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Abstractd The PowerPC logic verification methodology is a gen- Il. ELEMENTS OF THE METHODOLOGY

eral purpose approach suitable for a large class of chip designs
that can exceed five million transistors in size. Several validation The functional specification for each chip design is defined
techniques are integrated .into an automated logic verification i terms of a Register Transfer Level (RTL) description and is
strateg_y._The success of this methodology has_ been demonstratedthe primary (golden) model used to determine functional
by realizing three PowerPC microprocessor chips that were func- oo, racy This model, which is code-compiled and verified
tional the first time. . . . . ; .
using a cycle simulator, is state equivalent with the physical
implementation; that is, each storage element found in the
|. INTRODUCTION physical implementation must correspond to a component
Logic verification is a crucial element in the success of apecified within the RTL description. Simulation vectors are
microprocessor chip design. The goal is to verify that thgenerated using a Random Test Pattern Generator (RTPG) [4]
functional specification matches the switch-level implementand are supplemented with designer specified functional pat-
tion. Traditional techniques rely on massive amounts of evetdrns. These patterns are simulated on the RTL description and
driven simulation at both the gate and switch levels. This tygbe results are compared against the expected response from
of simulation suffers from slow performance (number of siman architectural model which is presumed to be correct.
ulation cycles per second) and poor functional coverage [1],
[2], [3]. This situation can be drastically improved by apply- The RTL model is constructed to be hierarchically similar
ing specific point solutions to a variety of verification prob+to the actual partitioning used in the chip floorplan. The logic
lems within an automated environment. This techniqudesign of the PowerPC microprocessor is partitioned within
demonstrates the benefits received from exploiting the use fahctional boundaries for which various design strategies are
hierarchy within the microprocessor chip design to enable applied. One such partition, known as a Random Logic Macro
divide and conquer strategy. Boolean comparison is used (RLM), is a control logic structure which instantiates func-
verify logic models represented at the gate and block levelional components. RLMs are implemented using techniques
For switch-level circuits, exhaustive or ATPG patterns arthat range from automated logic synthesis [5], [6] to full cus-
simulated to demonstrate equivalence. tom design.

In the following section, the design methodology will be A fundamental concept within the PowerPC microproces-
introduced to define some of the concepts used in the oversdir design methodology is the use of library elements called
verification flow. Next, the logic verification strategy will be building blocks. A building block is the lowest level element
presented and details provided for each of the methotlsat can be referenced within the RTL model hierarchy. It is a
employed for the different design types. Finally, elements afelf contained unit which has a functional specification, a
the automated environment will be highlighted and exploredlogic schematic implementation, and a physical layout. The
circuit design and construction of building block libraries
takes place in parallel with the development of the RTL
model. Building block circuits represent simple functions
PowerPC is a trademark of International Business Machines Corpsuch as Boolean logic gates, latches, and multiplexors as well
ration. as more complex datapath elements including adders, shifters,

rotators, and arrays. A building block may be used just once
or it may be used a number of times to take advantage of
reuse. Building blocks are assembled in the construction of
RLMs and are instantiated in higher level hierarchical struc-
tures which make up the chip designs#ucturerefers to a

level of hierarchy within the RTL model that represents a
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example building block schematic and the resulting gate-level

and switch-level representations

4} 4} l1l. V ERIFICATION STRATEGY
O O Since the RTL model is used to determine functional verifi-
cation, the goal of the logic verification methodology is to

determine equivalence between the functional specification
A o) O g g é é O (RTL model) and the switch-level implementation. The
switch-level implementation is represented by the combina-

tion of the structure interconnect within the chip level netlist,

the building block interconnect contained within RLMs, and

the logic schematic which represents the building block’s cir-

cuit design. This verification is accomplished hierarchically in
O STRUCTURE three steps:

® RV

O BUILDING BLOCK 1) Determine the equivalence of the three building block
level models: functional, gate-level, and switch-level.

Fig. 1.cChip Logic Design Hierarchy
2) Verify that the RLM's logic equations match the

physical boundary in the chip floorplan which is above theynthesized or customized technology mapped
building block and RLM levels. A structure may reference afmplementation.

RLM, building block or another structure. A structure is also

used to represent the top (highest) level in the chip design3) Verify that the interconnect of RLMs and building
hierarchy. Fig. 1 shows a representative chip design hierarchjocks within the RTL description matches the interconnect of
which illustrates the relationships between the different typesese blocks described by the chip level netlist.

of levels.

The logic schematic of each building block may be hierar-
chical and will consist of objects called cells and transistors,
the transistor being the atomic primitive element in the hierar-

chy. A cell is a node in the schematic hierarchy that containgrcu-LeveL MODEL GATE-LEVEL MODEL
transistors and/or other cells and is represented by a pictorial
representation called a symbol. The logic schematic for the ToP TOP

building block is used to represent two distinct views. One ig
called the gate-level model and the other is called the switchr—
level model. For those cells in the hierarchy that do not conj_|
tain transistors, the gate-level model and switch-level mode
refer to the same schematic.

A separate gate-level schematic model is manually con-

structed for any cell within the building block schematic hier- ﬁ

archy that contains transistors, including cells that contair
references to cells and transistors. The gate-level view is
Boolean equivalent logic representation of the stuck-at faul

model for these transistor circuits. Gate-level models are used
by Automatic Test Pattern Generation (ATPG) tools to create
INV

HRNA

DD ] 1D

NAND INV AND INV AND

production test patterns. The ATPG tools understand a sma|
set of primitive logic functions or test primitives (AND, OR,
NAND, NOR, INVERT, TRI-STATE, LATCH, RAM). The
switch-level model refers to the cells within the building
block schematic hierarchy which represent the transistor ne
work that implements the functional model. Fig. 2 shows an
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Fig. 2.Building Block Schematic Hierarchy



IV. FORMAL VERIFICATION USING BOOLEAN COMPARISON include caches, registers, block address translators, and con-
tent addressable memories. This type of building block does
A Boolean Equivalence Checker known as BEC is a desidiot lend itself to verification methods 1 or 2 because it is typi-
verification tool which compares static Boolean networks fogally very difficult to describe the actual logic inside of arrays
logical equivalence using Shannon’s expansion [7] to buildh terms of a functional and gate level model. The cycle simu-
binary decision diagrams (BDDs) [8], [9]. In general, giverlator, ATPG fault simulator, and BEC support a high level
enough time and space, BEC can compare any two netwoikghavioral construct called a RAM primitive which models
of logic; but, because Boolean comparison is an NP compldfte address decoding, read/write clocking, and output data
problem, there is no guarantee that a comparison will be comatching. When this primitive is used in the functional and
pleted within the specified time and space constraints. gate-level models of the array, the real logic implemented in
the switch-level schematic is not represented. The actual
BEC is used to verify building blocks, RLMs, and struc-Sswitch-level implementation is usually very complex in terms
tures. In the case of building blocks and RLMs, the simulatiodf clock timing and data presented at the outputs, whereas the
model (RTL) is translated into a technology independer®AM primitive behaves in a very simplistic manner. To solve
Boolean logic network. During this translation, heuristics aréhis problem, some of the analog logic and internal timing
applied to transform complex or high level RTL expressiongetails are not modeled at the gate-level or functional levels.

into a logic structure containing low-level primitive logic For these reasons, method 3 is used to verify arrays. This
functions. method simulates a set of verification vectors on all three

models (functional, gate-level, switch-level). These patterns
The first application, known as building block BEC, veri-are a collection of test patterns, functional patterns, and pat-
fies that the functional model and gate-level model are equivigrns derived from RTPG.
lent. The second application, RLM BEC, verifies that the
functional specification fpr RLMs matches the technology,  gyitch-level model vs. Gate-level model
mapped netlist created either by logic synthesis or by custom
design. The third application, called structure BEC, verifies The switch-level model is compared to the gate-level model
that the interconnect within the upper levels of the hierarchyy applying patterns to the transistor network in an event
in the technology mapped chip netlist matches the intercodriven switch-level simulation. Three types of patterns may be
nect specified within the RTL simulation model. applied. Exhaustive patterns are used to compare the switch-
level model to the gate-level model for transistor circuits
which have a relatively small number of inputs. For this pur-
V. BUILDING BLOCK LEVEL VERIFICATION pose, an exhaustive set of input patterfis\{here n = num-
The verification of the three views: functional model, gateber of inputs) is simulated on the gate-level modejdnd
level model, and switch-level model, is accomplished usingnachine modéo obtain the expected outputs. These patterns
one of three methods depending on the type of building blocire then simulated on the switch-level model and the results
Method 1 makes use of the transitive property: if A=B andompared to the expected outputs.
B=C, then A=C. In this application, the verification methodol-
ogy states that if the switch-level model can be proven equiva-When exhaustive simulation is not suitable for a cell, two
lent to the gate-level model using exhaustive patterother types of patterns may be applied. Test patterns are cre-
simulation (A=B), and the gate-level model can be proven tated by executing an ATPG tool which uses the gate-level
be equivalent to the functional model using BEC (B=C), themodel as input. Since the gate-level model represents the
the switch-level model is equivalent to the functional modedctual stuck-at fault model of the circuit implementation, a
(A=C); that is, all three are equivalent. This method is limitedoncerted effort is devoted to achieve 100 percent fault cover-
to combinatorial building blocks whose transistor cells havage in order to insure testability and to obtain the most com-
sixteen or fewer inputs. plete set of verification patterns possible. It has been shown
[10], [11] that by simulating ATPG patterns on two represen-
Method 2 is used for building blocks that contain eithetations of a design and comparing the results, a large class of
sequential logic or transistor cells with more than sixteedesign errors can be detected. Using ATPG to verify the
inputs. This method uses test and functional patterns to vergyitch-level and the gate-level models insures that a correct
the switch-level and gate-level models. BEC is still applied teet of production test patterns will be created for the circuit.
verify that the gate-level and functional models match. To achieve a higher degree of verification assurance, a set of
functional patterns maybe simulated on the gate-level and
One type of building block called @mray represents func- switch-level models in addition to the test patterns.
tional units which read and write memory structures contain-
ing multiple data locations. Circuits classified as arrays



B. Gate-level model vs. Functional model stops. This implies that the two models are state equivalent
and must demonstrate signal correspondence at all black box
The verification of the gate-level model is determined byoundaries. The segments created by these black box bound-
comparing it to the functional model using BEC. The logi@ries are cones of logic that exist between latches or primary
represented by the gate-level model defines the buildidgput ports which drive signals feeding a latch or a primary
block’s Boolean relationship in terms of its inputs and outpututput port. Each segment in turn, defines the cone of logic for
The functional model is compiled and transformed into #hich BEC builds its BDD’s for verification.
Boolean logic network and compared to the gate-level repre-
sentation. Non-Boolean functions such as tri-state drivers andWhen performing a network comparison, BEC uses signal
latches are converted to Boolean equivalents that allow netames to derive correspondence points between the two mod-
works containing these components to be compared. els at boundaries denoted by black boxes and the primary 1/0
ports. Due to the method for specifying correspondence, it is
For sequential circuits, only the combinational control logihelpful if the two models being compared are algorithmically
is verified, state equivalence is not determined during logand structurally similar. The advantage of this can be seen for
verification. Storage elements are converted to functionttie case when a BEC comparison will not complete while
gates without the feedback or data hold capability. To accorattempting to verify large cones of logic. When this occurs, it
plish this, feedback loops around latches are detected aisdoften possible to break a large cone of logic into several
automatically cut before verification. Clock signals are theemaller cones which can be individually compared. If all of
identified and forced to values that allow system data dhe subcones successfully compare, the equivalence of the
scanned data to be flushed through the latch. Tri-state nets ariginal cones can be inferred. The nodes within the circuit
matched and compared independently and nodes that argere these subcones are formed are callgdoints The
driven by multiple tri-state devices are converted into a logability to specify cutpoints is dependent on the presence of
cal OR for the CMOS technology. internal equivalent points in the two larger cones of logic
being compared. These points can be located in two ways.
For array type building blocks, BEC cannot always b&he first is for the user to specify them within the source
applied. Correct functional or fault simulation behavior somemodel through the use of an attribute. The second, is to allow
times requires that a different RAM primitive implementatiorBEC to search for the best possible nodes to be used as cut-
be used in the different models. For these cases, where thants. This is best accomplished, if the two pieces of logic
functional model and the gate-level model are structurally diswe either algorithmically or structurally similar. This similar-
similar, logic equivalence is determined by comparing thiy is convenient when cutpoints must be generated to com-

results of pattern simulation. plete the comparison of particularly large cones of logic.
C. Switch-level model vs. Functional model Boolean Comparg -
, _— , (BEC) 2
As a final verification step, the functional model can b
equated to the switch-level implementation directly by con RTPG
paring the results of pattern simulation at the switch-level ar Manual Exhaustive
functional level. This is only necessary when exhaustive vel
fication of the switch-level vs. gate-level or gate-level vs \ )/
functional models is not possible. Fig. 3 shows the logic ver Test -
fication methodology for building blocks. Cycle
9y g ATPG 4— Simulation
VI. RLM VERIFICATION
An RLM is a functional partition constructed out of build-
ing blocks. The functional specification is defined in terms ¢ Switch-Leve

equations and/or specific building block instances. The RT Simulation
model and technology mapped implementation are both fl:
tened into gate-level logic primitives as described earlie
BDDs are then built using these two flattened representatiol (™ Compare D Compare D
All latch components are treated as boundaries that allow t <_> m w
RLM to be partitioned into multiplsegmentgor verification.

In this application, the latch component can be thought of as
black boxwhere the verification of logic segments starts an

Fig. 3.Building Block Logic Verification Methodology



VII. STRUCTURE VERIFICATION processmetadatafiles are created that contain information
about the source data that allows the data management system
BEC performs a structure verification by using the notioito determine when the netlist information is out of date and
of hierarchy. When the technology mapped netlist for a strugaust be regenerated.
ture is being analyzed, all structures, RLMs, and building
blocks that have already been verified will be replaced by aThe first step is to run the ATPG tool on each building
black box. The remaining instances are expanded down to thieck. All control files containing information about clock
primitive gate-level. The interface ports of each black box amgignals and scan timing are automatically created. The ATPG
preserved but the contents are not included since it is mwol is executed from within the CAD system via the common
longer necessary to expand beyond these verified boundarieser interface. The results are saved in Unix files with a syn-
Each black box must be present in both models and th&ipsis written back to a user visible window. The resulting
inputs and outputs must match in order to determine equivATPG patterns are automatically translated into a format that
lence. can be applied to the switch level simulator which is also
invoked from the user interface. The final step is to run Bec to
The purpose of structure BEC is to minimize the amount afetermine Boolean equivalence. For this process, the gate-
time required to verify those levels of hierarchy where somlevel and functional model representations for each building
or all of the instances have previously been verified. Thislock design are instantiated into a top level design. This
application is similar to performing a structural LVS typeallows for any user defined pin constraintslont carecondi-
function which compares a layout to a schematic, except tions to be specified. These constraints identify certain input
this case, the comparison takes place between the simulat@mmbinations that will never occur and hence are not verified.
model and the technology mapped implementation model. The correct logic is automatically placed within the top level
design to restrict the inputs to the building blocks in the man-
ner requested. Bec can then be executed from the user inter-
VIIl. A UTOMATED DESIGN ENVIRONMENT face with the results written both to a log file and to a user
Significant productivity benefits are achieved by automatsisible window. The integration of all the data creation, data
ing all the verification steps. A fundamental aspect of thextraction, and tool execution into one CAD environment
design methodology schema is that all logic design entry takdsough a common user interface allows for an simple and
place in only two places: text entry into the RTL specificatioeasy approach to execute the verification methodology.
and graphical entry into the schematic database. All other
design data used in the logic verification flow is automatically Another benefit of the building block logic verification pro-
derived using tools within the PowerPC design methodologgess is the notion @fudit signaturesAudit signatures are text
CAD system. records that contaimetadatagpertinent to the verification of a
building block. This metadata information includes return
The building block logic verification methodology is imple-codes from the verification tools, fully qualified Unix file
mented using three design verification tools: a switch-levelames, and checksums for all the design data used in the veri-
simulator, an ATPG tool, and BEC. These tools are integratdidation process. When the audit option is turned on, and the
into the CAD system such that all data entry and verification
steps can be performed through a common user interface
Fig. 4 shows the form used to perform the automated verifica/ \

tion steps. [s]3 | Cancel | Defaunsl Apply |
From Library b s
A schematic database is used to store the source data for| cell names and? nocd 1latch museld | ]
gate-level and switch-level models. Software programs acce Cefl Names File Select: | oa|[save
this data through a procedural interface [12] which traverse
FastScan ] create mtv ] export mtv "] Build Data ] Run Tool

the schematic database and extracts the necessary ne
information for each of the design verification tools. Thesg¢ Ve
data extraction programs have the capability to traverse eithy Bee Dl create tpgtech [ export tpglech [ Build Data L] Run Tool
the gate-level or switch-level models as required. Source dg guuons £ write Motadata Cfincremental  Clhierarchy  [18HC

] create texvect '] exhaustive {"] Build Data ] Run Tool

Options ] wnite Metadata [ incremental ] hierarchy 1 BHC
may be annotated with properties which describe specif ot
modeling behaviors for each point tool. These properti€l i signature pirsctary [nfs/ibmatasstdcells il tost
allow: the removal of redundant faults, the annotation of timy .t wever irectory [7at=/Thmato/etdcells e Lfwatvers
ing delays, and the identification of clock signals and capaciQ!,cify Search Paths /

tive nets. Netlist data is placed into Unix directory structures,
where it is accessed during verification. During the extraction Fig. 4.User Interface for Logic Verification




verification test passes, a signature file is created. Data m&ssing an automated verification system that employs divide
agement utilities can take advantage of this feature by exasmd conquer methods combined with formal verification and
ining a collection of signatures and design data files tpattern simulation results in a realistic deterministic approach
determine if a building block design has reached a certain measuring equivalence between a functional specification
quality level, and to insure that all verified data is current. and a switch-level implementation. Three building block veri-
fication methods were detailed which cover a variety of
library element types. Boolean comparison was shown to be
IX. RESULTS effective for validating RLMs and structures. As of this writ-
The actual design data from one of the PowerPC microprig, three PowerPC microprocessor chips using the logic veri-
cessor chips was used to measure the execution times for g@ation methodology described here have been fabricated. All
forming the entire chip logic verificatiormasie 1 shows the building block circuits that have passed logic verification
time to verify the two building block libraries used on theusing the method 1 or method 2 approach (using Boolean
chip. TaeLE 11 contains data relating to execution time for alcomparison combined with exhaustive and ATPG pattern sim-
the RLMs on the chiprasce m shows the results from running ulation) have been free of defects.
a structure BEC at the chip level. All tests were executed on a
IBM RISC System/6000 model 550 workstation running at  Future work needs to focus on better methods for verifying
a clock rate of 41.6 Mhz, with an 8Kb instruction cache, 64Khrray type building blocks. Method 3 is not as robust as the
data cache, 128 Mb real and 256 Mb virtual memory. Thisther methods because it relies on pattern simulation at the top
system is rated at SPECinf92of 36.2 and SPECfp@2 of level of the design. One possible approach to solve this prob-
81.8. All times are expressed in terms of user CPU time.  lem is to provide an option that will compile the functional
array model into separagub-arrays,where each sub-array
consists of control logic and a block of RAM bit cells. Since
X. SUMMARY these sub-array RAM blocks can be easily identified within
A comprehensive suite of logic verification techniques hathe schematic hierarchy, it should be possible to correspond
been presented as well as a strategy which achieves a higase memory blocks and verify that the decoded wordlines
degree of verification assurance for microprocessor desigrad bit lines are equivalent.

Another improvement to the methodology currently under

TABLE |
BUILDING BLOCK LOGIC VERIFICATION development is the introduction of a formal verification tool
. called Verity [13] which symbolically proves the equivalence
Number fgj};h BEC between a switch-level circuit and either a functional or gate-
of Netiist | ATPG | simulation | CPU level model. This tool offers enormous potential since it elim-
Name of building | Number | create CPU CPUrun | run i ; _ P i
lbrary biocks. | of cells | tme rntime | time time mar']tes the need f?r switch-level simulation and offers an
e — e —— e exhaustive prove of correctness.
N 11.76 sec | 17.24 sec | 59.68 sec
cell library
90 401 25 min - 6 min - 7 min - 262 sec
ﬁg:zgath 54.06 sec | 49 sec 4.33 sec REFERENCES
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