A. Switch-level model vs. Gate-level model

The switch-level model is compared to the gate-level model
by applying patterns to the transistor network in an event
driven switch-level simulation. Three types of patterns may be
applied. Exhaustive patterns are used to compare the switch-
level model to the gate-level model for transistor circuits
which have a relatively small number of inputs. For this pur-
pose, an exhaustive set of input patterns (2n, where n = num-
ber of inputs) is simulated on the gate-level model ingood
machine mode to obtain the expected outputs. These patterns
are then simulated on the switch-level model and the results
compared to the expected outputs.

When exhaustive simulation is not suitable for a cell, two
other types of patterns may be applied. Test patterns are cre-
ated by executing an ATPG tool which uses the gate-level
model as input. Since the gate-level model represents the
actual stuck-at fault model of the circuit implementation, a
concerted effort is devoted to achieve 100 percent fault cover-
age in order to insure testability and to obtain the most com-
plete set of verification patterns possible. It has been shown
[10], [11] that by simulating ATPG patterns on two represen-
tations of a design and comparing the results, a large class of
design errors can be detected. Using ATPG to verify the
switch-level and the gate-level models insures that a correct
set of production test patterns will be created for the circuit.
To achieve a higher degree of verification assurance, a set of
functional patterns maybe simulated on the gate-level and
switch-level models in addition to the test patterns.



B. Gate-level model vs. Functional model

The verification of the gate-level model is determined by
comparing it to the functional model using BEC. The logic
represented by the gate-level model defines the building
block’s Boolean relationship in terms of its inputs and outputs.
The functional model is compiled and transformed into a
Boolean logic network and compared to the gate-level repre-
sentation. Non-Boolean functions such as tri-state drivers and
latches are converted to Boolean equivalents that allow net-
works containing these components to be compared.

For sequential circuits, only the combinational control logic
is verified, state equivalence is not determined during logic
verification. Storage elements are converted to functional
gates without the feedback or data hold capability. To accom-
plish this, feedback loops around latches are detected and
automatically cut before verification. Clock signals are then
identified and forced to values that allow system data or
scanned data to be flushed through the latch. Tri-state nets are
matched and compared independently and nodes that are
driven by multiple tri-state devices are converted into a logi-
cal OR for the CMOS technology.

For array type building blocks, BEC cannot always be
applied. Correct functional or fault simulation behavior some-
times requires that a different RAM primitive implementation
be used in the different models. For these cases, where the
functional model and the gate-level model are structurally dis-
similar, logic equivalence is determined by comparing the
results of pattern simulation.

C. Switch-level model vs. Functional model

As a final verification step, the functional model can be
equated to the switch-level implementation directly by com-
paring the results of pattern simulation at the switch-level and
functional level. This is only necessary when exhaustive veri-
fication of the switch-level vs. gate-level or gate-level vs.
functional models is not possible. Fig. 3 shows the logic veri-
fication methodology for building blocks.

VI. RLM VERIFICATION

An RLM is a functional partition constructed out of build-
ing blocks. The functional specification is defined in terms of
equations and/or specific building block instances. The RTL
model and technology mapped implementation are both flat-
tened into gate-level logic primitives as described earlier.
BDDs are then built using these two flattened representations.
All latch components are treated as boundaries that allow the
RLM to be partitioned into multiplesegments for verification.
In this application, the latch component can be thought of as a
black box where the verification of logic segments starts and

stops. This implies that the two models are state equivalent
and must demonstrate signal correspondence at all black box
boundaries. The segments created by these black box bound-
aries are cones of logic that exist between latches or primary
input ports which drive signals feeding a latch or a primary
output port. Each segment in turn, defines the cone of logic for
which BEC builds its BDD’s for verification.

When performing a network comparison, BEC uses signal
names to derive correspondence points between the two mod-
els at boundaries denoted by black boxes and the primary I/O
ports. Due to the method for specifying correspondence, it is
helpful if the two models being compared are algorithmically
and structurally similar. The advantage of this can be seen for
the case when a BEC comparison will not complete while
attempting to verify large cones of logic. When this occurs, it
is often possible to break a large cone of logic into several
smaller cones which can be individually compared. If all of
the subcones successfully compare, the equivalence of the
original cones can be inferred. The nodes within the circuit
where these subcones are formed are calledcutpoints. The
ability to specify cutpoints is dependent on the presence of
internal equivalent points in the two larger cones of logic
being compared. These points can be located in two ways.
The first is for the user to specify them within the source
model through the use of an attribute. The second, is to allow
BEC to search for the best possible nodes to be used as cut-
points. This is best accomplished, if the two pieces of logic
are either algorithmically or structurally similar. This similar-
ity is convenient when cutpoints must be generated to com-
plete the comparison of particularly large cones of logic.
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VII. STRUCTURE VERIFICATION

BEC performs a structure verification by using the notion
of hierarchy. When the technology mapped netlist for a struc-
ture is being analyzed, all structures, RLMs, and building
blocks that have already been verified will be replaced by a
black box. The remaining instances are expanded down to the
primitive gate-level. The interface ports of each black box are
preserved but the contents are not included since it is no
longer necessary to expand beyond these verified boundaries.
Each black box must be present in both models and their
inputs and outputs must match in order to determine equiva-
lence.

The purpose of structure BEC is to minimize the amount of
time required to verify those levels of hierarchy where some
or all of the instances have previously been verified. This
application is similar to performing a structural LVS type
function which compares a layout to a schematic, except in
this case, the comparison takes place between the simulation
model and the technology mapped implementation model.

VIII. A UTOMATED DESIGN ENVIRONMENT

Significant productivity benefits are achieved by automat-
ing all the verification steps. A fundamental aspect of the
design methodology schema is that all logic design entry takes
place in only two places: text entry into the RTL specification
and graphical entry into the schematic database. All other
design data used in the logic verification flow is automatically
derived using tools within the PowerPC design methodology
CAD system.

The building block logic verification methodology is imple-
mented using three design verification tools: a switch-level
simulator, an ATPG tool, and BEC. These tools are integrated
into the CAD system such that all data entry and verification
steps can be performed through a common user interface.
Fig. 4 shows the form used to perform the automated verifica-
tion steps.

A schematic database is used to store the source data for the
gate-level and switch-level models. Software programs access
this data through a procedural interface [12] which traverses
the schematic database and extracts the necessary netlist
information for each of the design verification tools. These
data extraction programs have the capability to traverse either
the gate-level or switch-level models as required. Source data
may be annotated with properties which describe specific
modeling behaviors for each point tool. These properties
allow: the removal of redundant faults, the annotation of tim-
ing delays, and the identification of clock signals and capaci-
tive nets. Netlist data is placed into Unix directory structures
where it is accessed during verification. During the extraction

process,metadata files are created that contain information
about the source data that allows the data management system
to determine when the netlist information is out of date and
must be regenerated.

The first step is to run the ATPG tool on each building
block. All control files containing information about clock
signals and scan timing are automatically created. The ATPG
tool is executed from within the CAD system via the common
user interface. The results are saved in Unix files with a syn-
opsis written back to a user visible window. The resulting
ATPG patterns are automatically translated into a format that
can be applied to the switch level simulator which is also
invoked from the user interface. The final step is to run Bec to
determine Boolean equivalence. For this process, the gate-
level and functional model representations for each building
block design are instantiated into a top level design. This
allows for any user defined pin constraints ordon’t care condi-
tions to be specified. These constraints identify certain input
combinations that will never occur and hence are not verified.
The correct logic is automatically placed within the top level
design to restrict the inputs to the building blocks in the man-
ner requested. Bec can then be executed from the user inter-
face with the results written both to a log file and to a user
visible window. The integration of all the data creation, data
extraction, and tool execution into one CAD environment
through a common user interface allows for an simple and
easy approach to execute the verification methodology.

Another benefit of the building block logic verification pro-
cess is the notion ofaudit signatures.Audit signatures are text
records that containmetadata pertinent to the verification of a
building block. This metadata information includes return
codes from the verification tools, fully qualified Unix file
names, and checksums for all the design data used in the veri-
fication process. When the audit option is turned on, and the

Fig. 4.User Interface for Logic Verification



verification test passes, a signature file is created. Data man-
agement utilities can take advantage of this feature by exam-
ining a collection of signatures and design data files to
determine if a building block design has reached a certain
quality level, and to insure that all verified data is current.

IX. RESULTS

The actual design data from one of the PowerPC micropro-
cessor chips was used to measure the execution times for per-
forming the entire chip logic verification.TABLE I shows the
time to verify the two building block libraries used on the
chip. TABLE II  contains data relating to execution time for all
the RLMs on the chip.TABLE III shows the results from running
a structure BEC at the chip level. All tests were executed on a
IBM RISC System/6000 model 550 workstation running at
a clock rate of 41.6 Mhz, with an 8Kb instruction cache, 64Kb
data cache, 128 Mb real and 256 Mb virtual memory. This
system is rated at SPECint92 of 36.2 and SPECfp92 of
81.8. All times are expressed in terms of user CPU time.

X. SUMMARY

A comprehensive suite of logic verification techniques has
been presented as well as a strategy which achieves a high
degree of verification assurance for microprocessor designs.

 IBM and RISC System / 6000 are registered trademarks of Interna-
tional Business Machines Corporation.

 SPECint92 and SPECfp92 are trademarks of Standard Performance
Evaluation Corporation.

TABLE I
BUILDING BLOCK LOGIC VERIFICATION

Name of
library

Number
 of
building
 blocks

Number
 of cells

Netlist
create
time

ATPG
CPU
run time

Switch-
Level
simulation
 CPU run
time

BEC
CPU
run
time

standard
cell library

90 373 7 min -
11.76 sec

4 min -
17.24 sec

3 min -
59.68 sec

45 sec

datapath
library

90 401 25 min -
54.06 sec

6 min -
49 sec

7 min -
4.33 sec

262 sec

TABLE II
RLM BEC LOGIC VERIFICATION

Number of RLMs
Number of
Segments CPU run time

29 18942 1hr - 59min - 56 sec

TABLE III
STRUCTURE (CHIP) BEC LOGIC VERIFICATION

Number of segments CPU run time

55,055 17 h - 53 min - 34 sec

Using an automated verification system that employs divide
and conquer methods combined with formal verification and
pattern simulation results in a realistic deterministic approach
to measuring equivalence between a functional specification
and a switch-level implementation. Three building block veri-
fication methods were detailed which cover a variety of
library element types. Boolean comparison was shown to be
effective for validating RLMs and structures. As of this writ-
ing, three PowerPC microprocessor chips using the logic veri-
fication methodology described here have been fabricated. All
building block circuits that have passed logic verification
using the method 1 or method 2 approach (using Boolean
comparison combined with exhaustive and ATPG pattern sim-
ulation) have been free of defects.

Future work needs to focus on better methods for verifying
array type building blocks. Method 3 is not as robust as the
other methods because it relies on pattern simulation at the top
level of the design. One possible approach to solve this prob-
lem is to provide an option that will compile the functional
array model into separatesub-arrays,where each sub-array
consists of control logic and a block of RAM bit cells. Since
these sub-array RAM blocks can be easily identified within
the schematic hierarchy, it should be possible to correspond
these memory blocks and verify that the decoded wordlines
and bit lines are equivalent.

Another improvement to the methodology currently under
development is the introduction of a formal verification tool
called Verity [13] which symbolically proves the equivalence
between a switch-level circuit and either a functional or gate-
level model. This tool offers enormous potential since it elim-
inates the need for switch-level simulation and offers an
exhaustive prove of correctness.
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