
1 of 6

Digital Receiver Design Using VHDL Generation From Data Flow Graphs

Peter Zepter, Thorsten Gr�otker, Heinrich Meyr
Integrated Systems for Signal Processing, Aachen University of Technology

Templergraben 55, D-52056 Aachen, Germany

Abstract| This paper describes a design methodology,
a library of reusable VHDL descriptions and a VHDL gen-
eration tool used in the application area of digital signal
processing, particularly digital receivers for communication
links. The tool and the library interact with commercial
system simulation and logic synthesis tools. The support of
joint optimization of algorithm and architecture as well as
the concept for design reuse are explained. The algorithms
for generating VHDL code according to di�erent user spe-
ci�cations are described. An application example is used to
show the bene�ts and current limitations of the proposed
methodology.

I. Introduction

System design for digital receivers and other digital si-
gnal processing applications is usually performed on two
di�erent levels of abstraction: Algorithm design and hard-
ware architecture development. Di�erent speci�cations,
simulation tools and libraries are used on each level to
obtain the desired results in the shortest possible time.
During algorithm development the use of data ow speci-
�cation and simulation allows to obtain measures of the
algorithmic performance (e.g. bit error rate) quickly, be-
cause there is no need to determine the timing of the ope-
rations and their mapping to computational resources to
obtain these results. Clock, reset and other implementa-
tion speci�c signals are not required here. The simulation
e�ciency is higher than that of discrete event simulators
[1]. In contrast, the timing must be speci�ed with respect
to one or more clocks to implement the system as syn-
chronous application speci�c integrated circuit. Hardware
description languages are used which o�er access to logic
synthesis and discrete event simulation. Implementation
performance criteria such as throughput, chip area and
power consumption can only be obtained on this level.
Algorithm and architecture must be optimized jointly

[2] to obtain an e�cient ASIC implementation. Thus the
design process usually involves multiple iterations between
algorithm development and architecture design. The dif-
ferent description styles make this transition di�cult. To
overcome these di�culties we have developed a design
methodology consisting of a VHDL generation program
(ADEN) and an extensible library of reusable components
(ComBox). The ComBox library transfers the success-
ful reuse of simulation models in the data ow domain to
the architecture development process. This approach is

This work was supported by the DFG (AZ Me 651/12-3).

supported by the observation that there is a direct corre-
spondence between the complex data ow blocks (such as
a �lter or Viterbi decoder) in the system simulation and
the hardware components in the realization.
The proposed methodology is complementary to high

level synthesis. Architectural information and synthesis
options can be stored with the library components. They
may have an internal algorithmic state and complex be-
havior as opposed to RT level components. The resulting
overall architecture needs only little central control. Any
VHDL coding style and architecture type can be encap-
sulated in a library component. Thus the user can access
a broad range of architectures for communication system
functions. Due to the direct correspondence between a
part of the algorithm and a hardware component, the ef-
fects of algorithmic tradeo�s on the implementation cost
can be evaluated easily.
Similar existing systems are either based on a time-

driven system simulator [3], [4] and thus require the spe-
ci�cation of the timing already on the algorithm level, or
they do currently neither support multirate, nor dynamic
data ow nor di�erent processing times of the block im-
plementations or multiple clocks [5].
We begin with an overview of the proposed design ow.

Next the organization and interface description in the li-
brary is presented. This is followed by a discussion of the
general architecture of every realized system and the user's
options to inuence this. The novel translation from data
ow to VHDL and subsequent optimizations are described.
Finally, a digital receiver design example is presented.

II. Design Flow Overview

We distinguish two main abstraction levels in our de-
sign ow: The algorithm level comprises all system data
that may inuence the algorithm performance of the sys-
tem, but no other data. In the case of digital receivers the
algorithm performance is measured by e.g. the bit error
rate (BER) at a given signal to noise ratio (SNR). These
properties are independent of the physical implementation
technology and the achieved throughput. The implemen-
tation level comprises all design data which does not
inuence the algorithm performance. Here all timing de-
pendent knowledge such as the number of pipeline stages
of a certain component is located. Fig. 1 gives an overview
of the design ow.
The algorithm design is done using the commercial data

ow signal processing simulation tool COSSAP [5]. The
user speci�es the system including data sources, trans-
mitter (analog and digital parts), channel model, receiver
(analog and digital parts) and evaluation blocks (bit error
rates, variances) as a hierarchical block diagram. The be-
havior of each block is modi�ed by setting algorithm pa-
rameters. In our approach the system level model, which

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

2 of 6

 ALGORITHM
PARAMETERSIMPLEMENTATION

 SELECTION +
IMPLEMENTATION
 PARAMETERS

VHDL Generator
 (ADEN)

VHDL Code

DATA FLOW SYSTEM
SIMULATION (COSSAP)

Simulator Coupling
 "Verification"

LOGIC SYNTHESIS

VHDL SIMULATOR

Data Flow
 Library

 ComBox
Implementation
 Library

Gate Level
 Netlist

PLACEMENT
& ROUTING

’’Layout’’

DATA FLOW
BLOCK DIAGRAM

latency?
iteration?

critical path?
area?

critical path?
area?

algorithm
performance?

ALGORITHM DESIGN
IMPLEMENTATION

USER INPUT

TOOL

TOOL OUTPUT

Fig. 1. Design ow with COSSAP, ADEN and ComBox.

is used as a starting and reference point for the implemen-
tation, is always arithmetic-true, i.e. all e�ects inuencing
the algorithmic performance are represented by modeling
the �nite-precision arithmetic.
An implementation is selected from the library for every

data ow block to be implemented. The implementation
parameter selection can also be deferred up to this point
because of the new and unique separation of algorithm and
implementation data base. The combined algorithm and
implementation data together with the ComBox library is
used to generate a VHDL description of the system. This
VHDL code is used as input to further implementation
steps. After each step analysis of the results can lead to a
modi�cation of the implementation or algorithm parame-
ters in order to achieve better throughput or less cost.

III. The Library of Reusable Components

The ComBox library is organized in three levels as
shown in �g. 2. The example of a controlled decimator
was taken which is used to select an item from �xed num-
ber of data items in a data stream.

DECIMATOR

STANDARD

class:
alg.−ports

group:
alg.−param.
alg.−behav.

primary:
impl−ports
generics

 COUNTER

A
lg

or
ith

m
 (

D
at

a
F

lo
w

)
Im

pl
.

(T
im

ed
)

 SELECT_LATE PIPELINED . . .

LINEAR INTERPOL.

Fig. 2. The three abstraction levels of the ComBox library.

The so called class level of each library entry de�nes the
external data ow ports (connections of blocks / entities
and signals) of a function as well as some of its parame-
ters. It is also stated whether the block has an algorithmic
state, i.e. whether an internal state must be saved between
activations. The class level is intended to comprise several
di�erent functional behaviors of the same basic algorithm,
which o�er access to implementations with di�erent cost
and throughput. This supports the joint optimization of

algorithm and architecture. The algorithmic tradeo�s are
represented by the di�erent groups (second level) belon-
ging to one class. In our example there are a group for
the standard implementation and a group which allows to
perform interpolation between two samples, if the control
input does not select exactly one input. The second alter-
native can o�er better performance at increased hardware
cost.
Each group is characterized by its data ow behavior

including port data rates r(e; v) for each port P connecting
edge e and vertex v (see �g. 3) [6]. A data rate speci�es
the number of tokens produced respectively consumed at a
port of the block during one activation and is represented
by the expressions in the circles constituting the ports.
These rates can be either static (the same for each ac-
tivation) or dynamic (data dependent for each activation,
indicated by the variable p). In our approach we support a
limited subset of the dynamic data ow similar to boolean
data ow [7] but with control tokens of arbitrary values.
Each dynamic port at a data ow block has a correspon-
ding static port at the same model (the control port) with
data rate one. The value of the data item at the control
port is used to decide whether the dynamic variable p ta-
kes the value 0 or 1, which indicates whether data items
are produced (respectively consumed) at the dynamic port
during the current activation of the data ow block.

5

data input

signal

1 2 3 4 5 6 cycle7 8

 I = 1

 I = 5

r
d

port with rate ’r’ and processing delay ’d’

I : iteration interval (clock cycles between data items)control
port

0
24

0
21

CONTROLLED
 DECIMATOR

1p

4
1

b) port interface

select input

data output

data valid

9 10 11 12 13 14 15 16

one data item arbitrary values

c) example timing

0 1 2 3 4 5 cycle

0 1 2 3 4 5 cycle

 I = 4

0 1 2 3 4 5 6 cycle
0

1

 I = 4

0 1 2 3 4 5 6 cycle

 I = 4
data input

select input

data output

data valid

7 8 9 10

7 8 9 10

data invalid

11

1211

12

a) general
 signal
 model

p : symbolic rate, 0 or 1 depending on current value
 at the control port

L(e) = 3

Fig. 3. Signal model, data ow and timing interface.

The third (primary) level provides at least one imple-
mentation for each group. Here all information is located
which does not inuence the algorithmic behavior.
The signal model applied here is shown in �g. 3. Only

the timing relative to clock cycles is described. Techno-
logy dependent combinatorial delays are not taken into
account. The data items at each signal occur in �xed time
intervals called the iteration interval I(e) of the signal e.
Each data item may take L(e) (I(e) � L(e) � 1) clock
cycles to transmit its value depending on the data type.
During the remaining I(e) � L(e) clock cycles arbitrary
values may be transmitted.
The timing interface, which may depend on algorithm

and implementation parameters, consists of two main
parts (�g. 3): The processing delays d(e; v) at a port P
connecting edge e and vertex v and the intrinsic iteration
interval Ii(v) (the time between two successive activations

3 of 6

of the implementation). The iteration interval at a port is
inversely proportional to the static part of its data rate.
The data ow simulation requires that at least r(P) data
values are available in a FIFO bu�er at each input port P
of a data ow block. To avoid the unnecessary implemen-
tation of FIFO bu�ers in the hardware, every hardware
implementation can start execution, when the �rst data
item arrives at the input port with the smallest processing
delay (d = 0).
Dynamic data ow allows to declare the values of an

iteration as invalid (�g. 3). This allows to model data
dependent processing times. The primary level speci�es
also the implementation ports, which are explained in the
next section.

IV. Output Architecture and User Options

Besides block implementation selection and implemen-
tation parameter setting, the following options can be used
to inuence the generated VHDL output:

� For each system input port the input time (arrival
of the �rst data item) can be speci�ed. Default is
zero (corresponding to the �rst clock edge after the
external reset).

� Di�erent parts of the design can have clocks with dif-
ferent periods and di�erent phase o�sets. The speci�-
cation is performed hierarchically, i.e. for each instan-
tiated component v and each signal e one can specify
its clock relative to that of its parent vertex. The re-
lative clock period Tc;r(v) � 1 and the relative clock
phase 0 � �c;r(v) < Tc(v) can be multiples of that of
the parent clock.

� To break too long combinatorial paths, a minimum
number of shimming delays ds;min(e) may be speci-
�ed on each signal e. A shimming delay is a register
inserted on a signal.

� All registers in the implementation corresponding to
algorithmic states need a reset in the implementation
to ensure equivalent behavior of data ow graph and
synchronous clocked VHDL implementation. How-
ever, sometimes it may not be necessary to perform
these resets upon initialization for all states, because
the system will operate correctly after a �nite time
regardless of the initial state. Therefore the reset can
be suppressed.

Fig. 4 shows the supported target architecture.
For each data ow block there is a corresponding hard-

ware component with a VHDL port for each data ow
port. In addition, there are so called implementation
ports. The clock ports are connected automatically to
the correct clock signal (there may be multiple clocks in
the system, due to multiple clock speci�cations and dy-
namic data ow). Reset ports are connected to a reset
signal, which is active up to the reference time tr(v) of
the block v. The reference time is the index of the clock
edge where the �rst valid data item arrives at the block.
The �rst clock edge after the external reset has index zero.
This reset procedure guarantees an initial behavior equi-
valent to that of the data ow system. Enable ports allow
suppression of the state update of a hardware unit. This
is the usual way for the realization of dynamic data ow
and delayed reset. As an alternative we can use gated

 CLOCK

GENERATOR

.........

 RESET

GENERATOR

external
clock

2

2

1
...

...
...

1 1

1 1

clock

[reset]

[enable]

[clock]

[reset]

 enable

[enable][clock] Instantiated
ComBox
Implemen−
tation

Shimming
Delay
inserted by
ADEN

Initial Value Gen.
or multiplexor,
or demultiplexor,
etc.
inserted by
ADEN

...

D
ata P

ath F
eedback for G

ated C
lock C

reation

D
ata P

ath F
eedback for E

nable S
ignal G

eneration

1 data flow port impl. port impl. signaldata flow signals[optional impl. port]

...

 ENABLE

GENERATOR

... Periodic Control

 GENERATOR

[control]

external
reset

reset

Fig. 4. Basic architecture of the VHDL generator output.

clocks respectively multiple reset signals. Control signals
allow to centralize control functions in the data path. Es-
pecially in the case of many blocks operating at iteration
intervals greater than one there may be several control-
lers performing the same function. A centralized control
unit providing central control signals may be more e�cient
than many (almost) identical local control units. Especi-
ally input data independent periodic control functions can
pro�t from this feature. Fig. 5 shows an example. The
control signal is periodic and is always zero except for one
clock cycle, where it takes the value one.

signal

1 2 3 4 5 6 cycle7 8

period

9 10 11 12 13 14 150

offset

period

offset

...

1

0

Fig. 5. Simple form of control signal.

The implementation ports are automatically connected
to implementation signals provided by central control-
lers/generators during VHDL code generation. For the
creation of enable signals or gated clocks, which implement
the data dependent dynamic data ow, the corresponding
data ow signal values are provided to the generators as
indicated by the feedback signals in �g. 4.
Besides taking care of the creation and interconnection

of implementation signals, ADEN must instantiate and
connect additional entities in the data path. There are
two reasons for this:

� To ensure that data items arrive in time at the ports,
it may be necessary to insert shimming delays (regi-
sters) on some signals.

� Some signals have initial data items in the data ow
block diagram. The number s(e) of initial data items
on a signal e is represented by diamonds in the data
ow diagrams (�g. 7). If s(e) > 0 but the implemen-
tation of e contains no registers and initialization is
important, the proper initial values must be provided
through a multiplexor during the initial cycles.

V. System Analysis and VHDL Generation

Fig. 6 shows the basic steps performed by ADEN during
VHDL generation. The reset requirements and clock para-
meters are inherited from the parents if not speci�ed for a
block. After elaboration, the clock period Tc(v) and phase
�c(v) relative to the base clock are known for each block.

4 of 6

A at (non hierarchical) data ow graph is constructed
from the block diagram.

Parsing

Elaboration (incl. impl. Parameters)

Hierarchical Graph Construction

Graph Flattening

Data Flow Consistency

Data Flow Modification

Data Flow Liveness

Static Timing

Timing Consistency

Register Optimization

Dynamic Timing

Implementation Signal Collection

Controller / Generator Creation

VHDL and Command Output

Fig. 6. Basic Steps for VHDL Generation

The data ow analysis is necessary to compute the con-
sistency (limitedness of the the memory needed) and liven-
ess (there must be always one executable vertex) [7], [8].
If the data ow graph has these properties it is possible
to execute the system for in�nite input data streams. For
a static data ow graph a periodic schedule can be found.
In this schedule each primitive block v is activated q(v)
times. In case of dynamic data ow q(v) is the product
of a constant positive integer and zero or more symbolic
dynamic port rate variables pi. Blocks are not activated,
if one of the symbolic variables of q(v) evaluates to zero
during a period. The number of activations per schedule
is computed as the smallest non-zero integer solution of
the balance equations [9]:

q(v1) � r(v1; e)� q(v2) � r(e; v2) = 0

for all signals v1
e
! v2 in the data ow graph (�g. 7). The

existence of a solution ensures limitedness. Additionally
we can compute the number n(e) = q(v) � r(v; e) of data
items transmitted per period on a signal e. Due to our
signal model the data items are equidistant in time. The
minimum possible iteration interval (called relative itera-
tion interval)

Ir(ei) =
lcmall ej2En(ej)

n(ei)

on each signal can be computed. It speci�es the relative
length of the iteration intervals on the edges. The absolute
value of the iteration interval is obtained later on by mul-
tiplication with the system iteration interval Is common
to all signals (I(e) = Ir(e) �Is). Once consistency is shown
liveness is checked by executing a schedule with all pi set
to 1 for a complete period.

1

1

1 1

1

1

2p1

2p2

2p1

2p21

1

 p3

 p4

1

1

1

 p3

 p4

...

...
...

......

...

A

B

C

D

E

Dynamic Group (p3)
Dynamic
Group
(p1)

q = p3

q = 1

q = p3

q = 2 p1

q = 1

Fig. 7. Example for data ow analysis.

To prepare for the implementation of dynamic data ow,
all connected subgraphs of the data ow graph where the

q(v) and n(e) values of the edges depend on the same sym-
bolic variable pi are formed as shown in �g. 7. These sub-
graphs are called dynamic groups. Only those consistent
dynamic data ow graphs can be implemented without
FIFO bu�ering of data items, where a hierarchical sorting
of dynamic groups is possible. A dynamic group is a de-
scendant of another dynamic group if its control signal's
number of tokens per period n depends on the ancestor's
symbolic variable.
A �xed number of clock cycles for the execution of each

period of the data ow graph is then computed. Several
periods can be executed in overlapping time intervals due
to pipelining. The reference times of the vertices have to
ful�ll the following conditions:

� To allow proper reset the reference time must be non-
negative with respect to the external reset: tr(v) � 0.

� For causality [10] and ful�llment of the minimum
shimming delay requirements, the following equation

must hold for each signal e (vi
e
! vj):

tr(vi)+d(vi; e)�s(e)I(e)�d(e; vj)�tr(vj) � ds;min(e)

� The reference times are measured in multiples of the
base clock period. If a vertex v has a clock period
Tc(v) and phase �c(v) the reference time must corre-
spond to a positive clock edge:

tr(v) = Tc(v) � k + �c(v); k � 0

We have extended the computation of the tr(v) from
[10] to handle the additional constraints. The complexity
of the resulting shortest path problem is still proportio-
nal to the square of the number of vertices. The resulting
time schedule has the minimum latency possible for a gi-
ven system iteration interval. Another important task is
the minimization of the cost of registers (shimming de-
lays inserted) on the edges. This problem adds additional
constraints and requirements to the register minimization
problem discussed by Leiserson [11]:

� On signal e (vi
e
! vj) a delay of

ds(e) = tr(vi)+d(vi; e)�s(e)Ir (e)Is�d(e; vj)�tr(vj)

must be inserted. However, if the iteration interval
I(e) is larger than 1, the cost cr(e) of necessary regi-
sters is less than the shimming delay times the word
length b(e) of the signal, when using 'sparse' delays:

cr(e) = b(e)(

�
ds(e)

I(e)

�
L(e)+min(ds(e) mod I(e); L(e)))

� The retiming �(v) of a vertex v must be proportional
to the clock period Tc(v).

� The number of shimming delays on an edge may not
be less than the user speci�ed minimum ds;min(e).

Controller cost for the implementation of the delays at
edges with iteration interval larger than the clock period
is neglected. We have developed a method to transform
the optimization problem to a minimumcost ow problem
as proposed for the single clock, single rate system in [11].
If the �rst requirement is slightly modi�ed by replacing
the minimum expression by ds(e) mod I(e), the following
three main steps are necessary in order to achieve this:

1. Each edge ek (vi
ek
! vj) where the iteration interval

is larger than the clock period (I(ek) > Tc(ek)) is split

5 of 6

into two edges ek
0 and ek

00 by an additional intermediate

vertex vk
0. The new sparse edge vk

0
ek

00

! vj has register
costs reduced by a factor of I(e)=Tc(ek) and the di�erence
of the retimings of the vertices adjacent to it must be a
multiple of the iteration interval (�(vj) � �(vk

0) = c(k) �
I(ek)). The other new edge ek

0 has register cost equal to
the product of its shimming delay and wordlength. The
shimming delay is limited (ds(ek

0) < I(ek)). The required
minimum shimming delay must be distributed among ek

0

and ek
00 according to the retiming step sizes.

2. Each edge en (vl
en! vm), where the clock periods at

the end vertices do not match (Tc(vl) 6= Tc(vm)), is split

into two new edges vl
en

0

! vn
0 and vn

0 en
00

! vm. One of the
end-vertex clocks is identical with the clock of the original
edge (Tc(en) = Tc(vm)). Registers on en

0 operate at the
base clock period, while en

00 has registers operating with
the larger period Tc(en). en

0 has the higher cost per delay.
vn

0 can be retimed with the base clock period (Tc(vn
0) =

1). The delay on the base clock edge en
0 must be less than

the clock period of the original edge (ds(en
0) < Tc(en)).

3. The retiming �(v) of each vertex v is measured rela-
tive to its clock and appears with the factor Tc(v) in the
constraint inequalities for the linear optimization problem.
Thus we cannot immediately transform to a minimumcost
ow problem. However, by applying a transformation si-
milar to the equivalent single rate graph transformation of
[9], an equivalent formulation with a single clock can be
obtained. The resulting equation system has an increased
number of variables (corresponding to vertices) and con-
straints compared to a single rate single clock system, but
the register optimization can still be executed in polyno-
mial time.
The next step is the determination of the registers repre-

senting the algorithmic state to implement dynamic data
ow. Previous work has only considered static systems.
Fig. 8 shows the data ow graph from the example in �g.
7 after static timing. The numbers at the ports repre-
sent the times t(e; v) at which the �rst data item appears.
These times can be seen as potentials of the ports.

1

1

1 1

1

1

2p1

2p2

2p1

2p21

1

 p3

 p4

1

1

1

 p3

 p4

...

...
...

......

...

A

B

C

D

E

Dynamic Group (p3)
Dynamic
Group
(p1)

q = 1

q = p3

q = 1

q = p3

q = 2 p
1

0

0

00 0

0

0

0

0

0

1

1

0 1 0

0

1

0

0

0 2

0

0

1

2

2 11

0

0
1

2 2

CNTRL_1

CONTRL_2

Fig. 8. Example for result of static timing.

The algorithmic state represented by the initial data
item on the edge between block C and block D is only
updated in the data ow simulation, if both the condi-
tions for p1 and p3 are ful�lled. However, the resulting
times show that the registers for storing this algorithmic
state in the implementation are located in block C. The
loading of invalid data to these registers must be preven-
ted. The correct enable signals for the implementation of
the dynamic data ow must be connected to this block.
The reading and writing to registers which do not repre-

sent algorithmic states need not be controlled by a central
controller. To �nd registers representing algorithmic sta-
tes we developed the following algorithm: For each edge
and each vertex with an algorithmic state, all enclosing
subgraphs within its dynamic group are created. For each
of these subgraphs the timing potentials at its external
ports are computed. From these the earliest times for the
�rst and second data item arriving (t1;in, t2;in) at the sub-
graph or leaving (t1;out, t2;out) the subgraph are searched.
If the following equations are ful�lled, there is no overlap-
ping between iterations at the subgraph, which allows to
disable the update of its registers for one iteration.

t2;in � t1;out t2;in > t1;in (1)

t2;out > t1;out t2;out > t1;in (2)

All subgraphs for all algorithmic states within one dynamic
group ful�lling the conditions (called potential groups) are
stored. Thereafter, potential groups are selected which
cover all algorithmic states in the dynamic group but do
not overlap. If the number of ports at a vertex is limited,
this algorithm can be executed in polynomial time.
The results can be used to create the enable signal ge-

nerators. Fig. 9 shows an example enable signal generator
which is used when implementing dynamic data ow.

COMPARE

COMPARE

external clock

’1’

’1’

Level 0 (TOP)

Level 1

Level 2
’1’

CNTRL_1
HOLD

DELAY

TOP LEVEL ENABLE

enable enable

enable

TOP LEVEL ENABLE

ENABLE FOR P3

ENABLE FOR P1CNTRL_2

DELAY

Fig. 9. Example enable generator.

The hierarchy of dynamic groups is found in the enable
generator again. For each level the signal coming from the
data path is compared to the value necessary for enabling
the dynamic group. Holding the comparison result for one
iteration and delaying to adapt to the time di�erence bet-
ween the comparison and the arrival of the invalid data
items at the potential group may also be necessary. Algo-
rithmic states can only be written, if all dynamic groups
on higher levels are enabled. Therefore the enable signals
of higher levels are used to control lower levels in the dy-
namic hierarchy.
VHDL code is generated including all controller, imple-

mentation signals, shimming delays and multiplexorswhile
retaining the hierarchy. Thus the designer can easily iden-
tify the corresponding data ow blocks when analyzing
logic synthesis results.

VI. Example Design

Fig. 10 shows the top level block diagram of a mini-
mum shift keying MSK transceiver implementing algo-
rithms from [12]. It is intended for a mobile communi-
cation network with packet transmission and equal prio-
rity of all participants. Fast synchronization is important
while the e�ort for �ltering and coding/decoding could be

6 of 6

kept relatively small. Control functions consume a relati-
vely large amount of silicon area compared to other signal
processing applications.

 CAPTURE
DETECTION

 BASEBAND
CONVERSION

 RECT −>
 PHASE

TIME−
FREQUENCY
ESTIMATE
CONTROL

 TIME−
FREQUENCY
 ESTIMATE

PHASE−
INTERPOL.

CONTROLLED
DECIMATION

MUX

 FRAME −
DETECTION

 PACKET−
 ASSEMBLY
 SM

BCH−
CODER/
DECODER

 MSK
MODULATOR

...

POWER_ESTIMATE

BANDPASS

 DATA

TRANSMIT FLAG

SENDER ON TRANSM. SIGNAL RECVD. SIGNAL
REC.
FLAG

data rate: 1/(2T) , 1 data item per period

data rate: 1/T, 2 data items per period

data rate: 4/T, 8 data items per period

data rate: 8/T, 16 data items per period

1

1

6

6

5
5

5

5

3

5 1

1

1

1

1

1

1

4

word length

frequency correction
time offset

5

Fig. 10. Top level block diagram of the example digital transceiver.

The application requires a gross data rate of 2.5 Mbit/s.
Due to the eightfold oversampling of the incoming symbols
the clock period at the bandpass input is 50 ns. Conside-
ring the algorithm complexity of several hundred operati-
ons per sample no implementation that makes use of pro-
grammable devices is possible. To obtain a cost-e�cient
prototype for �eld tests and to increase exibility the pro-
totype will be a �eld programmable gate array (FPGA).
The data ow description and simulation of the transcei-

ver was performed by a system designer using his familiar
data-ow simulation environment. Initially the hierarchi-
cal block diagram consisted of about 700 �ne granular data
ow blocks of lower complexity. During the design seve-
ral more complex reusable parts were identi�ed and in-
serted as data ow models and implementations into the
ComBox library. Some state machines (e.g. the time fre-
quency estimation controller) may be too specialized to of-
fer much potential for reuse. From the �rst data ow block
diagram with su�cient algorithmic performance a VHDL
implementation was generated (approximately 12000 lines
of code) and synthesized for area constraints. From this
the costly components where identi�ed (quadrature com-
ponent to phase conversion, capture, time and frequency
estimation controller etc.). The data path elements where
improved by redesigning the algorithm for smaller word

TABLE I

Final synthesis results (in logic blocks (LB)). 2104 LB

correspond to approx. 13600 equiv. gates.

component combinatorial sequential sum

capture detection 137 138 275
baseband conversion 107 65 172

rect. ! phase 146 36 182
time-frequency cntrl. 67 64 131
time-frequency est. 179 137 316
phase interpol. 13 9 22
frame detection 54 26 80

packet assembly FSM 78 26 104
BCH (de)coder 94 75 169
MSK-modulator 49 14 63
Aden-Controller 80 34 114

rest 145 331 476

sum 1149 955 2104

lengths and by exploiting don't care inputs. The imple-
mentations of state machines were optimized by more e�-
cient VHDL coding. In a second attempt the synthesis was
performed with timing constraints. After some iterations
it was possible to achieve the desired throughput, partly
by using pipelined components (quadrature component to
phase conversion) and partly by selecting options that for-
ced ADEN to insert shimming delays on some signals in
the generated VHDL to break critical paths. Table VI
shows the �nal area obtained for TI/Actel FPGA's [13].
To obtain the optimal result four di�erent clocks had to be
used. Dynamic data ow was very useful to separate the
transmitter from the receiver part while reusing the BCH-
Encoder for both parts. The register optimization helped
to reduce the block count of the �nal implementation by
about ten percent.

VII. Conclusions

We have presented a design methodology for the appli-
cation area of digital communication receivers consisting
of a VHDL generation tool and a library of reusable ge-
neric implementations. The VHDL generation is based on
a standard commercial digital signal processing simulation
tool. The library de�nes standard interfaces to support in-
terface compatibility and comfortable reuse. The VHDL
generation takes care of the implementation details. Ti-
ming consistency, which is a great problem during manual
design, is achieved automatically. It is now important to
encourage the users to identify functions appearing often
in designs and to extend the library with reusable, ge-
neric, optimized implementations. Future versions of the
software should also allow to specify resource sharing ma-
nually.

References

[1] G. Jennings, \A case against event driven simulation of digital
system design," in The 24th Annual Simulation Symposium,
pp. 170{176, IEEE Computer Society Press, April 1991.

[2] O. J. Joeressen, G. Schneider, and H. Meyr, \Systematic De-
sign Optimization of a Competitive Soft-Concatenated Deco-
ding System," in VLSI Signal Processing 6 (L. Eggermont et
al., ed.), pp. 105{113, IEEE, 1993.

[3] Cadence Design Systems, 919 E. Hillsdale Blvd., Foster City,
CA 94404, USA, SPW User's Manual.

[4] P. B. Tjahjadi, P. T. Yang, B. C. Wong, B.-Y. Chung, E. G.
Cohen, and R. Jain, \Vanda - a CAD system for communication
signal processing circuits design," inVLSI Signal Processing IV,
ch. 5, IEEE Press, 1990.

[5] Synopsys, Inc., 700 E. Middle�eld Rd., Mountain View, CA
94043, USA, COSSAP User's Manual.

[6] E. A. Lee, \Consistency in dataow graphs," IEEE Trans. on
Parallel and Distr. Systems, vol. 2, pp. 223{235, Apr. 1991.

[7] J. T. Buck and E. A. Lee, \Scheduling dynamic dataow graphs
with bounded memory using the token ow model," in Proc.
ICASSP'93, pp. I{429{I{432, IEEE, 1993.

[8] T. Murata, \Petri nets: Properties, analysis and applications,"
Proc. of the IEEE, vol. 77, pp. 541{580, April 1989.

[9] E. A. Lee and D. G. Messerschmitt, \Static scheduling of syn-
chronous data ow programs for digital signal processing,"
IEEE Trans. on Computers, vol. 36, pp. 24{35, Jan. 1987.

[10] H. V. Jagadisch and T. Kailath, \Obtaining schedules for digital
systems," IEEE Trans. on Signal Processing, vol. 39, pp. 2296{
2316, Oct. 1991.

[11] C. E. Leiserson, F. Rose, and J. Saxe, \Optimizing synchronous
circuitry for retiming," in Proc. of the 3rd Caltech Conf. on
VLSI, (Pasadena), pp. 87{116, March 1983.

[12] U. Lambrette and H. Meyr, \Two timing recovery algorithms
for MSK," in Intl. Conf. on Comm., 1994.

[13] Texas Instruments, FPGA Data Manual.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

